
Environmental Authentication in Malware

Jeremy Blackthorne1, Benjamin Kaiser2, and Benjamin Fuller3,
and Bülent Yener1

1 Rensselaer Polytechnic Institute
{whitej12,byener}@rpi.edu,

2 benjamin.h.kaiser@gmail.com
3 University of Connecticut
benjamin.fuller@uconn.edu

Abstract. Malware needs to execute on a target machine while simul-
taneously keeping its payload confidential from a malware analyst. Stan-
dard encryption can be used to ensure the confidentiality, but it does
not address the problem of hiding the key. Any analyst can find the
decryption key if it is stored in the malware or derived in plain view.
One approach is to derive the key from a part of the environment which
changes when the analyst is present. Such malware derives a key from
the environment and encrypts its true functionality under this key.
In this paper, we present a formal framework for environmental authen-
tication. We formalize the interaction between malware and analyst in
three settings: 1) blind: in which the analyst does not have access to the
target environment, 2) basic: where the analyst can load a single anal-
ysis toolkit on an effected target, and 3) resettable: where the analyst
can create multiple copies of an infected environment. We show neces-
sary and sufficient conditions for malware security in the blind and basic
games and show that even under mild conditions, the analyst can always
win in the resettable scenario.

1 Introduction

In many settings, programs try to prevent observers from learning their
behavior. These settings vary from legitimate software protecting its in-
tellectual property through digital rights management to malware hiding
from analysts to extend the life of a criminal endeavor.

We focus on malware hiding from an analyst, but our discussion ap-
plies to the other scenarios as well. Our goal is to improve the under-
standing of current and future malware techniques. Our work proceeds
from the point of view of the malware hiding from an adversarial ana-
lyst. Thus, our discussion reverses roles: the malware designer is the party
trying to ensure security and the analyst acts as the adversary.

Malware follows two approaches to hiding its behavior: 1) making
the observed program unintelligible, i.e. obfuscation [CTL97, BGI+01,

2

GGH+13], and 2) preventing observation from even occurring when exe-
cuting in the wrong environment, i.e. environmental authentication [RS98,
SRL12].

Obfuscation is the subject of informal [CTL97] and formal [BGI+01]
treatments. Obfuscation works as follows: an obfuscator function O(.)
takes some program P as input and creates P ′ such that P ′ is input-
output equivalent to P but is implemented differently. The implementa-
tion is changed with the goal of confusing an analyst which tries to un-
derstand the program. But even the strongest obfuscation scheme cannot
hide important aspects of the program including input/output behavior.
Some functions can be recovered by just observing a polynomial number
of input-output pairs [SWP08]. Such functions are known as learnable.
For malware, the desire is to hide the effects on the target computer
system, the inner workings of the algorithm are a secondary concern. For
this stronger level of protection, malware attempts to prevent observation
from occurring. Malware achieves this by distinguishing environments in
which it is being observed from environments which it is not. This distin-
guishing of environments we call environmental authentication.

Environmentally authenticating malware targets a particular com-
puter (or set of computers) and learns as much as possible about this
target environment. It then creates (at least) two distinct behaviors: one
for the target environment and another for non-target or observed en-
vironments. At runtime, the malware determines its current executing
environment and executes the appropriate behavior [BCK+10a]. Envi-
ronmental authentication can be subdivided into two approaches: 1) en-
vironmental sensitivity and 2) environmental keying.

Environmental Sensitivity Environmentally sensitive malware reads sys-
tem state and incorporates this state into program control flow [BKY16].
As an example, theWindows API includes a function IsDebuggerPresent
which allows a program to detect if a user level debugger is instrument-
ing their program. Many pieces of malware change their behavior based
on the value of this call. This approach makes a binary and observable
decision on how the environment affects control flow. This means that
an analyst can run a debugger, create a breakpoint at this system call,
and manually overwrite the return to be true. This corresponds to a weak
form of authentication (also known as binary matching [ICF+15]).

This has lead to an arms race between malware trying to sense the
presence of analysis techniques and analysis techniques trying to create
small and unobservable changes in the system state. Malware authors

3

created techniques to detect debuggers [CAM+08, Fer11, SH12], virtual
machines [Fer07, SH12], and system emulators [KYH+09, PMRB09]. All
environmental sensing techniques make binary decisions based on the
environment.

Environmental Keying Environmental keying replaces the binary decision
of environmental sensing with key derivation. This approach is performed
in three stages:

1. The malware author targets a computer (or class of computers). In-
formation about the target computer is observed and recorded in the
malware. In addition, the author gathers information about other con-
figurations which can be considered as invalid or under observation.

2. The author derives cryptographic keys from the target environment
and observed environments.4

3. The author encrypts different program behaviors under each of these
keys and adds a key derivation process to switch between these be-
haviors.

At run time, the malware measures the environment and derives a
key from this environment. Environmentally keyed malware is split into
three functionalities: a key derivation function (KDF) and encrypted pay-
loads PT and PO corresponding to the desired behavior in the target and
observed environments respectively. When deployed, the malware first de-
rives a key from the environment and then try to decrypt each payload.
This process of unlocking functionality is shown in Figure 1. For example,
the malware Gauss derives a key from its environment by computing an
MD5 hash 10,000 times over a combination of the %PATH% variable and
the directory names in %PROGRAMFILES% [RT12]. To the best of our
knowledge, Gauss’ target behavior has not been decrypted.

Encryption prevents an analyst from reasoning about the target pay-
load PT . There is no binary decision that can be flipped by an analyst
to force the malware to decrypt the payload in an incorrect environment.
There are two main questions in this setting, 1) can the malware designer
find high entropy sources for key derivation, 2) can the analyst observe
the malware without disturbing these sources.

