
Fabian Monrose
Marc Dacier
Gregory Blanc
Joaquin Garcia-Alfaro (Eds.)

 123

LN
CS

 9
85

4

19th International Symposium, RAID 2016
Paris, France, September 19–21, 2016
Proceedings

Research in Attacks,
Intrusions, and Defenses

Lecture Notes in Computer Science 9854

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Fabian Monrose • Marc Dacier
Gregory Blanc • Joaquin Garcia-Alfaro (Eds.)

Research in Attacks,
Intrusions, and Defenses
19th International Symposium, RAID 2016
Paris, France, September 19–21, 2016
Proceedings

123

Editors
Fabian Monrose
University of North Carolina at Chapel Hill
Chapel-Hill, NC
USA

Marc Dacier
Qatar Computing Research Institute/HBKU
Doha
Qatar

Gregory Blanc
Télécom SudParis
Université Paris-Saclay
Evry
France

Joaquin Garcia-Alfaro
Télécom SudParis
Université Paris-Saclay
Evry
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-45718-5 ISBN 978-3-319-45719-2 (eBook)
DOI 10.1007/978-3-319-45719-2

Library of Congress Control Number: 2016949121

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

Welcome to the proceedings of the 19th International Symposium on Research in
Attacks, Intrusions, and Defenses (RAID). Since its inception nearly 20 years ago,
RAID has established itself as a highly influential venue with a strong focus on
intrusion detection and prevention. Over the past four years, the conference has
broadened to include a wider spectrum of research in computer and communications
security. This year was no exception, and as a result, the conference offered a strong
program covering papers in a multitude of important research areas in computer
security. RAID 2016 received 85 submissions, 82 of which met the anonymity and
formatting guidelines. The total number of submissions was down from the previous
year, but the lower number of submissions could be attributed to a number of miti-
gating factors, most notably, the much earlier submission deadline of April (as opposed
to June). From the submitted papers, the Program Committee (PC) selected 21 papers,
representing an acceptance rate of 24.7 %. The papers were reviewed using a double-
blind reviewing process, ensuring that the reviewers were unaware of the
authors or their affiliations until after the selection was finalized. All papers that were
on-topic and met the formatting requirements received at least three reviews and the
final selection was made during an in-person meeting, co-located with the IEEE
Security and Privacy Symposium, in San Jose, California in May. We thank the authors
of both accepted and rejected papers for submitting their research to RAID.

Building on the model set forth last year, the bulk of the meeting was spent dis-
cussing papers where the reviews from the PC were not in agreement. The task at hand
was not only to identify those papers that were ready for publication, but to also
identify promising work that could be improved before the camera-ready deadline. To
arrive at the best possible program, the vast majority of accepted papers were assigned
a shepherd to ensure that the camera-ready version addressed all the reviewers’ con-
cerns and suggested improvements. In many cases, these papers received several
rounds of feedback by their shepherds.

It is prudent to note that in selecting PC members, we strived to keep a balance by
including experienced PC members while also introducing new talent to the RAID
conference. Our goal was to form a PC that included researchers who had not served on
the RAID PC more than once in the past three years, and also had a proven track record
in terms of top-tier publications. With these limitations in mind, we also made a special
effort to extend an invitation to PC members of the 2015 committee who had shown
exceptional service. Our hope was that in infusing new talent with more seasoned PC
members who had a tendency to offer positive, constructive criticism in the past, the
younger researchers would gain invaluable experience by serving on the PC, and more
importantly, could help shape the direction of future RAID conferences.

It goes without saying that we are indebted to the entire RAID 2016 PC for selflessly
dedicating their time to the process of selecting papers and providing detailed feedback
to authors. Serving as a PC member is no easy task, and we believe the recognition for

these efforts is often overlooked. For that reason, and to encourage PC members to
provide thorough, constructive, feedback to the authors, we adopted the idea introduced
last year of awarding an Outstanding Reviewer prize. To help select the winner, each
PC member was encouraged to rate the reviews of other members, especially on papers
they reviewed in common. Additionally, the chairs provided input regarding the set of
candidates who went beyond the call of duty, for example, by taking on a higher review
load than others, submitting all their reviews on time, and working diligently to find the
diamonds in the rough — even arguing for such papers in the face of significant
opposition from other PC members! Many reviewers received positive ratings (a tes-
tament to the high quality of service we had on this year’s PC) and after much
deliberation, we are pleased to announce that the award goes to Roberto Perdisci (from
the University of Georgia).

We are grateful to the general chair, Joaquin Garcia-Alfaro, and his assembled team
for ensuring that the conference ran smoothly. Special thanks is also owed to Gregory
Blanc and Françoise Abad for handling the local arrangements, to Christophe Kiennert
for the job with the website, and to Yazan Boshmaf for widely publicizing the call for
participation and related notices. We also express our gratitude to Murray Anderegg,
for making sure that the submission server was almost always available, even during
the numerous North Carolina thunderstorms that temporarily knocked out power. We
are also indebted to Hervé Debar and Manos Antonakakis for their tireless efforts in
securing sponsorship for RAID 2016. Indeed, an event of this caliber would be difficult
to pull off were it not for the generous support of our sponsors: Sogeti, Comcast,
Neustar, Nokia, Orange Labs, ANSSI, and IRT System X. We greatly appreciate their
help and their continued commitment to a healthy research community in security.

We hope that all the participants enjoyed the conference as much as we enjoyed
putting the event together.

September 2016 Fabian Monrose
Marc Dacier

VI Foreword

Organization

Organizing Committee

General Chair

Joaquin Garcia-Alfaro Télécom SudParis, France

Program Committee Chair

Fabian Monrose University of North Carolina at Chapel Hill, USA

Program Committee Co-chair

Marc Dacier Qatar Computing Research Institute/HBKU, Qatar

Publicity Chair

Yazan Boshmaf Qatar Computing Research Institute/HBKU, Qatar

Sponsor Chair

Hervé Debar Télécom SudParis, France

Local Arrangement Chair

Gregory Blanc Télécom SudParis, France

Local Arrangement Co-chair

Françoise Abad Télécom SudParis, France

Webmaster

Christophe Kiennert Télécom SudParis, France

Program Committee

Magnus Almgren Chalmers University, Sweden
Johanna Amann International Computer Science Institute, USA
Manos Antonakakis Georgia Institute of Technology, USA
Michael Bailey University of Illinois at Urbana-Champaign, USA
Lucas Ballard Google, USA
Leyla Bilge Symantec, USA
Lucas Davi Technische Universität Darmstadt, Germany

Hervé Debar Télécom SudParis, France
Petros Efstathopoulos Symantec, USA
Manuel Egele Boston University, USA
William Enck North Carolina State University, USA
Vasileios Kemerlis Brown University, USA
Andrea Lanzi University of Milan, Italy
Pavel Laskov Huawei European Research Center, Germany
Zhiqiang Lin University of Texas at Dallas, USA
Daniela Oliveira University of Florida, USA
Roberto Perdisci University of Georgia, USA
Michalis Polychronakis Stony Brook University, USA
Konrad Rieck TU Braunschweig, Germany
Christian Rossow Saarland University, Germany
Stelios Sidiroglou-Douskos Massachusetts Institute of Technology, USA
Kapil Singh IBM T.J. Watson, USA
Kevin Snow Zeropoint, USA
Cynthia Sturton University of North Carolina at Chapel Hill, USA
Dongyan Xu Purdue University, USA

External Reviewers

Matteo Dell’Amico Symantec, USA
Anderson Nascimento University of Washington, USA

Steering Committee

Marc Dacier (Chair) Qatar Computing Research Institute/HBKU, Qatar
Davide Balzarotti Eurécom, France
Hervé Debar Télécom SudParis, France
Deborah Frincke DoD Research, USA
Ming-Yuh Huang Northwest Security Institute, USA
Somesh Jha University of Wisconsin, USA
Erland Jonsson Chalmers University of Technology, Sweden
Engin Kirda Northeastern University, USA
Christopher Kruegel UC Santa Barbara, USA
Wenke Lee Georgia Institute of Technology, USA
Richard Lippmann MIT Lincoln Laboratory, USA
Ludovic Mé CentraleSupélec, France
Robin Sommer ICSI/LBNL, USA
Angelos Stavrou George Mason University, USA
Alfonso Valdes SRI International, USA
Giovanni Vigna UC Santa Barbara, USA
Andreas Wespi IBM Research, Switzerland
S. Felix Wu UC Davis, USA
Diego Zamboni CFEngine AS, Mexico

VIII Organization

Sponsors

Sogeti (Gold level)
Comcast Cable Communications (Gold level)
Neustar Inc. (Silver level)
Orange Labs (Bronze level)
Nokia (Bronze level)
IRT SystemX (Bronze level)
ANSSI (Bronze level)

Organization IX

Contents

Systems Security

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 3
Lazaros Koromilas, Giorgos Vasiliadis, Elias Athanasopoulos,
and Sotiris Ioannidis

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity
Using Transactional Memory . 24

Marius Muench, Fabio Pagani, Yan Shoshitaishvili,
Christopher Kruegel, Giovanni Vigna, and Davide Balzarotti

Automatic Uncovering of Tap Points from Kernel Executions. 49
Junyuan Zeng, Yangchun Fu, and Zhiqiang Lin

Detecting Stack Layout Corruptions with Robust Stack Unwinding 71
Yangchun Fu, Junghwan Rhee, Zhiqiang Lin, Zhichun Li, Hui Zhang,
and Guofei Jiang

Low-Level Attacks and Defenses

APDU-Level Attacks in PKCS#11 Devices. 97
Claudio Bozzato, Riccardo Focardi, Francesco Palmarini,
and Graham Steel

CloudRadar: A Real-Time Side-Channel Attack Detection System
in Clouds . 118

Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee

Measurement Studies

The Abuse Sharing Economy: Understanding the Limits
of Threat Exchanges . 143

Kurt Thomas, Rony Amira, Adi Ben-Yoash, Ori Folger, Amir Hardon,
Ari Berger, Elie Bursztein, and Michael Bailey

SandPrint: Fingerprinting Malware Sandboxes to Provide Intelligence
for Sandbox Evasion . 165

Akira Yokoyama, Kou Ishii, Rui Tanabe, Yinmin Papa,
Katsunari Yoshioka, Tsutomu Matsumoto, Takahiro Kasama,
Daisuke Inoue, Michael Brengel, Michael Backes, and Christian Rossow

http://dx.doi.org/10.1007/978-3-319-45719-2_1
http://dx.doi.org/10.1007/978-3-319-45719-2_2
http://dx.doi.org/10.1007/978-3-319-45719-2_2
http://dx.doi.org/10.1007/978-3-319-45719-2_3
http://dx.doi.org/10.1007/978-3-319-45719-2_4
http://dx.doi.org/10.1007/978-3-319-45719-2_5
http://dx.doi.org/10.1007/978-3-319-45719-2_6
http://dx.doi.org/10.1007/978-3-319-45719-2_6
http://dx.doi.org/10.1007/978-3-319-45719-2_7
http://dx.doi.org/10.1007/978-3-319-45719-2_7
http://dx.doi.org/10.1007/978-3-319-45719-2_8
http://dx.doi.org/10.1007/978-3-319-45719-2_8

Enabling Network Security Through Active DNS Datasets 188
Athanasios Kountouras, Panagiotis Kintis, Chaz Lever, Yizheng Chen,
Yacin Nadji, David Dagon, Manos Antonakakis, and Rodney Joffe

Malware Analysis

A Formal Framework for Environmentally Sensitive Malware 211
Jeremy Blackthorne, Benjamin Kaiser, and Bülent Yener

AVCLASS: A Tool for Massive Malware Labeling . 230
Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero

Semantics-Preserving Dissection of JavaScript Exploits via Dynamic
JS-Binary Analysis . 254

Xunchao Hu, Aravind Prakash, Jinghan Wang, Rundong Zhou,
Yao Cheng, and Heng Yin

Network Security

The Messenger Shoots Back: Network Operator Based IMSI
Catcher Detection . 279

Adrian Dabrowski, Georg Petzl, and Edgar R. Weippl

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 303
Michael Backes, Thorsten Holz, Christian Rossow, Teemu Rytilahti,
Milivoj Simeonovski, and Ben Stock

Systematization of Knowledge and Experience Reports

A Look into 30 Years of Malware Development from a Software
Metrics Perspective . 325

Alejandro Calleja, Juan Tapiador, and Juan Caballero

Small Changes, Big Changes: An Updated View on the Android
Permission System . 346

Yury Zhauniarovich and Olga Gadyatskaya

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service. 368
Arman Noroozian, Maciej Korczyński, Carlos Hernandez Gañan,
Daisuke Makita, Katsunari Yoshioka, and Michel van Eeten

Web and Mobile Security

Uses and Abuses of Server-Side Requests . 393
Giancarlo Pellegrino, Onur Catakoglu, Davide Balzarotti,
and Christian Rossow

XII Contents

http://dx.doi.org/10.1007/978-3-319-45719-2_9
http://dx.doi.org/10.1007/978-3-319-45719-2_10
http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://dx.doi.org/10.1007/978-3-319-45719-2_12
http://dx.doi.org/10.1007/978-3-319-45719-2_12
http://dx.doi.org/10.1007/978-3-319-45719-2_13
http://dx.doi.org/10.1007/978-3-319-45719-2_13
http://dx.doi.org/10.1007/978-3-319-45719-2_14
http://dx.doi.org/10.1007/978-3-319-45719-2_15
http://dx.doi.org/10.1007/978-3-319-45719-2_15
http://dx.doi.org/10.1007/978-3-319-45719-2_16
http://dx.doi.org/10.1007/978-3-319-45719-2_16
http://dx.doi.org/10.1007/978-3-319-45719-2_17
http://dx.doi.org/10.1007/978-3-319-45719-2_18

Identifying Extension-Based Ad Injection via Fine-Grained Web
Content Provenance. 415

Sajjad Arshad, Amin Kharraz, and William Robertson

Trellis: Privilege Separation for Multi-user Applications Made Easy 437
Andrea Mambretti, Kaan Onarlioglu, Collin Mulliner, William Robertson,
Engin Kirda, Federico Maggi, and Stefano Zanero

Blender: Self-randomizing Address Space Layout for Android Apps 457
Mingshen Sun, John C.S. Lui, and Yajin Zhou

Author Index . 481

Contents XIII

http://dx.doi.org/10.1007/978-3-319-45719-2_19
http://dx.doi.org/10.1007/978-3-319-45719-2_19
http://dx.doi.org/10.1007/978-3-319-45719-2_20
http://dx.doi.org/10.1007/978-3-319-45719-2_21

Systems Security

GRIM: Leveraging GPUs for Kernel
Integrity Monitoring

Lazaros Koromilas1(B), Giorgos Vasiliadis2, Elias Athanasopoulos3,
and Sotiris Ioannidis4

1 45 Warren Close, Cambridge CB2 1LB, UK
koromilaz@gmail.com

2 Qatar Computing Research Institute, HBKU, Ar Rayyan, Qatar
gvasileiadis@qf.org.qa

3 Vrije Universiteit Amsterdam, Amsterdam, Netherlands
i.a.athanasopoulos@vu.nl
4 FORTH, Heraklion, Greece

sotiris@ics.forth.gr

Abstract. Kernel rootkits can exploit an operating system and enable
future accessibility and control, despite all recent advances in software
protection. A promising defense mechanism against rootkits is Kernel
Integrity Monitor (KIM) systems, which inspect the kernel text and data
to discover any malicious changes. A KIM can be implemented either in
software, using a hypervisor, or using extra hardware. The latter option
is more attractive due to better performance and higher security, since
the monitor is isolated from the potentially vulnerable host. To remain
under the radar and avoid detection it is paramount for a rootkit to
conceal its malicious activities. In order to detect self-hiding rootkits
researchers have proposed snooping for inferring suspicious behaviour in
kernel memory. This is accomplished by constantly monitoring all mem-
ory accesses on the bus and not the actual memory area where the kernel
is mapped.

In this paper, we present GRIM, an external memory monitor that is
built on commodity, off-the-shelf, graphics hardware, and is able to ver-
ify OS kernel integrity at a speed that outperforms all so-far published
snapshot-based systems. GRIM allows for checking eight thousand 64-
bit values simultaneously at a 10 KHz snapshot frequency, which is suffi-
cient to accurately detect a self-hiding loadable kernel module insertion.
According to the state-of-the-art, this detection can only happen using a
snoop-based monitor. GRIM does not only demonstrate that snapshot-
based monitors can be significantly improved, but it additionally offers
a fully programmable platform that can be instantly deployed without
requiring any modifications to the host it protects. Notice that all snoop-
based monitors require substantial changes at the microprocessor level.

L. Koromilas—This work was performed while at FORTH, Greece.

c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 3–23, 2016.
DOI: 10.1007/978-3-319-45719-2 1

4 L. Koromilas et al.

1 Introduction

Despite the recent advances in software security, vulnerabilities can still be
exploited if the adversary is really determined. No matter the protection enabled,
there is always a path for successful exploitation, although admittedly, today, fol-
lowing this path is much harder than it was in the past. Since securing software is
still under ongoing research, the community has investigated alternative methods
for protecting software. One of the most promising is monitoring the Operating
System (OS) for possible exploitation. Once an abnormality is detected then
the monitor should be able to terminate the system’s operation and alert the
administrator.

This form of protection is commonly offered by tools known as Kernel
Integrity Monitors (KIMs). The core operation of these tools is to inspect, as fre-
quently as possible, both the kernel code and data for determining if something
has been illegally modified. In principle, compromising an operating system is
usually carried out using a kernel rootkit (i.e., a piece of malicious code that
is installed in the OS), which usually subverts the legitimate operation of the
system by injecting malicious functionality. For example, the simplest way for
achieving this is by inserting a new (malicious) system call, which, obviously
alters a fundamental structure in the kernel’s code: the system-call table. In
order to identify such a simple rootkit, it is enough to only monitor the memory
region where the system-call table is mapped for possible changes.

Implementing KIMs may sound trivial, however the level of sophistication
of modern kernel rootkits, gives space for many different choices. A straightfor-
ward approach is to implement the monitor solely in software, in the form of a
hypervisor which runs and frequently introspects the OS for possible (malicious)
changes [6,10,25,29]. This choice is really convenient, since there is no need for
installing custom hardware, nevertheless it is implied that the monitor’s code
is non vulnerable itself. Unfortunately, it has been demonstrated that a hyper-
visor can be compromised by code running at the guest OS [24]. In addition,
formally verifying the monitor’s code may need significant effort [17]. A viable
alternative is to offer monitors that are implemented in hardware. Copilot [13]
is a representative architecture, implemented in a PCI card and it is basically
a snapshot-based monitor. Essentially, a snapshot-based system monitors a par-
ticular memory region to identify possible malicious changes. As an example,
consider the simple case of monitoring the region where the system-call table
has been mapped, in order to detect if a new (malicious) system call has be
injected. Copilot has a transparent operation, allowing the OS to be unaware of
its existence, and thus it stands as a very attractive option, especially in terms of
deployment. Still, modern rootkits have evolved and developed techniques that
can evade detection, by exploiting the window of opportunity between two snap-
shots. As a matter of fact, a rootkit can simply perform a (malicious) change
right after a snapshot is taken and subsequently remove it before the next snap-
shot is available.

To overcome this inherent limitation of snapshot-based detection systems,
recent proposals have been focused on snooping based detection [18,22].

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 5

A snoop-based system monitors all the operations that are sent over the mem-
ory bus. In the context of the aforementioned example we used, the snoop-based
detector would have achieved equivalent detection with the snapshot-based sys-
tem by capturing the write operations that aim at modifying the region where
the system-call table is mapped. It is evident, that the snoop-based approach
performs a lighter check, since instead of monitoring a particular region, it mon-
itors the bus for a particular operation. Nevertheless, snooping is possible only
in custom processors, since the memory controller is integrated to the CPU,
which poses critical deployment issues. The benefits of snoop-based systems were
introduced by Vigilare [22] and have been demonstrated in KI-Mon [18] where,
in short, the authors provide experimental evidence that a snapshot-based app-
roach can only reach 70 % of detection rate, while their snoop-based system,
KI-Mon, can reach 100 % of detection rate.

In this paper, we acknowledge the benefit of snoop-based systems, such as
KI-Mon, but we stress that snapshot-based systems can essentially do better. We
implement GRIM, a novel snapshot-based KIM based on a GPU architecture.
Using GRIM we can easily reach 100 % of detection rate using a snapshot-based
only architecture. GRIM does not aim to justify that excellent engineering can
simply optimize a system. Instead, in this paper we promote the design of a novel
architecture, which does not only demonstrate high detection rates in snapshot-
based integrity monitors, but, also, provides a generic extensible platform for
developing KIMs that can be instantly deployed. GRIM works transparently
and requires no modifications such as re-compilation of the kernel and installing
custom hardware on the system it protects. In addition, GRIM does not aim at
simply promoting the usage of GPUs in a new domain. To the contrary, GRIM
delivers a design that demonstrates many critical properties for KIMs. Beyond
the dramatic speed gains in detection rates, the system is easily programmable
and extensible, while it is not based on custom hardware but on commodity
devices.

To summarize, we make the following contributions:

– We design, implement, and evaluate GRIM, a novel GPU-based kernel
integrity monitor.

– GRIM demonstrates that snapshot-based monitors can do substantially better
than it has been so far documented in current literature [18]. We are able
to reach easily 100 % detection rate, surpassing substantially the reported
detection rate (70 %) in the state of the art.

– GRIM is fully programmable and it provides a generic extensible platform for
developing KIMs that can be instantly deployed using just commodity devices.
It works transparently and requires no modifications such as re-compilation
of the kernel and installing custom hardware on the system it protects.

2 Background

In this section, we describe the architecture of modern graphics cards, with an
emphasis on their general-purpose computing functionalities that provide for
non-graphics applications.

6 L. Koromilas et al.

2.1 GPUs and CPUs

Graphics cards nowadays have significant more computing resources than they
used to have a couple of decades ago. The processing speeds they achieve and
their low cost makes them a good candidate for many applications beyond graph-
ics rendering [26,27]. They contain hundreds of processor cores, which can be
programmed by general-purpose programming frameworks such as OpenCL [3]
and CUDA [23], and thus transformed to general-purpose computing platforms.

In general, GPUs execute programs organized in units called kernels. The
main difference with programs that run on a CPU is that the execution model
is optimized for data-parallel execution. The majority of its chip area is devoted
to computation units, rather than data caching and flow control. As a result,
maximum gains on GPUs are achieved when the same instructions run on all
threads concurrently. In contrast, CPUs have big caches accounting for half of
the chip and large control logic, since their main target is optimizing a single
thread.

2.2 The GPU Memory Hierarchy

The NVIDIA CUDA architecture, which is used for the development of the pro-
totype presented in this paper, offers different memory spaces, optimized for
different usages. The host allocates memory for GPU kernels in global memory
space which maps to off-chip DRAM memory. Furthermore, the constant mem-
ory space is optimized for read-only accesses, while the texture memory space
for 2D spatial locality. Allocations to all these types of memory are visible to the
host and persistent across kernel launches in the same process context. Individ-
ual threads have access to local memory, which could reside in global memory
though, and is dedicated to a single thread as local storage for automatic vari-
ables. The GPU cores, called streaming processors (SP), are grouped together
in multiprocessors. Depending on the device generation/model (CUDA compute
capability) all different types of global (constant, texture, local) memory accesses
are cached in possibly separate caches in each multiprocessor.

Threads are organized in blocks and each block runs on cores of the same
multiprocessor. The shared memory space offers fast access to the whole thread
block. The absolute sizes differ across architectures but some typical sizes are
the following. Shared memory is 64 KB per group of 32 threads (warp) inside the
thread block, but some of it is also used as a first-level cache by the hardware
itself. Registers are not fully addressable, so they are not accessible from the host
side. Values can, however, spill to global memory due to excessive allocation [23]
which also makes accesses slower.

2.3 GPUs for Kernel Integrity Monitoring

In order to monitor the integrity of host memory, a coprocessor-based system,
like GRIM, must meet, at a minimum, the following set of requirements [13]:

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 7

– Independence. GRIM has to operate in complete isolation, using a single
dedicated GPU, and must not rely on the host for monitoring the system’s
integrity. The GPU must be used exclusively for memory monitoring, hence it
cannot be used for other purposes. Any extra GPUs can be easily appended to
serve other usages, if necessary, without affecting the proper usage of the ker-
nel monitor. Moreover, GRIM must continue to operate correctly and report
all malicious actions, regardless of the running state of the host machine,
especially when it has been compromised.

– Host-memory access. GRIM must be able to access the physical memory
of the host directly for periodically checking its integrity and detecting any
suspicious or malicious actions.

– Sufficient computational and memory resources. GRIM must contain
enough memory to keep a baseline of system state. Moreover, it must have
sufficient on-chip memory that can be used for private calculations and ensure
that secret data would not be leaked or held by an adversary that has com-
promised the protected system. In addition, GRIM should be able to process
large amounts of data efficiently and perform any operation requested.

– Out-of-band reporting. GRIM must be able to report the state of the host
system in a secure way. To do so, it needs to establish a secure communication
channel and exchange valid reports, even in the case the host has been fully
compromised.

In order to meet the above requirements, several characteristics of the GPU’s
execution model require careful consideration. For instance, GPU kernels typ-
ically run for a while, perform some computation and then terminate. While
running, a GPU kernel can be terminated by the host or swapped with another
one. This model is not secure, as the coprocessor needs to execute in isola-
tion, without being influenced by the host it protects. Essentially we stress that
leveraging GPUs for designing an independent environment with unrestricted
memory access that will monitor the host’s memory securely, is not straight
forward, but rather challenging. Many GPU characteristics must be considered
carefully and in a particular way. In the following sections we describe how we
implement and enforce these requirements in a real system.

2.4 The GPU Execution Model

Execution on the GPU involves two sides, namely the host and the device. The
host prepares the device and then signals execution. The basic steps are: (i) copy-
ing the compiled kernel code to the device, (ii) transferring the input buffers to
device memory via DMA, (iii) running the kernel on the device, (iv) transferring
the output buffers back to host memory via DMA.

The NVIDIA architectural details are not public but there is substantial
work available on reversing the runtime and device drivers [14,21]. From what
we already know, there is a host-side memory-mapped buffer that is used by the
driver to control the device. API calls for data transfers and program execution

8 L. Koromilas et al.

translate to commands through this driver interface. Finally, there are alterna-
tive runtime libraries and drivers that offer CUDA support such as Gdev [5],
Nouveau [1] and PSCNV [4].

2.5 Threat Model

We assume that the adversary has the capability to exploit vulnerabilities in any
software running in the machine after bootup. This includes the OS and all of its
privileged components. We also assume that the adversary does not have access
to the hardware, and thus cannot replace the installed GPU with a malicious
one using the same driver interface.

In-Scope Threats. Snapshot-based kernel integrity monitor techniques aim to
ensure the integrity of the operating system of the already compromised host,
and primarily to detect modifications on memory regions that are considered
immutable after boot, such as the text of the kernel and any of the loaded
LKMs, as well as the contents of their critical data structures.

Out-of-Scope Threats. Sophisticated rootkits [7,11,12,28] that evade
snapshot-based kernel integrity monitors are out of scope. For example, there are
CPU-controlled address translation methods that can be used to mount address
space relocation attacks, by changing the page directory pointer of the kernel
context [12]. So far, there is an arms race between building techniques that allow
a rootkit to evade detection and bypass a KIM, and building detection methods
that are able to capture these highly sophisticated attacks. To this aspect we
contribute a new architectural paradigm for building fast snapshot-based KIMs
that can potentially integrate the state-of-the-art detection algorithms.

3 Design

In this section we describe the design of GRIM at the hardware and software
level, and we show how we can leverage modern GPUs as a monitoring mecha-
nism that meets the requirements described in Sect. 2.3.

GRIM is an external, snapshot-based, integrity monitor, that can also pro-
vide programmability and easy deployment. The overall architecture is shown
in Fig. 1. Essentially, the GPU reads the specified kernel memory regions over
the PCI Express bus, via DMA. Each region is investigated in terms of integrity,
and any abnormal or suspicious status is reported to an external admin station
that is connected on the local network.

From a software perspective, GRIM has two counterparts that run concur-
rently: the device program (GPU code) and the host program (user process).
The device program is responsible for checking the integrity of a requested list
of memory regions, and raise any alerts. The host program periodically reads
the status area and forwards it to the admin station in the form of a keep-alive

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 9

Fig. 1. Hardware/software architecture highlighting the monitor access path. The GPU
is configured to periodically check a list of host memory regions against known check-
sums by reading the corresponding device virtual addresses (left). The user program
periodically sends an encrypted sequence number together with a status code to a sep-
arate admin station. This mechanism defends against man-in-the-middle and replay
attacks on the reporting channel.

message. The only trusted component is hosted on the GPU; the user process
cannot be trusted, so there is an end-to-end encryption scheme between the GPU
and the admin station to protect against attacks, as we explain in Sect. 3.

Autonomous GPU Execution. GRIM is designed to monitor the operating
system’s integrity isolated from the host, which may be vulnerable and could
be compromised. For that reason, code and data used by GRIM must not be
tampered with by an adversary. Modern GPU chips follow a cooperatively sched-
uled, non-preemptive execution style. That means that only a single kernel can
run on the device at any single point in time. As we describe later on in Sect. 4.1
and also illustrated by previous work [26], we employ a bootstrapping method
that forbids any external interaction with GRIM. Any attempt to kill, pause, or
suspend the GPU component of GRIM results in system shutdown (as we will
describe in Sect. 3), and the system can only resume its operation by repeating
the bootstrap process. Some NVIDIA models conditionally support concurrent
kernel execution, but those conditions can be configured. Therefore, even when
running on those models, GRIM’s kernel occupies all resources and no other,
possibly malicious, code can run concurrently with it.

While these procedures ensure that GRIM can run safely once it has been
initialized, current GPU programming frameworks such as CUDA and OpenCL
have not been designed with isolation and independence in mind. Some drivers
would even kill a context by default if its program appears to be unrespon-
sive [2]. We configure the device to ignore these type of checks. Also, by default,
only one queue, or stream in CUDA terminology, is active and the host cannot
issue any data transfers before the previous kernel execution is finished. This
can be addressed by creating a second stream dedicated to the GPU kernel of

10 L. Koromilas et al.

GRIM. Therefore, all data communication with the host and the admin station
is performed using a separate stream.

Host Memory Access. An important requirement for morphing the GPU
into a kernel integrity monitor is to establish a mechanism to reference the
corresponding memory pages that need to be monitored. Unfortunately, current
GPGPU frameworks, such as CUDA and OpenCL, use a virtual address layer
that is unified with the virtual memory of the host process that utilizes the GPU
each time. Since GRIM must access the kernel’s memory (and not userspace),
the memory regions of the kernel that are monitored should be mapped to the
user process.

Typically, modern OSes, including Linux and Windows, prohibit users to
access memory regions that have not been assigned to them. An access to a page
that is not mapped to a process’ virtual address space is typically considered
illegal, resulting in a segmentation violation. To access the memory regions where
the OS kernel and data structures reside, the particular pages must be located
and mapped to GRIM user-space (i.e., the host counterpart that runs on the
CPU). This is needed as an intermediate step for finally mapping these regions
to the GPU address space.

To overcome the protection added by the OS, we use a separate loadable ker-
nel module that is able to selectively map memory regions to user-space. Then,
we are able to register these memory regions to the device address space, through
the CUDA programming API. Due to the fact that the GPU is a peripheral PCIe
device, it only uses physical addressing to access the host memory. Hence, after
the requested memory registration, the GPU is able to access the requested
kernel memory regions directly, through the physical address space. This fea-
ture allows us to un-map the user-space mappings of the kernel memory regions
during the bootstrap phase, that would otherwise pose significant security risks.

Integrity Monitoring. The memory regions to be monitored are specified by
the user, and can include pages that contain kernel or LKM text, as well as arrays
that contain kernel function pointers (i.e., jump tables). Hashing the static text
parts of the kernel or the already loaded LKMs is straightforward. However, the
OS kernel is fairly dynamic. Besides the static parts, there are additional parts
that change frequently; for example, the VFS layer’s data structures change
every time new filesystems are mounted or removed. Also, every loaded kernel
module can add function pointers.

Given the general-purpose programmability of modern GPUs, it is possible
to implement checks that would detect malicious events, by performing several,
multi-step, checks on different memory regions. These multi-step checks can
become complex in cases where several memory pointers need to be dereferenced
in order to acquire the proper kernel memory address. To support this kind of
checks we need to walk the kernel page table and resolve the pointer’s virtual
address dynamically from the GPU. Assuming that we can already access the

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 11

parts of the page table needed to follow a specific virtual address down to a leaf
page table entry (PTE), we end up with a physical page number.