4 Extractors [NZ96] and fuzzy extractors [DRS04] can be used to derive keys in
non-noisy and noisy environments, respectively. See the works of Nisan and Ta-
Sha [NTS99] and Dodis et al. [DRS08] respectively for more information. Throughout
this work we assume that the key derivation techniques are implemented properly
and the only weakness that can be targeted is guessing a valid input to the key
derivation process.

4

PT

(a) Target
Payload

C

k

Decrypt

(b) Encrypted

C

KDF

Decrypt

Environment E

(c) Encrypted with environmental key-
ing

Fig. 1: A plaintext payload PT is shown in (a) as a baseline. In (b) we
see the same payload PT transformed into an encrypted version C. The
encrypted payload must include an unencrypted key and a decryption
function. In (c) we see the same encrypted payload from (b) with k re-
placed with the KDF function. KDF takes the environment E as an input
and derives k as output. In this figure the alternate payload PO is removed
for clarity.

Obfuscation has a long history in both the systems and theoreti-
cal computer science communities. Environmental authentication, on the
other hand, is known in the systems community but unexplored from a
theoretical perspective. The malware community is rapidly adopting new
techniques, forcing analysts to scramble to develop new analysis capabil-
ities in order to keep up. The development of a theoretical foundation for
environmental authentication will empower analysts to develop more ef-
fective tools for analyzing malware that uses environment authentication.

Our Contribution We put forth a formal model for environmental au-
thentication and evaluate three common malware analysis settings:

Section 3 An analyst that does not have access to the target environ-
ment to which the malware is keyed. We call this the blind setting.

Section 4 The analyst has access to the environment after the malware
has infected it and cannot create an offline backup of the system.
This setting represents an analyst performing incident response on a
critical system. For example, a controller at a power plant cannot be
taken offline. We call this the basic setting.

Section 5 The analyst is able to snapshot an infected system. They are
able to create multiple copies and install different analysis tools on
each copy. We call this the resettable setting.

5

In all settings a piece of malware M interacts with the environment
E through a series of decision algorithms, D1, ...,Dn, which read subsets
of the environment to determine the execution path. Recalling the stages
of environmental keying: the decision algorithms represent measuring the
environment, deriving a key, and attempting to decrypt the next section
of the program. We do not allow the analyst observe the code of the cur-
rent decision algorithm or beyond so 1) our results hold in the presence
of obfuscation and 2) because any code beyond the decision procedure
may be encrypted. The analyst’s primary means of interacting with the
malware is by providing inputs to the decision algorithms, which repre-
sents altering the environment (as the input to each decision algorithm
is a reading of the environment). The (informal) goal of M is to satisfy
correctness and soundness:

Correctness M achieves correctness if it reaches the payload stage PT
in the target environment.

Soundness M achieves soundness if it never reaches the payload stage
PT when the analyst A is present in the environment.

We provide necessary and sufficient conditions for M to be secure in
the blind and basic games. In the resettable game, we show that under
very mild assumptions, the analyst always wins.

Our results for the blind game are intuitive: for M to be secure, it is
necessary that a decision procedure rarely outputs 1 in a random environ-
ment. It is sufficient that there does not exist a “worst case” environment
that can cause a random decision procedure to regularly output 1. This
means that in practice, decision procedures must be precisely keyed to
their target environment.

Our results for the basic game are more complicated. In this setting,
the analyst may read the target environment but first has to load an anal-
ysis technique. This process of loading can overwrite some critical part
of the environment. A necessary condition for security is for the analysis
technique to be likely to overwrite a large subset of the environment that
will be used in some decision procedure. A sufficient condition for security
is that this subset is likely to be “entropic”, i.e., there are few values for it
that cause a decision procedure to accept. The first condition is intuitive,
but the second conflicts somewhat with our understanding of computers,
for although we don’t know the distribution of all aspects of a computer
system, it seems unlikely to be large for all subsets.

For the resettable game, we provide a simple proof that the analyst
can learn the entire target environment, and thus environmental keying

6

Necessary Sufficient

Blind Thm 1: Some Di outputs 1 with
negl probability on random inputs.

Thm 2: Some Di outputs 1 with
negl probability on best case inputs

Basic Thm 3: Decision procedure and an-
alyst likely to overlap

Thm 4: Most of environment is en-
tropic

Table 1: Summary of results. Necessary and sufficient conditions are from
the point of view of the malware designer. The resettable setting is omit-
ted as M security is not possible in this setting.

provides little security. Our results for the blind and basic settings are
summarized in Table 1. We note our results are information-theoretic as
we assume that the A only has oracle access to decision procedures.

1.1 Other Related Work

Protecting programs by depending on the environment has been studied
under many names, including environmental key generation [RS98], se-
cure triggers [FKSW06], host-based fingerprinting [KLZS12], environment-
sensitive malware [LKMC11, SRL12], host-identity based encryption [SRL12],
environment-targeted malware [XZGL14], malware with split personali-
ties [BCK+10b], and environmental keying [Moo15, Bau14]. We use the
term environmental authentication to describe any technique that creates
a dependence on a specific environment or type of environment for the
purposes of preventing observation or analysis.

Transparent analysis analyzes programs while minimizing detectable
environmental changes [Yan13]. Dinaburg et. al present a formalization
for transparent malware analysis in [DRSL08] and describe the require-
ments for transparent analysis. Their requirements are higher privilege,
the absence of side-channels, transparent exception handling, and identi-
cal timings. Kang et. al also formulate the problem of transparent malware
analysis within emulators [KYH+09].

Key derivation is a sub-field of cryptography that studies ways to ex-
tract uniformly random strings from high-entropy, non-uniform sources
[Kra10]. Deriving keys in the presence of noise is often necessary for real-
world applications and is achieved by fuzzy extractors [DRS04]. Through-
out this work we assume that key derivation is ideal, a resulting key is
secure if it results from super-logarithmic min-entropy. In the noise-free
setting, this is sufficient in the random oracle model [BR93]. This may
not be sufficient in the noisy case, a more precise notion is fuzzy min-
entropy [FRS16], we ignore these losses in this work.