Accessing any physical page is not an inherent limitation of a peripheral
PCIe device, such as the GPU. Ideally, the GPU can perform host page table
walks, by reading the corresponding physical pages, and dereferencing any vir-
tual page directly. However, the closed-source nature of the CUDA runtime and
driver, on which we have based our current design, restrict us from accessing the
requested physical page, if the latter has not been registered at the bootstrap
phase, via the specialized API function call. For the time being, we do not sup-
port dynamic page table resolutions, instead we provide a static list of kernel
memory regions, resolve their mappings, and create GPU-side mappings before
entering the monitor phase, as we explain in Sect. 4.1. We note, however, that
this is not a limitation of our proposed architecture, as the development of open-
source frameworks (e.g. Gdev [5]) and drivers (e.g. Nouveau [1], PSCNV [4], etc.)
would make a one-to-one mapping of all physical pages in the GPU address space
practical. Exploring mapping of additional physical pages in the GPU’s address
space at run-time is part of our future work.

Sufficient Resources. Modern GPUs are equipped with ample memory (up to
12 GB) and hundreds (or even thousands) of cores. Having such a wide mem-
ory space, gives us the ability to store plenty of kernel-image snapshots and
enough state for detecting complicated, multi-step, types of attacks. Obviously,
these kind of checks can become quite complicated, mainly due to the lack of a
generic language that will allow the modelling of such scenarios on top of our
architecture. Even though we do not allow such sophisticated memory checks at
the moment, the process of aggressively reading and hashing memory has been
tested, and, as we show in Sect. 5, the GPU prevails the resources to support this.
Implementing sophisticated attacks against GRIM and evaluating the system’s
effectiveness against them is part of our future work.

Out-of-Band Execution. In the context of GRIM, the GPU acts as a coproces-
sor with limited defenses against itself. For example, an adversary that has com-
promised the host system could easily disable or reset the GPU device, and
block any potential defensive actions. To overcome this we deploy a completely
separate admin station that is responsible for keeping track of the host’s proper
state.

In particular, the user program that is associated with the GPU context,
periodically sends keep-alive messages to the admin station through a private
connection. Obviously, simply sending a message to raise an alert can be unsafe,
because it is hard for the admin station to distinguish normal operation from
a network partition or other failure. Therefore, we use keep-alive messages that
encapsulate a GPU-generated status. These messages are encrypted together
with a sequence number, to prevent an attacker from imitating GRIM and send
spoofed keep-alive messages or replay older ones. Subsequently, the admin sta-
tion is involved in the bootstrapping process because the secure communication

12 L. Koromilas et al.

channel with the host is established at that point. The exact communication
protocol is described in Sect. 4.

On the admin station, a program logs the reports and makes sure that the
monitor is always responsive. The admin station is responsible to take any spec-
ified action, every time a message that contains an alert is received or in error
cases. An error case can be an invalid message or a missed packet (initiated by
a time-out).

4 Implementation

In this section we provide implementation details and discuss technical issues we
encountered in the development of GRIM. The current prototype is built on the
NVIDIA CUDA architecture, and is portable across all CUDA-enabled NVIDIA
models.

4.1 Mapping Kernel Memory to GPU

During bootstrapping, GRIM needs to acquire the kernel memory regions that
need to be monitored. These regions are located in the kernel virtual address
space. Therefore, the first step is to map them to the address space the GPU
driver requires them to live, which is the virtual address space of the user process
that issues the execution of the kernel integrity monitoring GPU program.

Typically, a peripheral device bypasses virtual memory and accesses the sys-
tem memory directly via physical addressing. To do so, the driver has to create
a device-specific mapping of the device’s address space that points to the corre-
sponding host’s physical pages. In order to create the corresponding OS kernel
physical memory mappings to the GPU, a separate loadable kernel module is
deployed which is responsible for providing the required page table mapping
functionality. As shown in Fig. 2, given a kernel virtual address, the loadable
kernel module resolves the physical mapping for this address in step 1. In step 2,
the kernel module (i) allocates one page in the user context and saves its physical
mapping, and (ii) makes the allocated page point to the same page as the kernel
virtual address by duplicating the PTE in the user-page table. Then, in step 3,
the kernel module maps this user page to the GPU and gets a device pointer1.
Finally, in step 4 the kernel module restores the original physical mapping of the
allocation and frees it2. By doing so, we are able to effectively map any OS kernel
memory page to the GPU address space. Furthermore, the user-allocated page
is unmapped right after the successful execution of the bootstrapping process,
in order to destroy all intermediate mappings. We do the same for all kernel
virtual memory ranges that we want to monitor with GRIM. The GPU driver
populates a device-resident page table for the device to be able to resolve its
virtual addresses and perform DMAs.
1 cudaHostRegister() with the cudaHostRegisterMapped flag followed by a call to
cudaHostGetDevicePointer().

2 For memory regions that span multiple pages we need to allocate enough pages and
point to them in a sequence, before registering the host-device mapping.

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 13

Fig. 2. Mapping OS kernel memory to the GPU. There are several address spaces
involved in the operation of GRIM. Initially in step 1 we have a kernel virtual address
pointing to a physical address. In step 2 we duplicate this mapping to user space using
a kernel module that manipulates page tables. In step 3 we pass the user virtual address
to a CUDA API call that pins the page into memory and creates the GPU-side page
table entries. In step 4 we destroy the intermediate user space mapping, while the GPU
continues to access the physical page.

Modern processor and chipset designs support IOMMUs between peripheral
devices and the main memory. Similarly to normal memory management units
they translate I/O accesses and provide an extra virtualization layer. Typical
uses include contiguous virtual address spaces, extended addressing beyond an
I/O device’s physical limit, pass-through to virtual machine guests, and memory
protection. In GRIM we don’t support IOMMUs that perform anything different
than 1:1 address re-mapping, at least for the memory address ranges we are
interested in, because we don’t want our DMA reads from the GPU to CPU-
DRAM to go through an IOMMU and get diverted. Furthermore, the IOMMU
mappings can be configured by the operating system. For these reasons, we run
GRIM with generic CPU-side IOMMUs disabled and all our results are under
this assumption.

In order to have unrestricted access to the /proc/kallsyms interface, we
build Linux with the CONFIG KALLSYMS=y and CONFIG KALLSYMS ALL=y flags.
We note that this is not a requirement of our design, still it helps development
and debugging considerably for two reasons: (i) it allows us to easily locate
the address of the kernel page table instead of explicitly exporting the init mm
structure for use by loadable modules, and (ii) it saves us the coding of custom
memory scanners for all the other data structures we need to locate for moni-
toring purposes. Obviously, the access to the kernel symbol lookup table might
not be acceptable in certain environments. For these cases, we would locate
our memory regions using an external symbol table or through memory pattern
scanners for dynamic loadable parts, which is certainly feasible.

4.2 Kernel Integrity Monitoring on the GPU

After the successfully mapping of each requested memory region to the GPU,
a daemon GPU program is started. The GPU program hashes all monitored
regions and compares the checksums to find changes, in an infinite loop. Due to

14 L. Koromilas et al.

the non-preemptive execution of the GPU, no other program can execute as long
as our endless GPU program is running. As such, it is not feasible to tamper
with the GPU on-chip state, such as the provided memory region addresses, the
known checksums, and the checksumming code.

The checksumming algorithm can be one of the CRC-32, MD5, or SHA256
(see Sect. 5.5 for a comparative evaluation). By default we use the CRC-32 as
defined by ISO 3309, due to its simplicity, speed, and its wide adoption. Even
though all these algorithms work on byte blocks in an incremental update loop,
we have optimized to fetch 16-byte blocks from memory, by using uint4 typed
reads (the widest native data type available). We have also tried to use wider
user-defined structs, however it did not improve read performance, because the
compiler deconstructs it to operations on the struct’s members. To the best of
our knowledge, there is no method of issuing larger DMAs from GPU code, using
the cudaHostRegisterMapped technique.

Instead of maintaining a separate checksum for each memory region, we only
keep a single master checksum for all individual checksums. The motivation
behind this is to allow the checksum to be stored in registers and remain com-
pletely hidden from the host. Even if an attacker is able to stop the execution of
the GPU program, the master checksum could not be extracted, due to the fact
the GPU registers are automatically reset to zero every time a new program is
loaded to the GPU for execution, as has been previously shown [26]. Similarly,
the code for CRC32 is small enough to fit in the instruction cache of the GPU,
hence an attacker cannot tamper with it [26].

4.3 Real-Time Notification

Even though the GPU kernel is scheduled to run forever, an adversary that has
fully compromised the host, can force the GPU to stop its execution. In order
to detect such incidents, we need an external offline host, the admin station,
connected directly on the local network via a separate Ethernet port. The admin
station monitors the rest of GRIM and is able to power off the host.

The two parties (i.e. the host and the admin station) run a simple protocol
based on keep-alive messages. The controlling user process reads a predefined
memory area from the GPU, sends the data to the admin station through an
established connection, and sets a flag (for the GPU to see) to indicate that the
data was sent. The data is a counter together with an alert flag encrypted with a
symmetric key. The key is installed to both the GPU and the admin station, at
bootstrap, before GRIM starts monitoring the host system. The monitored host
has no knowledge of the key and in order to prevent from being leaked, it can
be stored either in the GPU registers, which automatically reset to zero every
time a new GPU program is loaded [26], or as opcodes in the GPU program’s
text, which also cannot be retrieved or tampered, as it is completely erased from
global memory after bootup and resides only in the non-addressable instruction
cache of the GPU. For convenience, we chose to use the former option in our
current implementation.

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 15

The admin station, assumes that the machine is compromised if a message
is missed or if it does not receive a valid message in twice the update period
(i.e. 200 ms). Of course a valid message containing an alert also means that the
host is compromised. The communication structure that is used between the
GPU and the admin station is very simple, as shown in Fig. 3. The first two
members are sent to the admin station (data[2]) and the third (sent) is used
for communication between the GPU and its controlling program. When the
master GPU thread sees that the sent flag is set it increments the counter and
encrypts the message data with the key. In case the GPU discovers an illegal
checksum, it sets the alert flag and re-encrypts the message. All messages are
encrypted using the Extended Tiny Encryption Algorithm (XTEA).

The controlling user process, at the host side, is responsible to read the
encrypted message of the integrity monitor and send it to the admin station. This
process occurs periodically, every 100 ms, resulting to minimal CPU utilization
(lower than 0.1 %). If a GPU thread discovers a corrupted region, it indicates it
in this message for the admin station to be notified in the next iteration.

Fig. 3. The message format used for synchronization between the GPU, host, and
the admin station. When a GPU thread finds a corrupted memory region it sets the
alert flag and encrypts it together with the sequence number. A master GPU thread is
responsible for incrementing the sequence number when the sent flag is set. The host
will send this message to the admin station in the next synchronization point and the
alert will be handled there. The host sets the sent flag while the GPU unsets it.

4.4 Data-Parallel Execution

There are some implementation choices regarding the actual code execution on
the GPU. For instance, the partitioning of checksumming work among GPU
threads, how synchronization with the host is done, how to do the memory reads.
We chose to have a master thread that, apart from being a normal worker, checks
whether the host has sent the packet to the admin station and composes a new
message with the incremented sequence number. Furthermore, memory regions
are evenly distributed to all threads. During bootstrapping, GRIM finds the
greatest common divisor among all region lengths and split larger regions to that

16 L. Koromilas et al.

size, ending up with equal sized regions. Because of the nature of the problem
(checksum computation), we can divide and conquer as we wish. We configure
the execution in blocks of 512 concurrent threads, which is the preferred block
size. About the memory access pattern, we don’t really have room to optimize
much because all reads on monitored regions are serviced by the GPU’s DMA
copy engine(s) and are not local.

5 Evaluation

In this section we evaluate the performance and accuracy of GRIM. We measure
the rate for detecting a self-hiding loadable kernel module, as well as the impact
that GRIM has on the memory bandwidth of the base system. Furthermore, we
show the memory coverage that GRIM can afford, without sacrificing accuracy.

Our experimental platform is based on an Intel Core i7-3770 CPU clocked at
3.4 GHz equipped with 8 GiB of DDR3 DRAM at 1333 MHz in a dual-channel
configuration. The motherboard is the MSI Z77A-G45. The GPU we use for
executing GRIM is an NVIDIA GeForce GTX 770 PCIe 3.0 card with 4 GiB
of GDDR5 DRAM. We use a Linux 3.14.23 based system with NVIDIA driver
version 343.22 and CUDA 6.5 for the GPU code.

5.1 Self-hiding LKM

Our basic test and case study for determining the accuracy of GRIM is the
detection rate of a self-hiding loadable kernel module (LKM). Notice, that this
case study is in-line with the evaluation methodology carried out in the state-
of-the-art of similar works [18]. Also, the synthetic evaluation we present in
this section can stress GRIM significantly more than an actual rootkit. The
artificial LKM module, which resembles the operation of a rootkit, performs
zero malicious operations; it only loads and unloads itself. On the other hand,
an actual rootkit, once loaded, needs to perform malicious actions, and therefore
it is exposed to the monitor for a longer time period.

Typically, a module is handled by a system utility which is responsible for
loading it into memory and invoking a system call to initialize it. Specifically in
Linux, the insmod(8) and friend tools open the kernel module object file and use
the finit module(2) system call with its file descriptor. The system relocates
symbols, initializes any provided parameters, adds a handle to data structures (a
modules list), and calls the module’s init() function. A rootkit, implemented
as a kernel module, is able to remove itself from that list—in order to increase
its stealthiness—and this is typically performed in its init() function. Still,
this transient change can be detected by carefully monitoring the head of the
modules list with a large enough snapshot frequency. In the following experiment,
we show the minimal snapshot frequency that is required to perceive such module
list changes and thus achieve successful detection.

In order to measure the detection rate, a self-hiding kernel module is loaded,
repeatedly, 100 times, using a different snapshot frequency. Figure 4 shows the

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 17

Fig. 4. Self-hiding LKM loading detec-
tion with different snapshot frequen-
cies. For each configuration, we loaded
a module that deletes itself from the
kernel modules list 100 times, while
monitoring the head of the list. We
achieve 100% detection rate with a
snapshot frequency of 9 KHz or more.

Fig. 5. Maximum achieved frequency
depending on the number of point-
ers being monitored. Increasing the
number of (8-byte) memory regions
we monitor, lowers the snapshot fre-
quency. Staying above 9KHz so that
we can accurately detect a self-hiding
LKM loading lets us monitor another
8K pointers.

detection rate achieved by GRIM under each configuration. We can see that
GRIM can reliably detect that a new kernel module has been loaded before hiding
itself with a snapshot frequency of 9 KHz or more, achieving 100 % detection rate.
That means that GRIM detected all module insertions and generated exactly 100
alerts. Note that according to the state-of-the-art, a snapshot-based approach
can deliver a 70 % detection rate at best [18].

The experiment we carry out in this paper for demonstrating the high levels
of detection rate that can be achieved using GRIM is designed in analogy with
the one presented in the evaluation of KI-Mon [18]. We have just omitted the
verification part of the observed change. KI-Mon, once a change is detected,
further verifies semantically if the change is meant to be malicious or not. This
verification procedure happens using snapshots and in parallel with the detection
algorithm, which is based on snooping. We argue that detection and verification
are orthogonal. GRIM is fully programmable and can be easily extended with
rich functionality for applying in-parallel semantic verification algorithms once
a change is detected without decreasing its detection rate.

5.2 Address Space Coverage

Next we study the implications of requiring a snapshot frequency of at least 9 KHz
for accurate detection, with respect to the amount of memory we can cover. The
snapshot frequency is a function of the number and size of the monitored mem-
ory regions. Also, alignment plays a role in the read performance of the GPU,
16-byte aligned reads being the fastest. We don’t, however, control the placement
of the kernel data structures, and thus we assume that some of our monitored
regions need one or two extra fetches. Given our specific implementation, the most

18 L. Koromilas et al.

efficient read width is 16 bytes (or one uint4 in CUDA’s device native data
types). In the following experiment we focus on monitoring pointer values (8-byte
regions). The results are shown in Fig. 5. Given our detection rate results, we see
that we can monitor at most 8K pointers simultaneously without sacrificing accu-
racy, because we need to stay above the 9 KHz snapshot frequency. This limits the
address space we can monitor using GRIM if we want to achieve 100 % detection
rate, albeit 8K addresses spread out in memory could potentially safeguard many
important kernel data structures. Moreover, this is not an inherent limitation that
only GRIM suffers from. All hardware-based integrity monitors [13,18,22] can
observe only a limited fraction of the host’s memory. Even snoop-based systems
need to filter out most of the memory traffic which targets memory that is not a
potential target for a rootkit.

5.3 Impact on Memory Bandwidth

In this section we measure the overhead that GRIM adds to the memory subsys-
tem. To do so, we ran the STREAM benchmark [20] while the system is under
monitoring by GRIM and when the system is idle. We use all 8 CPU threads
for the benchmark and we run our GPU snapshot loop with different throttling
factors to obtain various frequency values. We count the total number of memory
references by multiplying with the obtained snapshot frequency. We show the
results in Fig. 6. At most 17 % of the available memory bandwidth is utilized by
the GPU when GRIM is in place. Note, that the system consumes 17 % of the
available memory bandwidth in the worst-case, in which GRIM is monitoring
8K of 8-byte memory elements. As we show in Fig. 7, monitoring of 512 8-byte
memory elements (enough for safeguarding the system-call table) consume only
1 % of the memory bandwidth. For this particular experiment we throttled our
snapshot loop to approximately get to the desired snapshot frequency of 9 KHz
for different number of monitored regions (again of 8 bytes in size). We note that
we can always limit the host memory bandwidth degradation by monitoring less
pointers. Therefore, we stress that (i) our system is flexible and can adapt its
configuration for consuming less memory bandwidth and safeguarding less mem-
ory if this is desirable, and (ii) even in the worst case, when GRIM is monitoring
8K 8-byte elements, it consumes 17 % of memory which is comparable with the
memory consumption reported by similar systems [13].

5.4 Using a Low-End GPU

Given that the snapshot process is I/O bound on the DMA path, we also explore
the behaviour of GRIM on low-end GPUs. To do so, we use a NVIDIA GT 630
PCIe 2.0 and measure the memory coverage that can afford while maintaining a
detection rate of 100 %. The GT 630 is able to reliably monitor at most 2K 8-byte
elements (without sacrificing detection accuracy). Even though this is 4 times
lower than the detection rate sustained by the GTX 770, it comes with great
benefits in terms of energy efficiency. Figure 8 shows the power consumption of
each device while being idle and the active power consumption while executing

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 19

Fig. 6. Impact on memory bandwidth
while the system is under monitor-
ing. The GPU issues DMAs which
contend with the CPU cores on the
memory controller and/or the DRAM
itself, limiting the memory bandwidth
normally available to host. GRIM
degrades STREAM performance by
17% in the worst case.

Fig. 7. Available memory bandwidth
with respect to memory coverage.
Snapshotting is throttled to approxi-
mately achieve the required snapshot
frequency of 9 KHz. We see that mon-
itoring 512 8-byte elements only con-
sumes 1 % of the memory bandwidth
whereas with 8K we reach the 17 %
worst case.

Fig. 8. Power consumption of each device in Watts while being idle, as well as including
the additional power the device draws while GRIM is running (“active” column). We
observe that the low-end GPU consumes almost 6 times less power both when idle and
active.

the GPU component of GRIM. The low-end GPU draws almost 6 times less
power both when running our code and in total when taking into account the
idle power consumption. That creates an interesting trade-off and makes the
low-end choice attractive for setups with low power budgets. Finally, the GT
630 can only affect STREAM performance by 6 % in the worst case due to its
host connectivity limitations.

5.5 Checksums and Message Digests

In the results we showed so far we have been using CRC32 to detect memory
modifications. CRC32 has low complexity in terms of computation, while it is
not considered cryptographically secure. Here we show the overheads involved
in using MD5 or SHA256, and the impact it has to detection rate. We monitor
different counts of 8-byte elements and show how accurately we can detect the
LKM-hiding attack when one of the elements is the head pointer of the modules
list. Figure 9 shows that MD5 performs a little worse than CRC32 sustaining 4K
elements but losing accuracy at 8K elements. The same is true for SHA256. We

20 L. Koromilas et al.

Fig. 9. Comparison of the LKM-hiding detection rate of the CRC32 checksum and
the MD5/SHA256 digests for different number of monitored 8-byte elements. The
CRC32 is faster and can cover a larger amount of memory without sacrificing accuracy.
MD5/SHA256 on the other hand provide higher security.

expect MD5 to be faster than SHA256 but here we test with relatively small
data blocks so read performance is more critical than actual computation. Both
implementations of MD5 and SHA256 cannot detect the LKM memory-write
when the monitor inspects 20K elements. This is a trade-off between memory
coverage and collision resistance, which can be configured. Notice that for GRIM
even a simple algorithm, like CRC32, can be quite effective in detecting kernel
rootkits, unless the malicious code can perform operations on memory by pre-
serving the CRC32 checksum of the particular modified memory page, which is
not trivial.

6 Related Work

Integrity monitors have formed an attractive technology for protecting software
against exploitation. Based on monitoring, they can infer about an attack and
not defend against the attack. As an alternative method of protection, integrity
monitors are considered promising, especially when even advanced defenses,
such as preventing code-reuse in the operating system [19] can be bypassed by
advanced attacks [15,16], and when it has been demonstrated that core protec-
tion principles, like Control-Flow Integrity (CFI) applied at the kernel [8], offer
limited security [9].

Integrity monitors can be implemented in both software and hardware. Soft-
ware integrity monitors [6,10,25,29] are based on hypervisors. The operating
system runs as a guest and is occasionally checked by the hypervisor for pos-
sible (malicious) modifications. Although these monitors dramatically limit the
code base that should be trusted and bug-free, there is always the possibility for
the hypervisor to be exploited. The hypervisor and the operating system are not
completely isolated and they are both written in untrusted languages. Of course,
all these solutions are towards the right direction, and it is obviously easier to
perform a security analysis in a significant smaller program (the monitor) com-
pared to protecting the complete operating system. However, the community has

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 21

been in parallel seeking for more solid monitors, which will be physically isolated
from the rest of the system, they will be implemented using custom hardware,
and won’t run in the same code base with the kernel they protect.

As we have stressed throughout the paper, we offer an integrity monitor based
on GPUs, which closely matches the work demonstrated by hardware monitors
such as Copilot [13], Vigilare [22], and KI-Mon [18]. Copilot [13] is a snapshot-
based monitor implemented on a custom FPGA. Essentially, GRIM offers all of
the Copilot’s functionality, in addition to better performance and extensibility,
since GRIM is fully programmable. Vigilare [22], on the other hand, argues that
it is hard to achieve good detection rates using snapshot-based monitors and thus
it introduces snooping, i.e., monitoring the bus for particular memory operations
that can affect the kernel structure. We believe that snooping is important, and
certainly a lightweight check compared to the snapshot-based approach, however,
in this paper, we argue that snapshot-based monitors can do significantly better.
With GRIM we are able to achieve 100 % detection rate. Finally, KI-Mon [18]
extends Vigilare by offering protection for mutable objects. In GRIM we can
protect against mutable objects, however we have not implemented the semantic
verification check for validating if a change of a mutable object in the kernel is
the result of a legitimate operation or not. We omitted implementing this in
GRIM, because the available API for programming the GPU is proprietary and
limited. Nevertheless, as we have in detail discussed, our architecture can support
this operation.

7 Conclusion

In this paper we revisited snapshot-based Kernel Integrity Monitors (KIMs)
and we demonstrated that a novel GPU-based architecture can do substantially
better than it has so far been reported in the state-of-the-art. GRIM builds on
commodity GPUs and offers a fully extensible and programmable architecture
for implementing complex KIMs. Our thorough evaluation of GRIM suggests
that we can achieve 100 % detection rate of evolved rootkits that try to evade
snapshot-based monitors. This detection rate outperforms the currently reported
rate (70 %) of the state-of-the-art of hardware-based monitors.

GRIM offers an attractive option for instantly deploying a hardware-based
KIM. It needs no modifications to the host it protects, no kernel recompilation
or installation of custom hardware. This is particular important, because all so
far proposed hardware monitors that base their operation on snooping require
changes at the microprocessor level. In our case, GRIM acts as a secure co-
processor that protects a vulnerable host from malicious rootkits. We believe
our proposal will further promote research in the field of advanced KIMs that
are snapshot-based, since there is clearly enough space for optimizations and
many benefits to be considered when it comes to deployment.

22 L. Koromilas et al.

Acknowledgements. We thank our shepherd Zhiqiang Lin and the anonymous
reviewers for their invaluable feedback. This work was supported by European Commis-
sion through the H2020 ICT-32-2014 project SHARCS under Grant Agreement number
644571.

References

1. Nouveau driver for nVidia cards. http://nouveau.freedesktop.org/
2. NVIDIA Developer Forums - CUDA kernel timeout. https://devtalk.nvidia.com/

default/topic/417276/cuda-kernel-timeout/
3. OpenCL. http://www.khronos.org/opencl/
4. PathScale NVIDIA graphics driver. https://github.com/pathscale/pscnv
5. shinpei0208/gdev. https://github.com/shinpei0208/gdev
6. Azab, A.M., Ning, P., Shah, J., Chen, Q., Bhutkar, R., Ganesh, G., Ma, J., Shen,

W.: Hypervision across worlds: real-time kernel protection from the ARM Trust-
Zone secure world. In: CCS (2014)

7. Chen, S., Xu, J., Sezer, E.C.: Non-control-data attacks are realistic threats. In:
USENIX Security (2005)

8. Criswell, J., Dautenhahn, N., Adve, V.: KCoFI: complete control-flow integrity for
commodity operating system kernels. In: Security and Privacy (2014)

9. Göktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: over-
coming control-flow integrity. In: Security and Privacy (2014)

10. Hofmann, O.S., Dunn, A.M., Kim, S., Roy, I., Witchel, E.: Ensuring operating
system kernel integrity with OSck. In: ASPLOS (2011)

11. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: bypassing kernel code
integrity protection mechanisms. In: USENIX Security (2009)

12. Jang, D., Lee, H., Kim, M., Kim, D., Kim, D., Kang, B.B.: ATRA address transla-
tion redirection attack against hardware-based external monitors. In: CCS (2014)

13. Petroni Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a coprocessor-
based kernel runtime integrity monitor. In: USENIX Security (2004)

14. Kato, S.: Implementing Open-Source CUDA Runtime (2013)
15. Kemerlis, V.P., Polychronakis, M., Keromytis, A.D.: Ret2Dir: rethinking kernel

isolation. In: USENIX Security (2014)
16. Kemerlis, V.P., Portokalidis, G., Keromytis, A.D.: kGuard: lightweight kernel pro-

tection against return-to-user attacks. In: USENIX Security (2012)
17. Klein, G., Derrin, P., Elphinstone, K.: Experience report: sel4: formally verifying a

high-performance microkernel. In: ACM Sigplan Notices, vol. 44, pp. 91–96. ACM
(2009)

18. Lee, H., Moon, H., Jang, D., Kim, K., Lee, J., Paek, Y., Kang, B.B.: KI-Mon: a
hardware-assisted event-triggered monitoring platform for mutable kernel object.
In: USENIX Security (2013)

19. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootk-
its with “return-less” kernels. In: EuroSys (2010)

20. McCalpin, J.: STREAM: sustainable memory bandwidth in high performance com-
puters. https://www.cs.virginia.edu/stream/

21. Menychtas, K., Shen, K., Scott, M.L.: Enabling OS research by inferring interac-
tions in the black-box GPU stack. In: USENIX ATC (2013)

22. Moon, H., Lee, H., Lee, J., Kim, K., Paek, Y., Kang, B.B.: Vigilare: toward snoop-
based kernel integrity monitor. In: CCS (2012)

http://nouveau.freedesktop.org/
https://devtalk.nvidia.com/default/topic/417276/cuda-kernel-timeout/
https://devtalk.nvidia.com/default/topic/417276/cuda-kernel-timeout/
http://www.khronos.org/opencl/
https://github.com/pathscale/pscnv
https://github.com/shinpei0208/gdev
https://www.cs.virginia.edu/stream/

GRIM: Leveraging GPUs for Kernel Integrity Monitoring 23

23. NVIDIA: CUDA Programming Guide, version 4.0. http://developer.download.
nvidia.com/compute/cuda/4 0/toolkit/docs/CUDA C Programming Guide.pdf

24. Rutkowska, J., Tereshkin, A.: Bluepilling the Xen hypervisor. In: Black Hat USA
(2008)

25. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In: SOSP (2007)

26. Vasiliadis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: PixelVault:
using GPUs for securing cryptographic operations. In: CCS (2014)

27. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: MIDeA: a multi-parallel intrusion
detection architecture. In: CCS (2011)

28. Vogl, S., Gawlik, R., Garmany, B., Kittel, T., Pfoh, J., Eckert, C., Holz, T.:
Dynamic hooks: hiding control flow changes within non-control data. In: USENIX
Security (2014)

29. Wang, J., Stavrou, A., Ghosh, A.: HyperCheck: a hardware-assisted integrity mon-
itor. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp.
158–177. Springer, Heidelberg (2010)

http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf

Taming Transactions: Towards
Hardware-Assisted Control Flow Integrity

Using Transactional Memory

Marius Muench1(B), Fabio Pagani1, Yan Shoshitaishvili2,
Christopher Kruegel2, Giovanni Vigna2, and Davide Balzarotti1

1 Eurecom, Sophia Antipolis, France
{marius.muench,fabio.pagani,davide.balzarotti}@eurecom.fr

2 University of California, Santa Barbara, USA
{yans,chris,vigna}@cs.ucsb.edu

Abstract. Control Flow Integrity (CFI) is a promising defense tech-
nique against code-reuse attacks. While proposals to use hardware fea-
tures to support CFI already exist, there is still a growing demand for
an architectural CFI support on commodity hardware. To tackle this
problem, in this paper we demonstrate that the Transactional Synchro-
nization Extensions (TSX) recently introduced by Intel in the x86-64
instruction set can be used to support CFI.

The main idea of our approach is to map control flow transitions into
transactions. This way, violations of the intended control flow graphs
would then trigger transactional aborts, which constitutes the core of
our TSX-based CFI solution. To prove the feasibility of our technique,
we designed and implemented two coarse-grained CFI proof-of-concept
implementations using the new TSX features. In particular, we show how
hardware-supported transactions can be used to enforce both loose CFI
(which does not need to extract the control flow graph in advance) and
strict CFI (which requires pre-computed labels to achieve a better pre-
cision). All solutions are based on a compile-time instrumentation.

We evaluate the effectiveness and overhead of our implementations to
demonstrate that a TSX-based implementation contains useful concepts
for architectural control flow integrity support.

Keywords: Control flow integrity · Transactional memory · Intel R©
TSX · Binary hardening · Software security

1 Introduction

One serious security problem that continues to haunt security researchers and
victims alike is the presence of memory corruption vulnerabilities, which can
lead to the arbitrary execution of code specified by an attacker. Because these
attacks can have serious consequences for the security of our lives and our society,
countermeasures against classical stack- and heap based code-injection attacks

c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 24–48, 2016.
DOI: 10.1007/978-3-319-45719-2 2

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 25

are widely deployed together with general security mechanisms in modern com-
puter systems. For instance, Operating Systems ship with Address Space Layout
Randomization (ASLR) and executable space protection like Exec Shield [40] or
Data Execution Prevention (DEP) [2]. Additionally, modern compilers are able
to harden applications against specific classes of attacks. For example, stack
canaries protect against buffer overflows, and Relocation Read-Only (RELRO)
protects against Global Offset Table (GOT) overwrite attacks. In combination,
these countermeasures have nearly eliminated code-injection attacks.

However, even with all of these mechanisms in place, code-reuse attacks are
still feasible. Hereby, the attacker reuses parts of the existing codebase of an
application to achieve his goal. Generally, attackers accomplish this by corrupt-
ing data within the program and overwriting the target of an indirect jump
(for example, by creating a fake stack with fake return values), thus hijacking
the program execution. Any indirect control flow transfer (that, unlike a direct
control flow transfer, can be influenced by values in program memory and CPU
registers) is potentially vulnerable to this hijacking.

One line of defense against this type of attacks consist of checking the cor-
rectness of indirect control flow transfers before they are executed, by using
a technique called Control Flow Integrity (CFI) [1]. In essence, CFI prohibits
malicious redirections of a program’s control flow by white-listing the possible
targets of indirect transfers. If a change of control flow resolves to anything but
an allowed target, the system would assume that there is an ongoing attack and
terminate the program. Therefore, the goal of CFI is to ensure that, even if an
attacker can gain control of the target of an indirect jump, her possible targets
for control flow redirection are very limited and confined to the expected behav-
ior of the program. Many CFI implementations [1,4,28,41–43], countermeasures
to CFI implementations [6,9,16,17,19], and defenses against these countermea-
sures [25,26,31,34,38,39] have been proposed in recent years. Most of these stud-
ies have focused on the recovery of accurate control flow graphs (to understand
the valid targets for indirect control flow transfers), on the binary instrumenta-
tion (to add CFI to existing binaries), and on reducing the performance over-
head of the solution. Despite the importance of a hardware-supported CFI was
already envisioned its original proposal [1], not much work has focused on how
control flow integrity can be enforced by using features available in commodity
hardware.