7

Organization The rest of the paper is organized as follows: in Section 2, we
provide the necessary background information, notation, and preliminary
definitions, including the formal definition of environmental authentica-
tion. In Sections 3, 4 and 5, we describe the blind, basic, and resettable
settings respectively.

2 Definitions

Functions are written in the typewriter font, e.g. Function, distributions
using script font and a single letter, e.g. D, and scalar values using math
font with a single lowercase letter, e.g. k. If k is sampled from a distribu-
tion D, we say k ← D. If k is an element in a set K, we say k ∈ K.

2.1 Modeling Computer Systems.

Computer systems are complex, as programs can read state from a variety
of sources: memory, hard drive, cache, side-channels, operating system
calls, registers, installed devices, network interfaces, and more. Turing
machines and interactive Turing machines do not capture all of this in-
teraction, particularly for two programs operating in the same system.

The goals of malware are 1) correctness: detecting if they are resident
on a target set of machines and 2) soundness: discerning if the system is
being analyzed. These goals can be modeled by abstracting various device
state into a single array E which we call the environment. The two goals
can be stated as:

Correctness The malware should read enough of E to be sure it is on
a targeted machine. In particular, it should read features that vary
between devices. During targeting it is necessary for the designer to
learn the relevant features of the target set.

Soundness The malware should read parts of the array that are likely to
change under observation. As mentioned in the introduction, parts of
the array that change under observation include IsDebuggerPresent
(which is easy to hide) and timing side-channels (which are harder to
hide).

The goal of the analyst is to understand both E and the malware M
without causing changes to E. In pursuing this goal, we assume that the
analyst has two main capabilities

1. They are able to create (representative) computer systems and read
all of E.

8

2. If the analyst has access to the target computer they can read from
the environment after being loaded on the system. This action may
cause detectable and irreversible changes to E.

We now formalize the correctness goal of malware. We defer soundness to
the following sections as we consider it with regards to multiple analysis
postures.

Model A computer system is a one-dimensional array E of length ℓ (E ∈
{0, 1}ℓ). We denote by E the distribution of possible system environments
and a single computer system E is sampled from E (E ← E). Either the
malware author or analyst may have more information about the target
environment or the overall distribution of computer systems. For instance,
the malware designer may be targeting an English language system while
this is unknown to the analysts. Our model should extend to this setting
but we leave this formalization as future work.

All algorithms are executed in the environment but must be loaded
into E via the Load function. This (irreversibly) changes the environment
E into E’. Only after being loaded can an algorithm read from or write to
the environment. WhenM is loaded onto E, denoted Load(M,E), its goal
is to authenticate the environment using a sequence of decision algorithms
Di and sensors Si. A sensor Si is a subset of [1..ℓ]. The corresponding
decision algorithm Di(E′Si

) takes as input the environment at the set of
locations {Ej |j ∈ Si}. Di outputs 1 to indicate the environment matches
the target environment (i.e. continue on a execution path that allows it
to deliver its target payload) and 0 otherwise.

We assume this payload is of minimal size in comparison to the en-
vironment and thus we do not include it in the model. The analyst wins
if they pass all decision procedures. Authentication decisions may be im-
plicit through the use of cryptographic authentication, thus we only allow
an analyst to provide inputs to Di in a black-box manner and decision
algorithms output a binary decision. There is no way to force the decision
procedure to output a 1.

Limitations of our model Computer systems change over time. We do not
model time for an analyst because a determined analyst can control the
system environment and essentially stop time. In real computer systems,
the malware can only read a single address at a time which is either 32 or
64 bits. Several of our results will depend on the size of memory that M
can read in a single decision algorithm, we call this parameter readsize or
α. We assume that α is substantially larger than a single memory location.

9

It is an interesting open problem to extend our results to a setting where
a decision procedure cannot read all of its input in a single timestep.

Correctness For malware to authenticate its environment it must be cor-
rect, meaning that it executes its payload in its intended environment,
and sound, meaning that it does not reveal its payload in an observed en-
vironment. We present a definition for correctness here and define three
soundness definitions in the following sections. First, however, we must
describe precisely how sensitive a piece of malware with both correct-
ness and soundness is against an analysis technique A. We capture this
property in the following definition.

We define correctness with the following game:

Experiment Expcor
M,E :

(D1, S1, ...,Dn, Sn)←M(·)
E′ ← Load(M,E)
If ∀i, [Di(E′Si

) = 1] return 1

Else return 0.

Denote by the parameter n the number of decision algorithms and α the
maximum size of Si. We assume that each Di is deterministic and the
probability is over the coins of M and Load.

Definition 1. A piece of malwareM is δ-correct on E if Pr[Expper
M,E(·) =

1] = δ.

Environment Samplability We assume the analyst is able to read the state
of representative computers and may be able to load on the targeted com-
puter with the malware present. We now formalize this first capability:

Assumption 1 There exists a randomized algorithm SamE running in

time tE such that SamE(·)
d
= E.

If the malware accepts frequently on random computers there is no
need for the analyst to understand the target environment. That is, ac-
cess to the target environment is not necessary if the decision procedures
output 1 frequently on random computers:

Definition 2. Define the accepting probability of M over n possible en-
vironments, denoted
Accept(M, E), as

Accept(M, E) = min
1≤i≤n

(
EE←E

(
Pr

Di,Si←M
[Di(ESi) = 1]

))
.