In this paper we present an application of the Transactional Memory-
enabling instruction set extension (TSX), recently released by Intel for their
Haswell processors, to provide hardware support for the implementation of con-
trol flow integrity. In particular, we propose a novel design that uses TSX instruc-
tions to ensure control flow integrity and we present a novel CFI implementation
that introduces several interesting challenges for attackers. TSX-based CFI can
provide, in hardware, new constraints on the attacker capabilities and a set of
interesting protection features. In fact, aside from ensuring control flow integrity,
our solution prevents an attacker from executing any system call after a hijacked
indirect control flow transfer and introduces the ability to “reset” a program to

26 M. Muench et al.

its state prior to the hijacked control flow when the presence of an attacker is
detected. These are powerful, previously absent capabilities, that we believe can
significantly raise the bar for attackers in terms of control flow hijacking attacks.

In summary, we make the following contributions:

Design. We design a novel approach to implement control flow integrity, using
the TSX instruction set extension recently released by Intel. Aside from sim-
ply providing CFI, this approach also provides a level of protection against
unwanted invocation of system calls.

Implementation. We present two proof-of-concept implementations to show
how TSX can be used to enforce both loose and strict CFI solutions.

Evaluation. We perform a thorough evaluation of our TSX-based CFI imple-
mentations, detailing overhead, side-effects, and security gains.

2 Control Flow Integrity

In recent years, researchers have proposed several solutions to enhance pro-
grams with CFI policies. Control flow integrity policies comes in two main forms,
depending on how restrictive they are in specifying and enforcing the possible
control flow.

In strict, or “fine-grained” CFI, the minimum set for allowable targets for
any indirect control flow transfer is identified. For example, a return from a
function would only be allowed to return to callers that could (legitimately) call
the function. Before the execution, the target of every indirect transfer must be
determined, and at runtime, these targets are verified whenever a control flow
transfer takes place. A common method to implement such a strict form of CFI
is labeling. Labels are assigned to the edges of a control flow transfer and are
checked whenever the transfer occurs. Before a transfer is allowed, a verification
procedure ensures that this transfer resolves to a target with a valid label.

Strict CFI is difficult to implement correctly, since the targets of indirect
control flow transfers must be determined statically. Thus, researchers proposed
a weaker form of CFI, called loose or “coarse-grained” CFI. This approximate
technique segregates indirect control flow transfers by category and enforces
policies on each category. For instance, loose CFI mandates that a transfer ini-
tiated by a ret instruction should always resolve to a location directly after a
call instruction. Likewise, a call instruction should always transfer the control
flow to the beginning of a function. Recent CFI implementations improve loose
CFI by segregating control flow transfers into less coarse categories. Typically,
different types of control transfers are given a different label [42,43].

BinCFI [43], for instance, uses static disassembly techniques, code instru-
mentation, and binary rewriting to identify all indirect control flow transfers and
then enhances the program with coarse-grained CFI. Likewise O-CFI [26] uses
static binary rewriting to introduce coarse-grained CFI in combination with fine-
grained code randomization as protection against novel attacks. Another imple-
mentation requiring the relocation information of a binary, and thus slightly

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 27

more knowledge, is CCFIR [42]. It introduces a springboard section and indirect
control flow transfers are only allowed to target the springboard, which then redi-
rects to the actual target. Contrary to these three implementations, which pro-
vide coarse-grained CFI and utilize static instrumentation, vfGuard [34] recovers
C++ semantics of a given binary and uses Pin [3] to dynamically enforce strict
CFI. Another example for dynamic CFI enforcement is Lockdown [33], which
adds control flow guards for indirect calls and jumps and a shadow-stack to
protect function returns via dynamic binary translation.

A completely different approach is to integrate CFI at compile time, which
has the advantage of avoiding many complex issues related to resolving the tar-
gets of indirect control flow transfers (since static analysis of the source code
before compilation can be used to provide this information) and removing the
need to instrument or rewrite binaries. Niu et al. [28], for instance, introduced
Monitor Integrity Protection, a coarse-grained form of CFI which aligns instruc-
tion to chunks and enforce that indirect jumps are targeting the beginning of a
chunk with the goal to enforce low-level inlined reference monitor code integrity.
Another example is SafeDispatch [24], a compiler based on Clang++/LLVM
that adds protection for C++ dynamic dispatches.

All comprehensive compiler-based fine-grained CFI solutions need to deal with
a common problem: shared libraries. Modern programs make often use of shared or
dynamic loaded libraries. This problem is addressed by Niu et al. [29], who intro-
duced modular CFI based on ID tables representing the actual CFG which is con-
structed during link-time. In between, production compilers could be enhanced to
support compilation for binaries with fine-grained CFI policies. Tice et al. [38], for
example, use vtable verification for virtual calls and indirect function-call checking
to add practical CFI instrumentation to both GCC and LLVM.

A hybrid approach, combining both compile- and runtime instrumentation,
is presented by πCFI [31]. In this case, programs are initialized with an empty
CFG, which gets populated at runtime based on the provided input.

Recent research has expanded CFI beyond traditionally-compiled code on
desktop systems. For example, just-in-time compilation can be enhanced with
CFI policies, as shown in the case of RockJIT for JavaScript [30]. Furthermore,
it has been shown that even entire commodity kernels can be instrumented to
enforce CFI policies, as demonstrated in [12,18]. Moreover, MoCFI [13], a CFI
framework for smartphones that uses static analysis to extract the CFG of binary
files and utilizes library injection and in-memory patching to enforce CFI during
runtime, shows that smartphones can also benefit from CFI.

Hardware support for CFI. The vast majority of CFI implementations
employ software mechanisms for enforcing the integrity of control flow trans-
fers [1,4,12,28,42,43]. However, a few attempts have been made to implement
CFI using existing hardware features. CFIMon, for instance, utilizes Intel’s
Branch Trace Store, in combination with performance monitoring units, to
detect control flow violations on-the-fly [41]. Likewise, kBouncer employs Intel’s
Last Branch Recording to mitigate ROP exploits without modification of the
program [32] and PathArmor [39] uses the same hardware feature to enforce

28 M. Muench et al.

context-sensitive CFI. Unfortunately, those systems suffer from the fact that the
Last Branch Record in its current implementation only records up to 16 branches.
Our proposed method of using TSX to achieve CFI complements software-based
CFI approaches by providing them with a mechanism to do the actual enforce-
ment of CFI. Generally, it can work with any label-based CFI scheme, and
replaces software-enforced control flow checking with a hardware-based solution.

Explicit architecture support of control flow integrity has been proposed by
Budiu et al. [5]. In their proposal, new instructions are added for labeling targets
of control flow transfer and for automated verification of these labels during a
transfer. Davi et al. [15] have pointed out that this approach is likely to generate
coarse-grained CFI policies and presented a different architecture for fine-grained
CFI, based on two new instructions for function calls and returns as well as
heuristics for validating indirect jumps.

Two recent approaches that proposed hardware-based, label-based CFI sys-
tems are HAFIX [14] and HCFI [7]. HAFIX enforces backward-edge CFI by
extending the instruction set architecture of the Intel Siskiyou Peak and the
LEON3 synthesizable processors. Similarly, HCFI extends the ISA of a SPARC
SoC and utilizes an additional shadow stack to enforce both forward- and
backward-edge CFI. Another hardware-based approach is presented by Clercq
et al. [8], in which instructions reside encrypted in memory and are decrypted by
the architectural CFI features in the instruction cache. This architectural fea-
tures are implemented in a LEON3 processor and decryption errors occur when
invalid branch targets are taken. While all these systems are good examples
of hardware-based control flow integrity, they rely on custom hardware, rarely
shipped in commodity computers. Our proposed approach, on the other hand,
leverages a functionality that is already deployed in consumer CPUs.

An equivalent approach that uses recently introduced hardware features to
enforce CFI was developed in parallel to our work by Mashtizadeh et al. in
CCFI [25]. CCFI uses Intel’s AES-NI extensions to construct, store and verify
cryptographic MACs for pointers being used for control flow transfers, while the
cryptographic key is held in compiler reserved registers, invisible to the attacker.
This solution provides strong security guarantees, but it faces additional chal-
lenges not present in our approach, which result in an increased complexity.
First, the introduced MACs for stack and heap addresses can suffer from replay
attacks, in which an attacker leaks and uses a previous constructed MAC to
change the control flow. To prevent this attack, additional heap- and stack-
randomization need to be deployed. Furthermore, in certain corner cases, the
compiler does not recognize function pointers which would lead to MAC fail-
ures and subsequent program termination. Although a static analyses pass for
clang to detect these cases is provided, additional work by the developer of a
software is required. Another minor problem is that the compiler reserved reg-
isters to store the cryptographic key are a subset of the registers introduced by
Intel’s SIMD extension. Thus, applications which are heavily using this exten-
sions would experience additional overhead.

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 29

3 Transactional Memory

Transactional memory is a concept used in concurrent programming to describe
a technique that allows synchronized and efficient access to data structures in
a concurrent environment without the need of mutual exclusion [22]. Transac-
tional memory introduces the concept of transactions, finite sequences of machine
instruction that are serializable and atomic. Serializability means that different
transactions appear as if they are executed serially, and therefore that different
transactions do not interleave with each other. Atomicity, on the other hand,
refers to the changes made to the shared memory: upon completion of a trans-
action, it either commits or it aborts. A commit makes all changes to the shared
memory visible to other processors, while an abort discards the changes. Hence,
the changes made to shared memory by one transaction are either fully repre-
sented in the memory space of the program or completely undone.

3.1 Transactional Synchronization Extensions

A selected subset of Intel’s recent Haswell processors were manufactured with the
Transactional Synchronization Extension (TSX) [36]. This extension enhances
the x86-64 instruction set architecture by adding transactional memory features.
Intel’s TSX allows a programmer to specify code regions for transactional exe-
cution and provides two distinct interfaces, Hardware Lock Elision (HLE) and
Restricted Transactional Memory (RTM) [10], that offer different functionality
to users of transactional memory.

3.2 Hardware Lock Elision

HLE improves performance of concurrent code through the elision of hardware
locks. Two new instruction prefixes are introduced to be used in front of instruc-
tions which normally would use software locks for synchronization:

XACQUIRE: The XACQUIRE prefix is used in front of an instruction which
acquires a lock to a critical memory region. It marks the beginning of a
transaction but instead of adding the shared memory to the processor’s read
or write set, the lock itself is added to the transaction’s read set. For the
acquiring processor, it appears as if it has acquired the lock, while for other
processors the lock appears to be unchanged. Thus, other processors can read
the lock without causing a conflict and, therefore, concurrently enter into the
critical section. Although no data is actually written to the lock, the hardware
ensures that conflicts on shared data will cause a transactional abort.

XRELEASE: The XRELEASE prefix is used in front of an instruction which
releases a lock and ends a transaction. Normally, the release of a lock would
involve a write to the lock. Instead, the system verifies that the instruction
following the XRELEASE prefix restores the value of the lock to the value that it
had before the XACQUIRE prefixed instruction. If this is the case, the processor
tries to commit the transaction.

30 M. Muench et al.

If a transaction fails due to a conflicting write in the shared data or the associated
lock, all changes of the transaction are rolled back and the critical section is re-
executed - this time using the lock in the classical manner. The advantage of
HLE is that multiple threads can enter and execute critical sections protected by
the same lock as long as no simultaneous operations on shared data are causing
conflicts.

Additionally, HLE provides backward compatibility in the instruction set
through a clever usage of instruction prefixes: processors without HLE support
simply ignore the XACQUIRE and XRELEASE prefixes for all instructions which
can be prefixed by XACQUIRE and XRELEASE and, thus, execute the critical code
section with traditional locking.

3.3 Restricted Transactional Memory

RTM is a more flexible interface for marking code regions for transactional exe-
cution, without backward compatibility. This extension introduces three new
instructions:

XBEGIN: The XBEGIN instruction is used to enter a transaction. Within a
transaction, all accessed memory is added to the transaction’s read set and
all modified memory is added to the transaction’s write set. The XBEGIN
instruction must be followed by a 16- or 32-bit relative address to specify a
fall-back path which gets executed when the transaction’s commit fails or an
explicit transactional abort occurs.

XEND: The XEND instruction ends a transaction and attempts to commit all
changes. Should the commit fail, the fall-back path specified in the XBEGIN
instruction is executed.

XABORT: The XABORT instruction is used to issue an abort for the transaction,
rolling back all changes made by the transaction and executing the fall-back
path. The XABORT instruction has to be followed by an 8-bit immediate as
status code. This gives the programmer the possibility to specify a reason for
issuing the abort.

The RAX register is used to indicate the reason for the execution of the fall-back
path when a transaction abort occurs. The value of this register is not relevant for
our purposes but, as we will see, the fact that it gets clobbered is inconvenient.

3.4 TSX Minutia

Intel’s TSX provides another instruction, which can be used in both RTM and
HLE based transactional execution paths:

XTEST: The XTEST instruction checks whether the processor is executing in a
transactional state due to a HLE or RTM transaction. If XTEST is executed
inside a transaction, the Zero Flag (ZF) is set to 0. Otherwise, it is set to 1.

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 31

Furthermore, both RTM and HLE are capable of transactional nesting and
instruction-based aborts: While serializability of two distinct transactions
is still ensured, both RTM and HLE allow the execution of transactions
within transactions. The processor specific variables MAX RTM NEST COUNT and
MAX HLE NEST COUNT are limiting this nesting. The nesting of a HLE transaction
inside a RTM transaction or the nesting of RTM inside HLE remains undefined
because both interfaces are accessing the same hardware capabilities.

Additionally, certain instructions cause a transaction to abort, regardless of
how the transaction was initiated or what data has been written or read. Besides
XABORT, the instructions CPUID and PAUSE cause a transactional abort in all sit-
uations. Depending on the TSX implementation, other instructions can trigger
an abort as well. Among those are instructions for updating non-status parts
of the EFLAGS register, interrupts, ring transitions, processor state saves, and
instructions for updating the segment registers. A side-effect of the instruction-
based aborts is context switch sensitivity. Several instructions, which can cause
aborts depending on the specific implementation, are used by the kernel to per-
form context switches. As a consequence, transactions are aborted upon context
switches.

3.5 Suitability for Software Security

TSX has already been analyzed for its possible application to software security.
For example, Muttik et al. [27] pointed out that TSX can be used to detect
malicious changes in memory by monitoring OS memory from a hypervisor and
using transactional memory to automatically roll back these malicious changes.
Furthermore, recent research by Guan et al. [21] proposes Mimosa, a system to
protect private keys against memory disclosure attacks using hardware transac-
tional memory features. Private keys are held in memory and decrypt or sign
messages only within a transaction. Atomicity (as described in Sect. 3) causes
the transaction to abort when a concurrent, malicious process tries to access the
decrypted private key.

3.6 TSX Application for Control Flow Integrity

By studying the implementation of Intel’s TSX, we realized that it can be lever-
aged as prototype for hardware-assisted CFI. Our intuition is that we can enter
a transactional execution state before a control flow transfer and commit the
transaction after the control flow transfer is done. In this manner, RTM can be
used to implement loose CFI without checking labels in software. This is similar
to the idea of control flow locking [4], which involves a write to a lock before an
indirect control flow transfer and an unlock operation after the transfer.

Furthermore, HLE can be used to implement labels, allowing both loose CFI
and strict CFI. This is based on the fact that the memory changed by a XACQUIRE
instruction to enter a transaction has to be restored to its original value with the
XRELEASE instruction in order to successful commit the transaction. By carefully

32 M. Muench et al.

choosing the memory location and value, we can ensure that redirected control
flow will cause a transaction to abort, which will then be detected.

Besides basic CFI functionalities, the current implementation of TSX pro-
vides additional protection against current code-reuse attacks. Return Oriented
Programming (ROP), for instance, relies on the fact that a set of so called Gad-
gets, each ending with a return instruction, can be chained together to form
a more complex piece of code. In our TSX-based CFI, every return instruc-
tion is preceded by either a RTM or HLE instruction to begin a transaction.
Thus, the number of gadgets that can be chained is limited by the correspond-
ing MAX NEST COUNT for transactional nesting. Recent research has shown that
restricting the maximum length of ROP gadget chains makes exploitation signif-
icantly harder, but attackers can still work around it [20]. However, TSX-based
CFI adds another challenge for an attacker. In fact, many instructions that are
typically used during an exploit (including system calls) trigger transactional
aborts. Since for most exploits an interaction with the kernel is required, the
attacker would need to find a way to escape from the transaction before the
exploit can work.

4 Achieving CFI with TSX

Building up on the ideas described in Sect. 3.6, we designed an approach for
providing control flow integrity using Intel’s Transactional Memory Extensions
(TSX). It is important to note that the techniques we discuss in this section can
be adopted by any existing CFI techniques to ensure the integrity of control flow
transfers, as well as to provide the additional protections afforded by TSX-CFI.
Thus, we focus on the mechanism to detect the hijacking of the control flow,
rather than on implementation details of CFI. Specifically, we expect that other
techniques (such as [17,38,42,43]) can be leveraged to generate labels for strict
CFI, which includes the computation of the valid targets for indirect control flow
transfers.

In this section we discuss the implementation of both loose and strict CFI
techniques. As with other loose CFI designs, our solution trades limited protec-
tion for simplicity in the implementation and deployment (i.e., the exact jump
targets of every instruction do not have to be determined). On the other end, our
reference strict CFI design provides stronger guarantees, with the requirement
of a more complex analysis to identify jump targets.

An important difference between TSX CFI and traditional CFI is that TSX
CFI does not prevent the attacker from hijacking the program’s control flow.
Instead, it simply ensures that any indirect control flow transfer in the program
that can be hijacked by an attacker happens inside a TSX transaction. As a
result, the control flow hijacking will eventually cause the transaction to abort,
essentially rewinding the program to the clean state right before the control flow
was hijacked and redirecting the execution into our fall-back path, which can
use more sophisticated and time-consuming techniques to verify the presence of
an attack and abort the program.

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 33

4.1 Transaction Protection

A core tenet of performing CFI with TSX is that many instructions, includ-
ing system calls, cannot be performed inside a memory transaction. Thus, the
underlying principle of our approach is that we enter into a transaction before
attempting an indirect jump and exit from it at the jump target. These trans-
actions are very short – in the normal case, the transaction starts, the indirect
control flow occurs, and the transaction ends. If an attacker is able to manipulate
the target of this instruction, and redirects it to an instruction that does not
end the transaction, the transaction will fail for one of several reasons:

Context switch. The execution of the program is suspended by the kernel to
run another process.

Instruction-based aborts. The execution of a transaction-aborting instruc-
tions (e.g., a system call).

TSX nesting limit. A transaction is nested in X other transactions, where X
is the transaction nesting limit of the CPU.

Each TSX failure case presents a different challenge to an attacker. The context
switch failure case limits the amount of code that an attacker can execute without
closing the transaction, instruction based aborts makes it impossible to execute
certain instructions like system calls while inside a transaction, and the TSX
nesting limit puts a bound on the length of an attacker’s ROP chain. This latter
effect is very interesting: since we initiate a transaction before each indirect
control flow transfer, an attacker that chains ROP gadgets in the traditional way
will enter an extra nested transaction with each gadget. Since the nesting depth
is limited (on most processors, this depth is 16), an attacker will quickly hit the
transaction nesting limit, and, thus, cause a transactional abort. Furthermore,
to be successful, an attacker must first successfully exit all entered transactions,
in the reverse order of entering them, before operations such as system calls
can be carried out. We want to emphasize that the nesting limit poses problems
only for an attacker and not for benign applications. In fact, our implementation
encloses only the control flow transfer instructions within transactions, and not
the entire target function. For example, the transaction is opened just before a
call instruction, and closed with the first instruction of the call destination.

When a transaction aborts, two things occur. First, the actions taken by the
attacker while inside the transaction are discarded by the processor. Second,
a fall-back path is triggered to check for the presence of an attacker (i.e., by
verifying that the control flow transfer is going to a legal target). This is done
because, aside from a control flow hijack, a context switch (for example, when
the process is suspended to allow another process to run) will also abort a trans-
action. While this complicates our fall-back path, it introduces another challenge
to the attacker: they must escape our transaction quickly, before the process is
swapped out and the transaction is aborted.

34 M. Muench et al.

Fig. 1. Control flow of a function returning for RTM-based CFI

4.2 RTM and Loose CFI

We leverage Restricted Transactional Memory (RTM) to provide an implemen-
tation of loose CFI. To ensure that every indirect control flow transfer goes to a
valid target, a transaction is started before each transfer and ended at the tar-
get site. For example, every function return is preceded by a XBEGIN instruction,
while every function call is followed by a XEND instruction. Thus, a transac-
tion will be started, the function will return, and the transaction will then be
completed. As long the return address used by the return instruction is not
manipulated, the transaction can only fail due to a context switch. The idea is
visualized in Fig. 1, using the example of a function return.

In a failure case, the fall-back path specified in the XBEGIN transaction will
be executed. Since RAX is used to indicate the reason for the fall-back path
execution, we copy its value into an unused scratch register before entering a
transaction. This enables us to restore the original function return value, which
is also passed in RAX, in the case that the fall-back path gets executed due to
a context switch during a benign control flow transfer. This can happen for
two reasons: when the transaction is interrupted by chance because of a context
switch initiated by the kernel, and when the control flow is hijacked by an attack.
Thus, the fall-back path itself has to verify that the target of the control flow
transfer is still pointing to a memory location containing the opcodes for an XEND
instruction. Since different kinds of indirect control flow transfers determine the
target of a transfer differently, several fall-back paths are required. In the case
of function returns, the target (i.e., the return address) is on the stack, and can
be dereferenced via RSP. Certain indirect jumps and calls, on the other hand,
use a general purpose register to specify the target of the transaction. Thus,
the fall-back path has to deference the content of the specific register. The only
exception is provided by the CALL RAX and JMP RAX instructions because RAX
gets overwritten upon entering the fall-back path. Naturally, instead of RAX, the
local copy in the scratch register has to be dereferenced. Furthermore, if the
control flow transfer is initiated by a call instruction, it is also necessary to save
its origin inside another scratch-register. If the fall-back path can not detect the
presence of an attacker, it can push the saved origin and jump to the target,

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 35

effectively emulating the call. If the fall-back path does not detect the presence
of a XEND instruction at the transfer’s target, the presence of an attacker is
assumed, and a CFI violation policy is triggered. This, naturally, terminates the
program. If the presence of an attacker cannot be determined, the original value
of RAX is restored, and the control flow is transferred to the target of the indirect
jump.

Provided Protection. While the RTM implementation is very straightforward,
it can only reason about a single set of jump origins and jump targets. That is,
if an attacker hijacks the control flow, the presence of RTM CFI forces her to
terminate the transaction at a valid jump target. However, with the exception of
certain actions that are prohibited within a transaction (discussed in Sect. 4.1),
an attacker can carry out any modification of memory (for example, by initiating
a ROP chain) and then transfer the control flow back to a valid jump target,
which will, in turn, terminate the transaction.

In essence, RTM provides weak security guarantees, but it is an important
building block towards TSX CFI, and a useful tool to later measure the per-
formance impact of our techniques. HLE, on the other hand, builds on these
building blocks to provide security guarantees for TSX-assisted CFI.

4.3 HLE and Strict CFI

With strict CFI, every indirect control flow transfer is only allowed to proceed
along strict well-defined paths. For example, functions may only return to their
callers, and indirect jumps can only go to targets that were intended for them
by the programmer. One way to implement such a policy is by using labels.
With labels, every control flow transfer is assigned a label that it shares with
the valid targets of that control flow transfer. When the transfer is triggered,
the CFI policy ensures that the label at the source address matches the label at
the destination address, terminating the program if this is not the case.

Intel’s Hardware Lock Elision provides functionality that can be leveraged
to implement such labeled CFI. Specifically, HLE elides a memory write to a
memory location that represents the lock itself. We will term this location the
lock location, and the value at the lock location the unlock value. A transaction is
entered by performing a write to the lock location (termed a locking write), with
the write instruction prepended by XACQUIRE, and is successfully terminated
when the unlock value is restored by a write instruction prepended by XRELEASE
(termed an unlocking write). We call the value that resides at the lock location
during a transaction a lock value. For a transaction to commit successfully, the
value written to the lock location during an XRELEASE must be the unlock value.

Our idea is to introduce labels by carefully choosing the (numeric) value used
during the locking and unlocking write operations. The lock location is chosen
as an offset on the stack, and we implement the locking write by simply adding
the label value to that location. In turn, the unlocking write consists in subtract-
ing the label, thus restoring the unlock value and successfully committing the
transaction at the intended target of this control flow transfer. As with RTM,

36 M. Muench et al.

Listing 1. HLE-based CFI

1 [. . .]
2 c a l l func
3 x r e l e a s e lock sub [rsp] , 0 xc f1bee
4 [. . .]
5

6 func :
7 [. . .]
8 xacqu i re lock add [rsp−0x8] , 0 xc f1bee
9 x t e s t

10 jnz i n s i d e t r a n s a c t i o n :
11 mov r11 , 0 xc f1bee
12 jmp h l e c f i f b r e t
13 i n s i d e t r a n s a c t i o n :
14 r e t

a transaction abort signals a potential attack. However, some additional details
must be considered when enforcing HLE-based CFI. HLE has no mechanism to
detect the reason why a transaction failed. While this has the benefit of not
clobbering RAX (unlike RTM), it comes with a cost: HLE has no capability to
execute a fall-back path on a transaction abort. Instead, HLE simply re-executes
the critical section without eliding the lock write. Intel’s intention is that, if the
elided lock fails, a software-locking mechanism would simply take over. Thus, a
virtual fall-back path has to be injected for HLE-protected control flow trans-
fers. This can be done with the XTEST instruction, which identifies whether the
process is currently in a transactional context. Therefore, a failed or aborted
transaction can easily be detected by executing XTEST after entering the critical
section. When an unsuccessful transaction is detected, a jump to the virtual
fall-back path can be issued manually.

The fall-back path itself is similar to the fall-back path of RTM CFI. The
only difference is that the fall-back path checks for a label in the code that would
be executed after the indirect control flow completes. As with RTM, we cannot
simply assume the presence of an attacker on transaction abort, because any
context switch into the kernel would also trigger a transactional abort. Thus,
the fall-back path is necessary.

An example showing an instrumented return using HLE is presented, for
clarity, in Listing 1. A careful reader will notice that the lock location is actually
different between the XACQUIRE and XRELEASE instructions. In reality, the lock
location is the same: since the RET instruction itself modifies the stack pointer
(by popping the 8-byte return address), the offset must be different by exactly
8 bytes after the RET executes.

Provided Protection. HLE extends the simple transactions provided by RTM
with the ability to label indirect control flow transfers, allowing HLE CFI to ensure
that indirect control flow transfers must proceed to a valid target and not just to
any target. Likewise, the fact that indirect control flow transfers take placewithin a
TSXtransaction ensures that the executionflowcannotbehijackedand rerouted to
system calls. Besides that, HLE introduces novel, interesting capabilities in control

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 37

flow transfer protection: aside from ensuring that the transaction ends on a valid
jump target, the use of HLE also mandates that, between the beginning and end of
a transaction, the value of the stack pointer must be equal to itself plus the offset
introduced by the instruction issuing the control flow transfer. This is implicit as
part of its operation because a location on the stack is used as the lock location. To
end a transaction successfully, this exact location must be written to, and the exact
same value (the unlock value) that it had before the transaction began must be
restored. If the stack pointer is unexpectedly modified during the transaction (for
example, if the attacker hijacked the control flow and initiated a ROP chain), the
unlock value will not be restored, since another location will be written to, instead.
This, in turn,will cause the transaction to fail, the attacker’s actions to be rewound,
and the attacker to be detected.

Thus, HLE-supported CFI provides a formidable protection against control
flow hijack attacks.

5 Implementation

We implemented our proposed TSX CFI design in a reference prototype to
demonstrate that TSX-based CFI can be used to enforce CFI policies and
to understand the overhead of such protection. This implementation is being
released as open source, in the hope that it will be useful to other security
researchers.

Because we did not possess a binary analysis system capable of constructing
an accurate control flow graph from arbitrary binary applications, we imple-
mented our approach at the source code level by instrumenting the compiler
(specifically, we added a pass to the LLVM backend). While we consider binary
analysis and rewriting outside of the scope of our work, existing tools have solved
this problem [26,42,43], and their solutions could be reused directly to imple-
ment TSX-based CFI directly on binaries.

5.1 Integration Approach

We chose to implement our reference prototype as a backend compilation pass
in LLVM. Our prototype combines a preprocessing-engine, the clang compiler
with the TSX-CFI backend pass, and a postprocessing engine. The preprocessor
performs a linear search over the provided source-code to detect and instrument

Fig. 2. Overview of the TSX CFI implementation

38 M. Muench et al.

inline assembly, since it would be translated directly to binary code without
being analyzed by the backend. The compiler produces an actual binary, where
every function entry and every instruction issuing an inter-functional control
flow transfer is instrumented (i.e. direct calls, indirect calls, function returns and
tail-calls). During compilation, the TSX-CFI backend is unable to tell whether
the targets of direct calls are located inside the binary or inside an external
library, as this information is only visible at link time. However, since external
calls are resolved via the Procedure Linkage Table (PLT), these calls still require
protection against control flow hijacks. Thus, the LLVM backend emits only no-
op instructions for direct calls. These are fixed up by the postprocessor, which
adds the protection for calls preformed via the PLT. Figure 2 shows the general
overview of our implementation.

5.2 Implementation Details

As the implementation of our prototype is fairly intricate, we provide this section
to introduce the interested reader with specific implementation aspects.

Selective Function Entry. Direct calls cannot be hijacked by attackers and,
thus, do not need to be protected. However, this poses a problem: if a function is
called by both direct and indirect calls throughout the binary, only the indirect
calls should take place inside a transaction. To facilitate this, the post-processing
engine modifies direct calls to a function to bypass the TSX transaction commit
instruction. This does not reduce the security of the indirect jump because, even
if the attacker redirects the jump to skip the transaction commit, he will still be
stuck inside the transaction.

Lazy Binding and Full Relro. Our prototype supports the compilation of
both binaries resolving external function during runtime (Lazy Binding) and
binaries resolving all functions during load time. In Full-Relro the Global Offset
Table, which stores the location of resolved functions, is marked as read-only. In
this case, calls via PLT can only resolve to their intended target, which makes it
impossible for an attacker to hijack those external function. Thus, these calls do
not need protection. To optimize this case, we customized the dynamic loader
to store pointers to the instruction after the commit instruction in the GOT,
similar to the case of direct jumps to functions within the binary.

5.3 Limitations

Our prototype suffers from two classes of limitations, due to the fact that we
lack kernel support and to our choice of using the clang compiler. While these
problems are limiting the applicability of our current prototype for real-world
applications, they do not pose any conceptual problem for TSX CFI. In the
rest of this section, we address these limitations and describe how they could be
solved in a future implementation.

Standard C Library. The standard C library for GNU/Linux systems, glibc,
cannot be compiled with clang, since it requires functionality explicitly provided

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 39

by gcc. In turn, it is not possible to create a TSX CFI instrumented glibc with
our reference implementation. However, in order to provide a holistic TSX CFI
solution, an instrumented standard C library is required. For this purpose, we
instrumented musl, a free and lightweight standard C library. Obviously, this
can be a problem for programs that are expecting the presence of glibc, for
which we frequently observe crashes due to the different locale subsystems. We
verified that these crashes are purely based on the incompatibility between the
standard C libraries and are not introduced by our TSX CFI prototype. This
issue can be solved by adding a gcc TSX CFI extension.

Virtual Dynamic Shared Object. Another interesting side-effect of our TSX
CFI prototype is that we had to disable Virtual Dynamic Shared Object (vDSO)
support. This object is provided by the kernel and mapped in the address space
of every process, mainly to speed up syscalls, such as gettimeofday(), which are
normally called via the standard library. Since vDSO is entered using a call
instruction, an instrumented version of this object would be required for TSX
CFI, which would require changes to the kernel and break the operation of unin-
strumented programs. Therefore, the usage of vDSO in TSX-CFI instrumented
programs is disabled for compatibility with unprotected programs. As solution,
a holistic approach including kernel support for TSX CFI would be required.

Signal Handlers. Programs can register signal handlers that are executed upon
the reception of given signals. However, in this case it is the OS kernel that redi-
rects the control flow to the handler, and therefore a transaction is not entered
when the signal handler is called. A possible solution would be to instrument
the libc to alter the signal handlers pointers to use the un-instrumented function
entry address. Another solution would be to instrument the kernel itself, similar
to the case of vDSO.

Setjmp/Longjmp. The setjmp and longjmp interfaces are used to perform non-
local gotos. While our implementation does not instrument non-local gotos, they
still represent a class of indirect control-flow transfers. To cope with them, an
advanced analysis engine for recovering the CFG would be required to retrieve
the possible control flow targets. Nevertheless, the indirect transfer itself can
easily be protected with transactions once the possible targets are known.

6 Evaluation

We evaluated our implementation to determine the practicality of TSX-based
CFI. As we discuss in Sect. 4, we view our approach as a general way to imple-
ment the protection of indirect control flow transfers and expect that it will be
leveraged by complete CFI approaches for that functionality. As such, the goal of
this section is to provide an understanding of the overhead that TSX-protected
control flow transfers induce in the runtime of actual application.