10

Accepting probability captures how frequently the malware succeeds on a
random computer system. However, it may be possible for an analyst to
learn more information by observing the behavior of the previous decisions
procedures. To capture this notion we present the following (information-
theoretic) definition:

Definition 3. Define the adaptive guessing probability of M over n pos-
sible environments, denoted as
AGuess(M, E), as

AGuess(M, E) = min
1≤i≤n

(
max
E′∈E

(
Pr

Di,Si←M
[Di(E′Si

) = 1|D1, ...,Di−1]
))

.

where Di is the entire truth table of Di.

These definitions capture security against an analyst trying random com-
puter systems and an analyst finding the best computer system respec-
tively. They can be thought of as analogues of Shannon and min-entropy
respectively [Rén61]. We do not condition on the previous decision algo-
rithms in Definition 2 as this does not change the expectation but this
could be included without affecting Accept.

Definition 4. M is (β, γ)-environmentally authenticating if:

– Accept(M, E) ≥ 2−β.

– AGuess(M, E) ≤ 2−γ.

Proposition 1. AGuess(M, i, E) ≥ Accept(M, i, E) and thus for any
(β, γ)-environmentally authenticating malware γ ≤ β.

With these definitions we can formalize the notion of environmental
sensitivity and environmental keying described in the introduction.

Definition 5. Let λ be a security parameter. If M is (β, γ) environmen-
tally authenticating for β = O(log λ) then M is environmentally sensing.

Definition 6. Let λ be a security parameter. If M is (β, γ) environmen-
tally authenticating for γ = ω(log λ) then M is environmentally keying.

By Proposition 1 γ ≤ β, thus malware cannot be both environmentally
sensing and environmentally keying. There is malware that is neither
environmentally sensing nor environmentally keying.

11

3 Blind Scenario

The first adversarial scenario models malware being found in the wild
separate from its target environment. This is common in real malware,
which may spread widely and infect many machines beyond its target,
if it even has a specific target. This separation of malware and target
environment is important when attempting to understand malware with
environmental authentication. In this scenario, the analyst does not know
or have access to the target environment, we also assumes that the analyst
cannot determine the target environment by reverse engineering the mal-
ware; this scenario is demonstrated in practice by the malware Gauss, for
which a target environment has not been found despite significant effort
by the analysis community [RT12].

We define blind soundness using the following game:

Experiment Expbli−sou
M,E,A :

(D1, S1, ...,Dn, Sn)←M
For i = 1 to n

Guessi = ADi(·)(Si,Di−1, Si−1, ...,D1, S1).
If ∀i, Di(Guessi) = 1 return 1
Else return 0.

In this game, A receives a complete description of all prior decision al-
gorithms and the current sensor readings. They also have oracle access
to the current decision procedure. We denote by toracle the time needed
to make an oracle call and assume this time is consistent across decision
procedures.

Definition 7. M is ϵ-blind sound against A if Pr[Expbli−sou
M,E,A (·) = 1] < ϵ.

Our results in the blind game are intuitive. A necessary condition for
soundness is that Accept accepts with negligible probability on random
inputs. A sufficient condition for soundness is that AGuess accepts with
negligible probability on worst case inputs.

Theorem 1. For any (β, γ)-environmentally authenticating malwareM
with n decision procedures that is at most 1− δ correct, for any 0 < ϵ < 1
there exists A such that M is at most (ϵ + δ)-blind sound where A runs
in time

tA = 2βn(tE + toracle) ln

(
n

1− ϵ

)

12

The proof of this theorem can be found Appendix A.1. At a high level,
the A can sample environments randomly until each decision procedure
accepts. The result implies that environmentally sensitive malware is not
sound in the blind game:

Corollary 1. Let λ be a security parameter, if M is environmentally
sensing (i.e. 2β = poly(λ)) and 1− δ correct, and n, toracle, tE = poly(λ)
for any ϵ ≤ 1 − 2−poly(λ), there exists an A that runs in time poly(λ)
such that M is at most ϵ+ δ sound.

We further show having a high γ suffices for security in the blind game.

Theorem 2. For any (β, γ, n)-environmentally authenticating malware
M that is 1 − δ-correct, let A be a block-box algorithm that makes at
most t calls to the decision oracles, then M is at least ϵ-sound for ϵ =
(t+ 1) 2−γ

1−t2−γ .

The proof of this theorem can be found in Appendix A.2. At a high
level, since a decision procedure has a negligible probability of accepting,
even with a polynomial number of guesses the overall acceptance prob-
ability remains negligible in the security parameter. The result implies
that all environmentally keyed systems are secure in the Blind game:

Corollary 2. Let λ be a security parameter, if M is environmentally
keying, then for any black-box A making t = poly(λ) oracle calls, ϵ =
negl(λ).

Proof. The proof proceeds by noting that for t = poly(λ) and 2−γ =
negl(λ) then 1− t2−γ ≥ 1/2 and thus ϵ ≤ 2(t+ 1)2−γ = negl(λ).

Without access to the intended environment E, the blind adversary is
at a significant disadvantage. As long as the key has sufficient entropy,
the scheme is sound. We see a real example of this in the malware Gauss.
Almost four years after Gauss was first reported [RT12], we see that there
still have been no public success in deciphering its payload. There has even
been developed an open source, distributed cracker developed to harness
global computing power to solve the mystery without success [Jst16].

4 Basic Scenario

The next adversary represents a common scenario for malware analysts:
incident response. This refers to the situation in which an analyst is called
to assess the damage achieved by a piece of malware that has already

13

infected a computer and currently still running on it [CMGS12]. In this
scenario, the targeted computer is part of critical infrastructure which
cannot be taken offline: e.g., a power control system. The analyst does
not have an image of the computer that contains the uninfected state and
must perform analysis on the infected image without being detected by
the malware. That is, the analyst has access to E where M has already
been loaded. However, they can gain no information about E without
loading themselves, which changes E.

Basic Soundness We define the basic soundness game as follows:

Experiment Expsou
M,E,A,Load:

(D1, S1, ...,Dn, Sn)←M(E)
EM ← Load(M,E)
EM,A ← Load(A,EM)
For i = 1 to n

Guessi = ADi(·)(EM,A, Si, Di−1, Si−1, ..., D1, S1).
If ∀i,Di(Guessi) = 1
return 1

Else
return 0.

Definition 8. Let Load be a program loading module. A program M is
ϵ-sound for the target E (drawn from E) with respect to A if

Pr[Expsou
M,E,A,Load(·) = 1] > 1− ϵ.

Our results in this model are slightly more complicated than those in the
Blind game. By our earlier-stated assumption, the analyst loading their
tools causes some change in E. For the malware to successfully evade,
this change must be large enough such that the analyst cannot easily
guess values that will make Di accept. If the analyst only overwrites a
few bits, for example, they can trivially guess the correct sequence. We
will formalize this notion, noting where our model differs from reality.

First, we assume for convenience that loading A changes a random
subset of locations of size ν. This differs somewhat from reality, in which
changes will be limited to certain subsets of the environment (such as the
filesystem or registry). However, in both cases, portions of E that would
not be overwritten by A can be ignored by both M and A.5 We further

5 In reality, we expect certain portions of E to be more likely to be overwritten by
different A. Our results extend to that model.

14

assume that the locations of EM,A that are changed are known to A and
they are set to values independent of the values in EM . We also assume
that the M is always able to execute with A loaded. This requires that
loading A never overwrites M ’s functionality; in practice, analysts avoid
overwriting the program they are analyzing, so this assumption holds.

Theorem 3. Let M be a (β, γ)-authenticating piece of malware with n
decision procedures and maximum read size α where n · α = ℓc for some
0 < c < 1. Furthermore, suppose that M is δ correct on all EM ←
Load(M,E). Let c′ > 0 be some parameter. If there exists some A with
artifact size ν = ℓ1−c, then by making at most 2c

′+2 oracle queries M is
at most (e−1/4ℓ

1−c
+ δ + e−2/3c

′2
)-basic sound.

The proof of this theorem can be found in Appendix A.3. Roughly, when
the product of the read size of the malware and the size of the analyst
is at most the total size of the environment ℓ we expect the malware
read locations and the analyst to collide in a small (logarithmic) number
of positions. The analyst is then able to exhaustively search over the
relevant locations that were erased. We simplify the theorem for common
parameter settings:

Corollary 3. Let λ be a security parameter where ℓ = poly(λ). Let M
be a (β, γ)-authenticating piece of malware with n decision procedures and
maximum read size α where n · α = ℓc for some 0 < c < 1. Furthermore,
suppose that M is δ correct on all EM ← Load(M,E). If there exists
some A with artifact size ν = O(ℓ1−c), then by making at most poly(λ)
oracle queries M is at most (δ + 1/poly(λ))-basic sound.

The above statement says that if the product of the size of the sensed
positions and the analyst size is less than the total environment length
then it is possible for the A to evade the malware and force the decision
procedures to output 1.

We now proceed to show a sufficient condition for security. The nec-
essary condition requires that the intersection between Si and A is large.
However, it also requires that A is not able to come up with valid guesses
for the missing parts of the E. Creating a simple definition for this con-
dition is complicated by two factors:

1. The malware,M , does not know ahead of time where A will be loaded.
If A can load in a location Si whose values, ESi are easy to predict,
it is impossible for M to provide security.

15

2. Once loaded, the A has access to the rest of E. This means that any
redundancies or observable patterns or structures in E can be used to
increase A’s probability of guessing successfully.

Combining these two requirements, M should sense from as much of
the environment as possible and E at sensed locations has to be hard
to predict even knowing the rest of the environment. It is unlikely that
computer systems satisfy these requirements. Environments have known
structures and patterns – OS structures, filesystem contents, common li-
braries, etc. – and there are areas that have very low entropy. To codify
the difficulty of satisfying these requirements, we present an analogue of
Definition 3 and a corresponding sufficient condition for security. How-
ever, our condition should be seen as a largely negative result, as it only
applies under unrealistic conditions on E and M .

Definition 9. Let λ be a security parameter. A piece of M is µ-entropic
sensing if for every subset Esub ⊂ E such that |Esub| ≥ µ, then

min
1≤i≤n

(
max
E′∈E

(
Pr

E←E∧Di,
Si←M(E)

[Di(E′Si
) = 1|D1, S1, ...,Di−1, Si−1, E \ Esub]

= negl(λ)

where Di is the entire truth table of Di and E \ Esub is the portion of E
which is not contained in Esub.

Definition 9 imposes a constraint both on the malware and on the
environmental distribution E itself. This implicitly requires that all large
subsets of E have super-logarithmic min-entropy conditioned on the rest
of the environment.

Theorem 4. Let λ be a security parameter. Let M be a µ-entropic sens-
ing with n decision procedures. If all A have artifact size at least µ, then
any black-box A making at most poly(λ) oracle queries then M is at least
(1− negl(λ))-basic sound.

The proof of this theorem can be found in Appendix A.4. Most of the
complexity of the proof is contained in Definition 9 which implies that
the analyst’s first guess on some decision procedure succeeds with negli-
gible probability. Standard arguments show that even with a polynomial
number of guesses their overall success remains negligible.

16

Note: It is possible to weaken Definition 9 to be probabilistic. That is,
there is a good chance that the set overwritten by the A will make it
difficult to provide good inputs to some Di∗ . However, this does not fun-
damentally change the character of the result which says that all large
subsets of E must be entropic and that M must read all subsets of E
with good probability.

5 Resettable Adversary

Finally, we turn to our least setting which we call the resettable adversary.
In this setting A is allowed access to the malware M and the environ-
ment E while they are still separated. They are allowed to Load in the
environment E multiple times and reset. Not surprisingly, our results in
this model are negative. As long as there are multiple analysis techniques
that are disjoint it is always possible for the analyst to acquire the state
of the environment that exists without the analyst being present. This
allows the analyst to present the pristine environment to the malware,
thus unlocking it. We begin by formalizing the interaction.