40 M. Muench et al.

We performed our experiments on a diverse set of applications to evaluate
the impact of TSX-CFI on different workflows. For this evaluation, we chose GNU
coreutils (the collection of standard Linux binaries such ls), bzip2 (a common
compression utility), lame (an audio encoder with the main purpose of encod-
ing WAV audio files to MP3), and openssl (the general-purpose cryptography
command line tool).

6.1 Experiments

We measured the performance of TSX-based CFI on a Intel Core i7 Haswell
processor that supports TSX operations. To measure the overall performance
overhead of our TSX CFI implementation, we selected tasks for the instrumented
programs and calculated the average execution time over a series of 20 execu-
tions, using both HLE and RTM-provided indirect control flow protections. We
chose the following programs and tasks:

coreutils: Execution of the 580 tests provided in the test-suite for the various
utilities.

bzip2: Compression of a 200 megabyte file.
lame: Conversion of a 60 megabyte WAV file to a MP3 file with a bit rate of

128 Kbps.
openssl: Encryption of a 4 gigabyte file of random data with AES-256-CBC.

All of the experiments were executed with our instrumented version of musl, in
which we also protected all indirect control flow transitions. The bzip2, lame, and
openssl experiments ran without issue. However, of the 580 test cases provided
by coreutils, 47 failed to run with our prototype, due to the differences of the
locale subsystem of musl, and glibc, as described in Sect. 5.3. In the case of
TSX-CFI implemented with RTM, three additional coreutils test cases failed
with segmentation faults. Investigation into these segmentation faults revealed
that they occurred due to program-defined signal handlers: some signal handlers
would redirect the control flow of the process without entering a transaction,
resulting in the execution of an XEND instruction outside of a transaction, which
crashes the process.

6.2 Performance Overhead

We averaged the runtime of 20 executions on each experimental binary (in the
case of the coreutils, we averaged the total time of 20 executions of all coreutils
test cases). Due to the distinct workload carried out by the applications, we
expected to see different overhead with our CFI implementation, and this was,
indeed, the case as shown in Fig. 3. For example, lame, bzip2 and openssl,
which spend most of their time in long-running loops for encoding, compression,
or encryption, and call many helper functions in these loops, result in an overhead
of up to 34 %. On the other hand, most tools inside coreutils spend much time

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 41

Fig. 3. Average runtime overhead

Table 1. Number of issued
and aborted transactions.

Program #Executed #Aborted

bzip2 565711783 1781

lame 493580143 247

openssl 546743640 1088

Table 2. Size of instrumented programs, in Kilo-
bytes.

Program None RTM HLE RTM-relro HLE-relro

coreutils 85 101 117 90 99

bzip2 223 256 271 247 250

lame 401 459 523 422 450

openssl 2536 3362 4313 2817 3196

musl-libc 725 767 835 839 979

interacting with the host OS through system calls, resulting in a small overhead
of up to 5 % in the case of HLE, which reflects our expectations.

In the coreutils case, the majority of the overhead from HLE came from
the lazy binding of library functions. Again, this is consistent with what we
expect: the coreutils binaries are a mostly short-running utilities and use many
library functions, leading to the (CFI-protected) symbol resolution process to
be called relatively frequently. Enabling RELRO (turning off lazy binding) for
these binaries results in a drastic decrease of runtime overhead with HLE, to
just 1 %. On the other binaries with less system interaction (lame, bzip2, and
openssl), the difference is negligible.

6.3 Transaction Aborts

When a transaction fails, execution is diverted to the fall-back path, which checks
whether the process has been exploited. However, as we discuss in Sect. 4.1,
there are several reasons, other than exploitation, that can cause a transaction
to abort.

To understand how frequently this occurs during normal operation, we evalu-
ated the number of transactions that are attempted and the number that aborted.
To do so, we utilized the capabilities of Intel’s Software Development Emulator to
measure the amount of executed transactions. Unfortunately, the emulator does
not report aborted transactions caused by the environment (i.e., context switches).

42 M. Muench et al.

Thus, we computed this number by instrumenting the aborted transaction
fall-back path to track a counter of the number of times it was executed. The results
of this measurement are presented in Table 1. From these results, we see that the
rate of transaction failures is almost negligible. Thus, the most significant part of
overhead that we experience with TSX-CFI is induced by continuously entering
and leaving successful transactions. Ritson et Barnes [37] observed that invoking a
transaction costs approximately 43 clock cycles, which, given the high number of
executed transaction, results in the observed overhead.

6.4 Space Overhead

It is important to measure the space overhead of a program being protected by
any CFI approach, both in terms of memory usage and program size.

While CFI, when implemented with TSX, suffers no additional memory usage
overhead, the size of the program is increased due to the addition of both the TSX
instructions themselves and also that of the fall-back paths. The size overhead,
as shown in Table 2, depends on the TSX method that is used to enforce CFI and
on the number of protected transitions inside the program. We calculated this
overhead for the applications themselves (in the case of the coreutils, we used
the arithmetic mean of the overhead for individual binaries) and the standard
library.

We feel that, especially with modern systems, the low space overhead intro-
duced by our implementation is quite acceptable for a CFI implementation.

7 Discussion

The use of TSX for control flow integrity brings interesting possibilities, but it
also introduces several challenges. This section discusses the challenges, protec-
tions, and possible future research directions in the area of TSX-based CFI.

7.1 TSX Performance

As described in the evaluation section, the simple act of entering a TSX trans-
action incurs an immediate performance penalty. However, some different direc-
tions can be explored to reduce this overhead in the future:

Hardware improvements. TSX is a very young technology, and it is very
likely that performance optimizations will be implemented in future Intel
processors. While little can directly be done by security researchers to bring
this about, the usefulness of TSX for things other than its actual intended
application (i.e., this CFI approach or the protection of cryptographic keys
in memory [21]) might make TSX a high-profile target for optimization.

Virtual Transactional Memory. TSX transactions are aborted whenever a
context switch occurs. These transaction aborts have a strong impact on the
performance, since they force our solution to use complex fall-back paths to

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 43

check for the presence of an attack. These fall-back paths introduce runtime
and space overhead, but are unavoidable with context-switch-based transac-
tion aborts.
One approach toward eliminating this overhead is to allow a transaction to
pause in the event of a process being paused, and resume when the process
is resumed. In fact, designs for virtual transactional memory have been pro-
posed [35] that would allow transactions to survive across context switches
(specifically, pauses and resumes of a running process). If these techniques are
adopted in the future, they could greatly improve the performance of TSX
CFI.

Selective protection. Not every part of a program is equally vulnerable to a
control flow hijack, and those functions that are not (and do not utilize any
other functionality that must be protected) may not need CFI protection. A
similar trade-off is seen in the application of stack canaries to prevent buffer
overflows, where functions that lack any overflowable buffers do not receive
stack canaries [11]. Performance could be greatly improved by leaving such
“low-risk” functions similarly unprotected by TSX CFI. Similarly, protection
could focus on specific types of control flow transfers. For example, function
returns can be protected through the use of a shadow stack or a similar, less
expensive approach, leaving the more expensive TSX protections for indirect
calls and jumps, for which fewer alternative protection mechanisms exist.

While it is hard to speculate on the future of TSX, it is clear that it is an
important capability, not only in the field of concurrent systems, but also in
computer security. It seems quite likely that additional effort will be put into its
optimization and the addressing of its limitations.

7.2 Protection Strength

As we discuss in Sect. 4.1, TSX-based CFI works by ensuring that, if an attacker
manages to hijack the control flow of a program, he will find himself inside a
TSX transaction. These transactions severely limit what an attacker can do,
and if the attacker violates the restrictions the transaction is aborted and the
process is rewound to the state before the control flow was hijacked. When this
occurs, a fall-back path is triggered, checking for the presence of an attacker
(by verifying whether the pending control flow transfer is targeting a legal loca-
tion) and aborting the program if an attack is detected.

Thus, to perform useful actions, an attacker is forced to find a way to escape
from the TSX transaction, using one of the following two options: (1) The
attacker can jump to some previously-injected shellcode that commits the trans-
actions and gives the attacker control or (2) the attacker can execute several
ROP gadgets inside the transaction, influence the program state, then jump to
the actual legal target of the initial protected control flow transfer.

Both options introduce challenges for the attacker. The first option is already
mitigated by existing countermeasures against code-injection attacks, such as
Data Execution Prevention or the No-eXecute bit, that are widely deployed in

44 M. Muench et al.

modern systems to prevent injected data from being executed. Attackers bypass
these protections by diverting the control flow to execute a system call, such as
mprotect(), that allows the injected data to be executed. However, this process
involves the execution of a system call, which is not allowed inside a transaction.
Thus, the attacker is presented with a chicken-and-egg problem: in order to
commit the transaction, he must execute a system call, and in order to execute
a system call, he must commit the transaction.

The second option is a possible, if seemingly infeasible way to escape a trans-
action. An attacker could hijack the control flow and, without aborting the
transaction, utilize a small ROP chain to perform some action before jumping
to the intended target of the hijacked control flow and letting the transaction
commit happen. The attacker would then perform actions in this ROP chain,
being careful not to violate the restrictions placed on him by the transaction.
For example, these actions can include influencing sensitive data structures in
the program. Although this certainly empowers the attacker in comparison to
other CFI solutions, in practice, carrying out this attack is extremely difficult,
especially for the HLE based CFI approach. Specifically, the stack pointer and
the lock value must not unexpectedly change values during the control flow
transfer. Thus, an attacker must execute this attack without altering the stack
pointer or the lock value across the transaction. Additionally, this chain must
be fairly short: a context switch during ROP chain execution will lead to an
aborted transaction and the detection of the attacker. To make matters worse
(for the attacker), using any protected indirect control flow transfer will cause
the initiation of additional transactions, all of which the attacker must escape
(in reverse order of initiation, and without modifying the stack pointer or lock
value) before escaping the original transaction. We feel that, in practice, these
restrictions make such an attack infeasible.

7.3 Comparison with Other Techniques

Our approach introduces a higher overhead when compared to other recent CFI
enforcement schemes which do not require dedicated hardware features, such
as [26,29,39,42]. While this is surely a drawback of the presented implementa-
tion, we believe that it is too early to disregard TSX CFI as unusable, since
Hardware Transactional Memory itself is a new CPU feature and performance
speed-ups are feasible in further iterations. However, our main goal is to explore
the suitability of the new hardware transactional memory features for control
flow integrity purposes. We hope that our study can provide useful insights on
how hardware-assisted CFI could look like and that it can help other researchers
in the field to design future CFI implementations.

Moreover, we were happy to see that Intel recently released its Control-
flow Enforcement Technology Preview (CET) [23], in parallel to this paper,
showing the demand of hardware manufacturers to provide architectural CFI
support. CET is meant to advance the processor with features against ROP
attacks. In more detail, a shadow stack is used to protect function returns and
indirect branch tracking for protecting indirect control flow transfers. The latter

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 45

technique introduces a new instruction, ENDBRANCH, which needs to be executed
after the occurrence of an indirect control flow transfer. Since CET in its current
state is only a preview and is not available for consumer hardware yet, we can
not compare its performance to TSX CFI. However, it is notable that the CET’s
indirect branch tracking is similar to our RTM based approach: In both cases
the processor is set to a state waiting for a certain instruction to specify the end
of a control flow transfer; In TSX CFI this state is explicitly forced by opening
a transaction, while CET introduces a new WAIT FOR ENDBRANCH state, which
is implicitly imposed to the processor upon executing an indirect call or jump.
While the shadow stack provides stronger security guarantees and could easily
replace TSX CFI for backward-edges in a future implementation, the deployment
of labels like presented in our HLE based CFI approach yields a finer granularity
than CET’s indirect branch tracking.

7.4 Additional Capabilities - Future Work

While not related directly to CFI, TSX has other potential applications that are
interesting. A possible application is to ensure the integrity of certain sensitive
memory regions or registers over the course of the execution of some functionality
deemed to be “dangerous” (i.e., a strcpy known to contain user input). For
example, a HLE transaction could be entered by subtracting 0 from the sensitive
memory region, the functionality could be carried out, and the transaction would
be committed by subtracting 0 again. If the contents of the sensitive memory
region were different (i.e., due to an attack) at the end of the transaction from
their value at the beginning, the transaction will abort. Registers can, likewise,
be protected by XORing them to memory as part of initiating the transaction
and XORing them to memory again to commit the transaction.

If virtual transactional memory is adopted, these approaches can be utilized
to protect data in relatively complicated program functionality, as long as no
system calls are performed.

8 Conclusion

In this paper, we proposed a technique to enhance control flow integrity by
leveraging new hardware capabilities, intended to support transactional memory.

Our design provides two distinct levels of CFI protection: unlabeled CFI
and labeled strict CFI. In a TSX-based CFI system, every indirect control flow
transfer occurs inside a transactional memory transaction. If such a control flow
transfer is hijacked by an attacker, the attacker will find himself inside the trans-
action, with severely limited capabilities. Eventually, this transaction will be
aborted, which will roll back all of the changes to memory or registers made by
the attacker and lead to the attacker’s detection. As a side-effect, our technique
can protect the values of the stack pointer as part of its operation. If an attacker
modifies this register, for instance during a code-reuse attack, and attempts to
commit the transaction, the transaction will fail.

46 M. Muench et al.

We implemented a proof-of-concept prototype of TSX-supported CFI and
used it to evaluate the runtime and size overhead of instrumented programs.
The evaluation of our approach showed that induced overhead in performance is
mediocre compared with other recent CFI solutions, with a very modest program
size overhead and no other memory usage increase. While the overhead is higher
in comparison to other CFI approaches, we discuss possibilities for speed-up,
and the potential of future developments to enable faster TSX-supported CFI.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security.
ACM (2005)

2. Andersen, S., Abella, V.: Data execution prevention. Changes to functionality in
microsoft windows xp service pack 2, part 3: Memory protection technologies (2004)

3. Berkowits, S.: Pin-a dynamic binary instrumentation tool (2012)
4. Bletsch, T., Jiang, X., Freeh, V.: Mitigating code-reuse attacks with control-flow

locking. In: Proceedings of the 27th Annual Computer Security Applications Con-
ference. ACM (2011)

5. Budiu, M., Erlingsson, U., Abadi, M.: Architectural support for software-based
protection. In: Proceedings of the 1st Workshop on Architectural and System Sup-
port for Improving Software Dependability. ACM (2006)

6. Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.R.: Control-flow bending:
on the effectiveness of control-flow integrity. In: 24th USENIX Security Symposium
(2015)

7. Christoulakis, N., Christou, G., Athanasopoulos, E., Ioannidis, S.: HCFI: hardware-
enforced control-flow integrity. In: Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy. ACM (2016)

8. de Clercq, R., De Keulenaer, R., Coppens, B., Yang, B., Maene, P., de Bosschere,
K., Preneel, B., de Sutter, B., Verbauwhede, I.: SOFIA: software and control flow
integrity architecture. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE) (2016)

9. Conti, M., Crane, S., Davi, L., Franz, M., Larsen, P., Negro, M., Liebchen, C.,
Qunaibit, M., Sadeghi, A.R.: Losing control: on the effectiveness of control-flow
integrity under stack attacks. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM (2015)

10. Intel Corporation: Intel Architecture Instruction Set Extensions Programming Ref-
erence (2012)

11. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q., Hinton, H.: Stackguard: automatic adaptive detection and preven-
tion of buffer-overflow attacks. In: USENIX Security, vol. 98 (1998)

12. Criswell, J., Dautenhahn, N., Adve, V.: KCoFI: complete control-flow integrity
for commodity operating system kernels. In: IEEE Symposium on Security and
Privacy. IEEE (2014)

13. Davi, L., Dmitrienko, A., Egele, M., Fischer, T., Holz, T., Hund, R., Nürnberger,
S., Sadeghi, A.R.: MoCFI: A framework to mitigate control-flow attacks on smart-
phones. In: NDSS (2012)

Taming Transactions: Towards Hardware-Assisted Control Flow Integrity 47

14. Davi, L., Hanreich, M., Paul, D., Sadeghi, A.R., Koeberl, P., Sullivan, D., Arias,
O., Jin, Y.: HAFIX: hardware-assisted flow integrity extension. In: Proceedings of
the 52nd Annual Design Automation Conference. ACM (2015)

15. Davi, L., Koeberl, P., Sadeghi, A.R.: Hardware-assisted fine-grained control-
flow integrity: towards efficient protection of embedded systems against soft-
ware exploitation. In: The 51st Annual Design Automation Conference on Design
Automation Conference. ACM (2014)