Resettable Soundness We define the resettable soundness game as follows:

Experiment Expres−sou
M,E,A,Load,ψ(·):

(D1, S1, ...,Dn, Sn)←M(E)
EM ← Load(M,E)
state =⊥
For i = 1 to ψ

Ai ← A(D1, S1, ..., Di−1, Si−1, Di, Si, state)
Ei ← Load(Ai, E)
(Guessi, f, state) = Ai(Ei,Di, Si).
if f = 1 break

If ∀i, Di(Ei) = 1 return 1
Else return 0.

Definition 10. Let Load be a program loading module and let λ be a
security parameter. A program M is ϵ-resettable sound for the target E
(drawn from E) with respect to A if for all ψ = poly(λ),

Pr[Expsou
M,E,A,Load,ψ(·) = 1] > 1− ϵ.

Theorem 5. If there exists multiple analysis techniques A1, A2 such that
the locations overwritten by A1, A2 are disjoint, then all M that is δ-
correct is at most δ-resettable sound.

17

Proof (Sketch). The analyst A proceeds in three stages. First, they load
some tool A1 and output all non overwritten parts of E as state. They
then load A2 that does the same. Finally, they create an A3 that encodes
a copy of the entire environment as it exists without any tools present.
This A3 recreates the proper inputs to the decision procedures and only
fails when M fails to authenticate in the legitimate environment.

In the above proof sketch we assume that A3 is able to encode the
entire target environment E in an analysis module. In reality, once the
analyst has recovered the environment, they can produce an module that
only includes the relevant information which is read in by M . The only
requirement for the analyst is to be able to encode the entire environment
and their guessing logic on the target machine. One could imagine that
the loaded module could communicate with outside storage for pieces of
the environment but this is out of scope for our model.

The resettable analyst A can forge the pristine environment and thus
unlock the malware. With the ability to reset the environment and mal-
ware, the analyst can understand the entire target environment with the
same precision as the malware making security impossible.

References

[Bau14] Car Bauer. ReMASTering Applications by Obfuscating during Compila-
tion. blog post, August 2014.

[BCK+10a] Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Efficient detection of split per-
sonalities in malware. In NDSS. Citeseer, 2010.

[BCK+10b] Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher
Kruegel, Engin Kirda, and Giovanni Vigna. Efficient Detection of Split
Personalities in Malware. In In Proc. of the Symposium on Network and
Distributed System Security (NDSS), 2010.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (Im)possibility of Obfuscating
Programs. In Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’01, pages 1–18, London,
UK, UK, 2001. Springer-Verlag.

[BKY16] Jeremy Blackthorne, Benjamin Kaiser, and Bülent Yener. A formal frame-
work for environmentally sensitive malware. In Research in Attacks, Intru-
sions, and Defenses - 19th International Symposium, RAID 2016, Paris,
France, September 19-21, 2016, Proceedings, pages 211–229, 2016.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st ACM
conference on Computer and communications security, pages 62–73. ACM,
1993.

18

[CAM+08] Xu Chen, J. Andersen, Z.M. Mao, M. Bailey, and Jose Nazario. Towards an
understanding of anti-virtualization and anti-debugging behavior in mod-
ern malware. In Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008. IEEE International Conference on, pages 177–186, June
2008.

[CMGS12] Paul Cichonski, Tom Millar, Tim Grance, and Karen Scarfone. Computer
Security Incident Handling Guide: Recommendations of the National In-
stitute of Standards and Technology, 800-61. Revision 2. NIST Special
Publication, 800-61:79, 2012.

[CTL97] Christian Collberg, Clark Thomborson, and Douglas Low. A Taxonomy
of Obfuscating Transformations, 1997.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy Extractors: How
to Generate Strong Keys from Biometrics and Other Noisy Data. In
Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in
Computer Science, pages 523–540. Springer, 2004.

[DRS08] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors–a brief
survey of results from 2004 to 2006. In Security with Noisy Data. Citeseer,
2008.

[DRSL08] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether:
malware analysis via hardware virtualization extensions. In CCS ’08 Pro-
ceedings of the 15th ACM conference on Computer and communications
security, pages 51–62, 2008.

[Fer07] Peter Ferrie. Attacks on More Virtual Machine Emulators. Technical
report, Symantec Advanced Threat Research, 2007.

[Fer11] Peter Ferrie. The Ultimate Anti-Debugging Reference, May 2011. [Online].
Available: http://pferrie.host22.com/papers/antidebug.pdf. Accessed Apr.
6, 2015.

[FKSW06] Ariel Futoransky, Emiliano Kargieman, Carlos Sarraute, and Ariel Waiss-
bein. Foundations and applications for secure triggers. In In ACM Trans-
actions of Information Systems Security, page 2006, 2006.

[FRS16] Benjamin Fuller, Leonid Reyzin, and Adam Smith. When are fuzzy ex-
tractors possible? In Advances in Cryptology–ASIACRYPT 2016: 22nd In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I 22, pages 277–306. Springer, 2016.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova 0001, Amit
Sahai, and Brent Waters. Candidate Indistinguishability Obfuscation and
Functional Encryption for all Circuits. In FOCS, pages 40–49. IEEE Com-
puter Society, 2013.

[ICF+15] Gene Itkis, Venkat Chandar, Benjamin W Fuller, Joseph P Campbell, and
Robert K Cunningham. Iris biometric security challenges and possible so-
lutions: For your eyes only? using the iris as a key. IEEE Signal Processing
Magazine, 32(5):42–53, 2015.

[Jst16] Jsteube. oclGaussCrack, 2016.
[KLZS12] Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian

Seifert. Rozzle: De-cloaking Internet Malware. In Proceedings of the 2012
IEEE Symposium on Security and Privacy, SP ’12, pages 443–457, Wash-
ington, DC, USA, 2012. IEEE Computer Society.

19

[Kra10] Hugo Krawczyk. Cryptographic Extraction and Key Derivation: The
HKDF Scheme. In Advances in Cryptology - CRYPTO 2010, 30th An-
nual Cryptology Conference, volume 6223 of Lecture Notes in Computer
Science, pages 631–648. Springer, 2010.

[KYH+09] Min Gyung Kang, Heng Yin, Steve Hanna, Stephen McCamant, and Dawn
Song. Emulating emulation-resistant malware. In Proceedings of the 1st
ACM workshop on Virtual machine security, VMSec ’09, pages 11–22, New
York, NY, USA, 2009. ACM.

[LKMC11] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. De-
tecting Environment-sensitive Malware. In Proceedings of the 14th Inter-
national Conference on Recent Advances in Intrusion Detection, RAID’11,
pages 338–357, Berlin, Heidelberg, 2011. Springer-Verlag.

[Moo15] Paul Moon. The Use of Packers, Obfuscators and Encryptors in Modern
Malware. Technical report, Information Security Group, Royal Holloway
University of London, 2015.

[NTS99] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and
new constructions. Journal of Computer and System Sciences, 58(1):148–
173, 1999.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal
of Computer and System Sciences, 52(1):43–52, 1996.

[PMRB09] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo
Bruschi. A Fistful of Red-pills: How to Automatically Generate Procedures
to Detect CPU Emulators. In Proceedings of the 3rd USENIX Conference
on Offensive Technologies, WOOT’09, pages 2–2, Berkeley, CA, USA, 2009.
USENIX Association.

[Rén61] Alfréd Rényi. On measures of entropy and information. In Proceedings of
the fourth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 547–561, 1961.

[RS98] James Riordan and Bruce Schneier. Environmental Key Generation To-
wards Clueless Agents. In Mobile Agents and Security, pages 15–24, Lon-
don, UK, UK, 1998. Springer-Verlag.

[RT12] Kaspersky Lab Global Research and Analysis Team. Gauss: Abnormal
Distribution. Technical report, Kaspersky Lab, 2012.

[SH12] Michael Sikorski and Andrew Honig. Practical Malware Analysis: The
Hands-On Guide to Dissecting Malicious Software. No Starch Press, San
Francisco, CA, USA, 1st edition, 2012.

[SRL12] Chengyu Song, Paul Royal, and Wenke Lee. Impeding Automated Malware
Analysis with Environment-sensitive Malware. In Hotsec, 2012.

[SWP08] Amitabh Saxena, Brecht Wyseur, and Bart Preneel. White-box cryptog-
raphy: Formal notions and (im) possibility results. 2008.

[XZGL14] Zhaoyan Xu, Jialong Zhang, Guofei Gu, and Zhiqiang Lin. GOLDENEYE:
Efficiently and Effectively Unveiling Malware’s Targeted Environment. In
Research in Attacks, Intrusions and Defenses, pages 22–45. Springer, 2014.

[Yan13] Lok Kwong Yan. Transparent and precise malware analysis using virtual-
ization: from theory to practice. 2013.

20

A Proofs

A.1 Proof of Theorem 1

Proof (Proof of Theorem 1). We show a stronger statement, we show
a single algorithm A that works for any (β, γ)-environmentally authen-

ticating malware. Let t = 2β ln
(

n
1−ϵ

)
. Define A as follows for decision

procedure i:

1. Input Di, Si,Di−1, Si−1, ...,D1, S1.

2. For j = 1 to t
(a) Sample Ej ← SamE .

(b) If Di(Ej,Si) = 1 output Guessi = Ej .

3. Output ⊥.

This procedure is repeated for each decision procedure. A wins if all de-
cision procedures output 1. We first note that the probability that some
decision procedure is incorrect is bounded by at most δ. We now bound
the probability that A outputs ⊥ for any iteration conditioned on the mal-
ware being correct. We first consider a single iteration. By Definition 4
and Assumption 1, EEj∈E(Pr[Di(Ej,Si) = 1]) ≥ 2−β. That means that

Pr[A outputs ⊥ on Di] = ∀j,Pr[Di(Ej,Si) = 0]

= (EE∈E Pr[Di(ESi) = 0])t

= (1− Accept(M, i, E))t

≤
(
1− 2−β

)t
≤

((
1− 2−β

)2β
)(t/2β)

≤
(
1

e

)(
t

2β

)
≤ e−t/2β . (1)

Then across all iterations by union bound and Equation 1: Pr[A outputs ⊥
on any Di] ≤ ne−t/2

β
. That is,

Pr[Expbli−sou
M,E,A (·) = 1] ≥ 1−ne−t/2β = 1−ne− ln(n/(1−ϵ)) = 1−n

(
1− ϵ
n

)
= ϵ.

Note that the overall running time of A is at most tA = n(tE + toracle) · t
as required. The statement of the theorem is achieved by adding the
probability δ that the malware is incorrect.

21

A.2 Proof of Theorem 2

Proof (Proof of Theorem 2). Let A be a black box algorithm that only
provide inputs to the current decision algorithm. Since the entire decision
procedure is revealed once a “true” input is found there is no reason to
query a previous decision algorithm. Consider some decision algorithm i∗

that minimizes the probability in Definition 3. We bound the probabil-
ity that A can make Di∗ output 1 as this bounds the probability of all
algorithms outputting 1 (it may be that only a single decision algorithm
outputs 0 on some inputs). The only information about values E that
cause Di to output 1 are contained in the query responses. Since the ad-
versary wins if they get a single 1 response we can assume that A makes
t deterministic queries and if none of those responses is 1 their guess will
also be a deterministic value. Denote by g1, ..., gt+1 these values. Then we
bound:

t+1∑
j=1

Pr
Di,Si←M

[Di∗(gj) = 1] ≤ Pr[Di∗(g1) = 1] + Pr[Di∗(g2) = 1|g1 = 0] +

+ Pr[Di∗(gt+1) = 1|Di∗(g1) = 0 ∧ ... ∧Di∗(gt) = 0]

≤ 2−γ +
Pr[Di∗(g2) = 1 ∧Di∗(g1) = 0]]

Pr[Di∗(g1) = 0]
+

+
Pr[Di∗(gt+1) = 1 ∧Di∗(g1) = 0 ∧ ... ∧Di∗(gt) = 0]

Pr[Di∗(g1) = 0 ∧ ... ∧Di∗(gt) = 0]

≤ 2−γ +
Pr[Di∗(g2) = 1]

Pr[Di∗(g1) = 0]
++

Pr[Di∗(gt+1) = 1]

Pr[Di∗(g1) = 0 ∧ ... ∧Di∗(gt) = 0]

≤ 2−γ +
Pr[Di∗(g2) = 1]

1− 2−γ
++

Pr[Di∗(gt+1) = 1]

1− t2−γ

≤ (t+ 1)
2−γ

1− t2−γ

A.3 Proof of Theorem 3

Proof (Proof of Theorem 3). The adversary A does not know where in
E that the malware M exists, A runs the risk of overwriting the sensors
positions Si. As stated above, we assume that M is operable after A has
been loaded. The total size of M ’s reads from E are of size at most n ·α.
We define a single A that works for all M . Let A overwrite a random
set of ν locations. However, rather than considering this A we instead
consider some A′ that overwrites each element of EM with probability

22

2ν/ℓ. Note that,

Pr[||A′| < ν] = Pr

[
|A′| < (1− 1

2
)E|A′|

]
= e−1/8E|A

′| = e−1/4ν = e−1/4ℓ
1−c

using the multiplicative version of the Chernoff bound. Assume that A′

simply outputs ⊥ in this setting. Thus, all of A′ success occurs when it
overwrites at least ν positions and the job of A′ to provide inputs to Di
is at least as difficult as A. For the reminder of the proof we consider A′.

We now bound the size of the intersection between the locations read
byM and the locations overwritten by Load(A′, EM). Denote by Ebad the
locations overwritten by Load(A′, EM) conditioned on the event that A′

overwrites at least ν locations.

To bound the success probability of A′, we care about the size of
the intersection between the locations read by M and overwritten by
Ebad. Since Ebad represents ν random locations the intersection between
(∪iSi) ∩ Ebad is distributed as a Binomial distribution, which we denote
as X, with parameters B(nα, 2ν/ℓ). Then one has that,

E[X] =
2νnα

ℓ
=

2ℓcℓ1−c

ℓ
= 2.

Let c′ > 0 be a constant. By a second application of the Chernoff bound
one has that:

Pr[X > 2 + c′] = e−2/3c
′2
.

For an intersection of size κ the correct EM can be found using 2κ

oracle queries. Note that this is an upper bound, in the setting where a
decision algorithm takes a smaller number of corrupted bits, these bits
can be recovered in parts. Here we assume that all corrupted bits are
necessary for a single decision algorithm. The statement of the theorem
follows by using an A′ that exhaustively searches over corrupted bits when
the size of the corrupted bits is at most c′ + 2 and aborts otherwise.

A.4 Proof of Theorem 4

Proof (Proof of Theorem 4). Consider some A with artifact size at least
µ. Let A be a black box algorithm that only provide inputs to the current
decision algorithm. Since the entire decision procedure is revealed once
a “true” input is found there is no reason to query a previous decision

23

algorithm. Denote by Esub the subset of size at least µ that is overwritten
by Load(A,EM), Then by Definition 9. There exists some i∗ such that(
max
E′∈E

(
Pr

E←E∧Di,Si←M(E)
[Di(E′Si∗

) = 1|D1, ...,Di∗−1, S1, ..., Si∗−1, E \ Esub]
))

= negl(λ).

We bound the probability thatA can makeDi∗ output 1 as this bounds
the probability of all algorithms outputting 1 (it may be that only a
single decision algorithm outputs 0 some fraction of the time). The only
information about values E that cause Di∗ to output 1 are contained
in the query responses. Since the adversary wins if they get a single 1
response we can assume that A makes t = poly(λ) deterministic queries
and if none of those responses is 1 their guess will also be a deterministic
value. Denote by g1, ..., gt+1 these values. Then we bound:

t+1∑
j=1

Pr
Di,Si←M

[Di∗(gj) = 1] ≤ Pr[Di∗(g1) = 1] + Pr[Di∗(g2) = 1|g1 = 0] +

+ Pr[Di∗(gt+1) = 1|Di∗(g1) = 0 ∧ ... ∧Di∗(gt) = 0]

≤ negl(λ) +
Pr[Di∗(g2) = 1 ∧Di∗(g1) = 0]]

Pr[Di∗(g1) = 0]
+

+
Pr[Di∗(gt+1) = 1 ∧Di∗(g1) = 0 ∧ ... ∧Di∗(gt) = 0]

Pr[Di∗(g1) = 0 ∧ ... ∧Di∗(gt) = 0]

≤ negl(λ) +
Pr[Di∗(g2) = 1]

Pr[Di∗(g1) = 0]
++

Pr[Di∗(gt+1) = 1]

Pr[Di∗(g1) = 0 ∧ ... ∧Di∗(gt) = 0]

≤ negl(λ) +
Pr[Di∗(g2) = 1]

1− negl(λ)
++

Pr[Di∗(gt+1) = 1]

1− tnegl(λ)

≤ (t+ 1)
negl(λ)

1− tnegl(λ)
= negl(λ)