16. Davi, L., Lehmann, D., Sadeghi, A.R., Monrose, F.: Stitching the gadgets: on the
ineffectiveness of coarse-grained control-flow integrity protection. In: 23rd USENIX
Security Symposium (2014)

17. Evans, I., Long, F., Otgonbaatar, U., Shrobe, H., Rinard, M., Okhravi, H.,
Sidiroglou-Douskos, S.: Control jujutsu: on the weaknesses of fine-grained control
flow integrity. In: 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM (2015)

18. Ge, X., Talele, N., Payer, M., Jaeger, T.: Fine-grained control-flow integrity for
kernel software. In: 1st IEEE European Symposium on Security and Privacy. IEEE
(2016)

19. Goktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: over-
coming control-flow integrity. In: IEEE Symposium on Security and Privacy. IEEE
(2014)

20. Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G.: Size
does matter: why using gadget-chain length to prevent code-reuse attacks is hard.
In: 23rd USENIX Symposium (2014)

21. Guan, L., Lin, J., Luo, B., Jing, J., Wang, J.: Protecting private keys against mem-
ory disclosure attacks using hardware transactional memory. In: IEEE Symposium
on Security and Privacy. IEEE (2015)

22. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures, vol. 21, pp. 289–300 (1993)

23. Intel: Control-Flow Enforcement Technology Review (Revision 1.0), June 2016
24. Jang, D., Tatlock, Z., Lerner, S.: Safedispatch: securing C++ virtual calls from

memory corruption attacks. In: Symposium on Network and Distributed System
Security (NDSS) (2014)

25. Mashtizadeh, A.J., Bittau, A., Boneh, D., Mazières, D.: CCFI: cryptographically
enforced control flow integrity. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM (2015)

26. Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K., Franz, M.: Opaque control-flow
integrity. In: NDSS (2015)

27. Muttik, I., Nazshtut, A., Dementiev, R.: Creating a spider goat: using transactional
memory support for security (2014)

28. Niu, B., Tan, G.: Monitor integrity protection with space efficiency and separate
compilation. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security. ACM (2013)

29. Niu, B., Tan, G.: Modular control-flow integrity. In: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
ACM (2014)

30. Niu, B., Tan, G.: RockJIT: securing just-in-time compilation using modular
control-flow integrity. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM (2014)

31. Niu, B., Tan, G.: Per-input control-flow integrity. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM (2015)

48 M. Muench et al.

32. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP exploit mitiga-
tion using indirect branch tracing. In: 22nd USENIX Security Symposium (2013)

33. Payer, M., Barresi, A., Gross, T.R.: Fine-grained control-flow integrity through
binary hardening. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015.
LNCS, vol. 9148, pp. 144–164. Springer, Heidelberg (2015)

34. Prakash, A., Hu, X., Yin, H.: vfGuard: strict protection for virtual function calls
in cots C++ binaries. In: NDSS (2015)

35. Rajwar, R., Herlihy, M., Lai, K.: Virtualizing transactional memory. In: 32nd Inter-
national Symposium on Computer Architecture (ISCA 2005). IEEE (2005)

36. Reinders, J.: Transactional synchronization in Haswell, February 2012
37. Ritson, C.G., Barnes, F.: An evaluation of intels restricted transactional memory

for CPAS. In: Communicating Process Architectures (2013)
38. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano, L.,

Pike, G.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In: 23rd
USENIX Security Symposium (2014)

39. van der Veen, V., Andriesse, D., Göktaş, E., Gras, B., Sambuc, L., Slowinska,
A., Bos, H., Giuffrida, C.: Practical context-sensitive CFI. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. ACM
(2015)

40. van de Ven, A.: New security enhancements in red hat enterprise linux (2004)
41. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: detecting violation of control flow

integrity using performance counters. In: 42nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE (2012)

42. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
IEEE Symposium on Security and Privacy. IEEE (2013)

43. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: 22nd USENIX
Security Symposium (2013)

Automatic Uncovering of Tap Points
from Kernel Executions

Junyuan Zeng, Yangchun Fu, and Zhiqiang Lin(B)

The University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX 75080, USA
{jzeng,yangchun.fu,zhiqiang.lin}@utdallas.edu

Abstract. Automatic uncovering of tap points (i.e., places to deploy
active monitoring) in an OS kernel is useful in many security applications
such as virtual machine introspection, kernel malware detection, and ker-
nel rootkit profiling. However, current practice to extract a tap point for
an OS kernel is through either analyzing kernel source code or manually
reverse engineering of kernel binary. This paper presents AutoTap, the
first system that can automatically uncover the tap points directly from
kernel binaries. Specifically, starting from the execution of system calls
(i.e., the user level programing interface) and exported kernel APIs (i.e.,
the kernel module/driver development interface), AutoTap automati-
cally tracks kernel objects, resolves their kernel execution context, and
associates the accessed context with the objects, from which to derive the
tap points based on how an object is accessed (e.g., whether the object
is created, accessed, updated, traversed, or destroyed). The experimen-
tal results with a number of Linux kernels show that AutoTap is able
to automatically uncover the tap points for many kernel objects, which
would be very challenging to achieve with manual analysis. A case study
of using the uncovered tap points shows that we can use them to build
a robust hidden process detection tool at the hypervisor layer with very
low overhead.

Keywords: Virtual machine introspection · Kernel function reverse
engineering · Active kernel monitoring · (DKOM) rootkit detection

1 Introduction

A tap point [10] is an execution point where active monitoring can be performed.
Uncovering tap points inside an OS kernel is important to many security appli-
cations such as virtual machine introspection (VMI) [15], kernel malware detec-
tion [17], and kernel rootkit profiling [19,25]. For example, by tapping the inter-
nal execution of the creation and deletion of process descriptors, it can enable a
VMI tool to track the active running processes [4]. Prior systems mainly hook
the execution of the public exported APIs (e.g., system calls such as fork in
Linux) to track the kernel object creation (e.g., task struct). However, attack-
ers can actually use some of the internal functions to bypass the check and create

c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 49–70, 2016.
DOI: 10.1007/978-3-319-45719-2 3

50 J. Zeng et al.

the “hidden” objects. Therefore, it would be very useful if we can automatically
identify these internal tap points and hook them for the detection.

Unfortunately, the large code base of an OS kernel makes the uncovering of
tap points non-trivial. Specifically, an OS kernel tends to have tens of thousands
of functions managing tens of thousands of kernel objects. Meanwhile, it has
very complicated control flow due to the asynchronized events such as interrupts
and exceptions. Finding which execution point can be tapped is daunting at
binary level. In light of this, current practice is to merely rely on human beings
to manually inspect kernel source code (if it is available), or reverse engineer the
kernel binary to identify the tap points.

To advance the state-of-the-art, we present AutoTap, a system for
Automatic uncovering of Tap points directly from kernel binary. We focus on
the tap points that are related to kernel objects since kernel malware often
manipulates them. In particular, based on how an object is accessed, we classify
the tap points into creation, initialization, read, write, traversal, and destroy.
By observing which execution point is responsible for these object accesses, we
derive the corresponding tap points.

The reason to derive tap points by associating kernel objects with the cor-
responding execution context is because different kernel objects are usually
accessed in different kernel execution context. The context entails not only the
instruction level access such as read or write to a particular field of an object, but
also the calling context such as the current function, its call-chain, and its system
call (syscall for brevity henceforth) if the execution is within a particular syscall,
or other contexts such as interrupts. As to-be-demonstrated in this paper, such
knowledge, along with the meaning of the available kernel data structures, is
sufficient to derive the tap points for active kernel monitoring.

Having the capability of uncovering the tap points, AutoTap will be valuable
in many security applications. One use case is we can apply AutoTap to detect
the hidden kernel objects by tapping the internal kernel object access functions.
Meanwhile, we can also use AutoTap to reverse engineer the semantics of kernel
functions. For instance, with AutoTap we can now pinpoint the function that
creates, deletes, initializes, updates, and traverses kernel objects. In addition,
we can also identify common functions that operate with many different type
of objects, which will be particularly useful to uncover the meanings of kernel
functions especially for closed source OS.

In summary, we make the following contributions:

– We present AutoTap, the first system that is able to automatically uncover
the tap points for introspection directly from kernel executions.

– We introduce a novel approach to classify the complicated kernel execution
context into a hierarchical structure, from which to infer function semantics
and derive tap points based on how an object is accessed.

– We have built a proof-of-concept prototype of AutoTap. Our evaluation
results with 10 recent Linux kernels show that our system can directly recog-
nize a large number of tap points for the observed kernel objects.

– We also show how to use our uncovered tap points to build a general hidden
process detection tool, which has very small overhead.

Automatic Uncovering of Tap Points from Kernel Executions 51

2 System Overview

Since the goal of AutoTap is to uncover the tap points for the introspection of
kernel object, we have to first track the kernel objects and their types. However,
at binary code level, there is no type information associated with each object
and we have to first recover them. Fortunately, our prior system Argos [30]
has addressed this problem. Argos is a type inference system for OS kernels,
and it is able to track the kernel object, assign syntactic types, and even point
out the semantics for a limited number of important kernel objects but not all
of them. Therefore, AutoTap has reused several components from Argos and
also extended them for kernel object type inference.

Having inferred the types of kernel objects, we have to infer the tap points of
our interest. A tap point is usually an instruction address (e.g., a function entry
address) where active monitoring can be performed. Since tap points uncovering
is essentially a reverse engineering problem, we have to start from known knowl-
edge to infer the unknown one [10]. With respect to an OS kernel, the well-known
knowledge would include its syscall interface (for user level programs), and all of
its kernel module development interface (for kernel driver programs). Therefore,
one of the key challenges would be how to leverage these knowledge to system-
atically infer the meaning of the accessed functions, from which to derive the
corresponding tap points.

Key Insights. After analyzing how a typical OS kernel is designed and executed
and also based on the experience from our prior systems including Argos and
REWARDS [22], we have obtained the following insights to address the above
challenges:

– From data access to infer function semantics. A program (with no
exception to OS kernel) is composed of code and data, where code defines
how to update data and data keeps the updated state. While there are a large
number of kernel functions, from low level data access perspective, we can
classify them into a number of primitive accesses including the basic data read
and write according to how an instruction accesses it. We can also capture
their lifetime based on their allocation and deallocation especially for heap
and stack data. We can even differentiate further from the first time write
(i.e., initialization) to the subsequent write according to the memory write
operations. We can also conclude a piece of code is a traversal function if we
observe it performs memory dereferences to reach other objects (either with
the same type or different types).

– From hardware level events to infer function semantics. In addition to
observing the instruction level data access behavior, we can also observe the
hardware level events such as interrupts and exceptions to infer the function
semantics. For example, if a function is always executed in a timer interrupt,
we can conclude it is likely a periodic function (e.g., schedule function);
if it is executed inside a keyboard response interrupt, we can conclude it is a
keystroke interrupt handler.

52 J. Zeng et al.

– From syscall level events to infer function semantics. Another category
of useful information is the system call events. If a function is executed inside
fork, we know this function is likely kernel object creation related; if it is inside
socket send, we know it must be network communication related. Meanwhile,
we also know a fork syscall must create kernel objects such as task struct,
and a send syscall must access a socket object.

– Inferring the semantics of objects from kernel APIs. While kernel has
a large number of kernel objects, not all of them are of attackers’ interest.
Consequently, we have to identify the type of the kernel objects such that we
can pinpoint the tap points of our interest. To this end, we can leverage the
types of the parameters and return values of kernel APIs, the public exported
knowledge used when developing kernel modules, to resolve the object types
(such as whether the object is a task struct). Meanwhile, kernel developers
often have access to a number of kernel header files (otherwise their modules
may not be compiled). By combining the types resolved from the API argu-
ments and the data structure definitions from the open header files, we can
reach and resolve more kernel data structures.

Scope, Assumptions, and Threat Model. To make our discussion more
focused, we target OS kernels executed atop a 32-bit ×86 architecture. To val-
idate our experimental results with the ground truth, we use the open source
Linux kernels as the testing software1. Regarding the scope of the tap points,
we focus on those that are related to dynamically allocated kernel heap objects.

As alluded earlier, we assume the knowledge of kernel APIs, e.g., the kernel
object allocation function (e.g., kmalloc, and kfree) such that AutoTap can
hook and track the kernel object creation and deletion, and the types of the
arguments of the kernel APIs, which will be used to resolve the kernel object
types. Meanwhile, we assume the access of the header files related to kernel
module development (this is also true for Microsoft Windows), and the data
structure defined in the header files will also be used to type more kernel objects.
AutoTap aims to discover the tap points for introspection in the existing kernel
legal binary code. If there is any injected code, AutoTap cannot tap their
executions.

Overview. We design AutoTap by using a binary code translation based vir-
tual machine monitor (VMM) Pemu [29], which extends Qemu [2] with an
enhanced dynamic binary instrumentation capability. There are three key com-
ponents inside AutoTap: kernel object tracking , object access resolution, and
tap points uncovering ; they work in two phases: an online tracing phase, and an
offline analysis phase (Fig. 1).

1 Note that even though the kernel source code is open, it is still tedious to derive the
tap points manually, and a systematic approach such as AutoTap is needed.

Automatic Uncovering of Tap Points from Kernel Executions 53

Fig. 1. An overview of AutoTap.

In the online phase, starting from the
kernel object creation, kernel object track-
ing tracks the dynamically created ker-
nel objects, their sizes, and their propaga-
tions and indexes them based on the call-
ing context of the object creation for the
monitoring. Whenever there is an access
to these monitored objects, object access
resolution captures the current execution
context, resolves the types of the argu-
ments, resolves the current access (e.g.,
whether it is a read, write, initialization,
allocation, or deallocation), and keeps a
record of the current object access with
the captured execution context if this
record has not been stored yet in the memory. Once we have finished the online
tracing, we then dump the memory meta-data into a log file, and our tap points
uncovering will analyze the log file to eventually derive the tap points. Next, we
present the detailed design and implementation of these components.

3 Design and Implementation

3.1 Kernel Object Tracking

As the focus of AutoTap is to extract the tap points related to the dynamically
allocated kernel objects, we have to first (i) track their life time, (ii) assign a
unique type to each object, (iii) track the object propagation and its size such
that we know to which object the address belongs when given a virtual address,
and (iv) resolve the semantic types of kernel objects. Since our prior system
Argos also need to perform these tasks for its type inference, we reused a lot
of code base to handle kernel object tracking. However, there are still some
differences between AutoTap and Argos on (ii) how we assign syntactic type
to each object and (iv) how we resolve the semantic type of object. Next, we
just describe these differences. More details on (i) how we track object life time
and (iii) resolve the object size can be found in Argos [30].

Assigning a Syntactic Type to Each Object. In general, there are two
standard approaches to convert dynamic object instances into syntactic forms:
(1) using the callsite address of kmalloc, denoted as PCkmalloc to represent
the syntactic object type, or (2) using the callsite-chain of kmalloc, denoted as
CCkmalloc to represent the syntactic object type. The first approach is intuitive
but it cannot capture the case where kmalloc is wrapped. While the second
approach can capture all the distinctive object allocation, it may over classify
the object types since the same type can be allocated in different calling context.

54 J. Zeng et al.

Argos used the first approach since it aims to uncover the general types
(context-insensitive). In AutoTap, we adopt the second approach because we
aim to identify the execution point for the tapping, and these points are usually
context sensitive. For instance, a string is a general type but when it is used
in different contexts (e.g., to represent a machine name or a process name), it
means different type of strings and we may just need to tap a particular type
of string instead of all strings (that is why sometimes we have context-sensitive
tap points). Therefore, we use CCkmalloc to denote the syntactic type for each
dynamic allocated object. The semantic meaning of CCkmalloc will be resolved
later. Also, we use a calling context encoding technique [27] to encode CCkmalloc

with an integer E(CCkmalloc), and store this integer and its corresponding type
with a hash table we call HTtype for easier lookup and decoding.

Resolving the Semantic Type of Object. The syntactic type (CCkmalloc)
assigned to each object is only used to differentiate objects, and it does not tell the
semantics (i.e., the meaning) of the object. Since the tap points we aim to uncover
are associated to each specific kernel object (e.g., task struct), we need to resolve
their semantic types. While Argos can recognize semantics for a number of ker-
nel objects if there are unique rules to derive their meanings under certain syscall
context, it cannot recognize all kernel objects. Therefore, we use a different app-
roach, which is inspired by our another prior system REWARDS [22], a user level
data structure type inference system. In particular, REWARDS infers the seman-
tics of data structures through the use of well-known semantic type information
fromtheargumentand returnvalue of systemcall anduser levelAPIs.Weadopt the
RWEARDS approach to infer the kernel object semantic types from public known
kernel APIs. However, not all objects can be typed from the argument and return
value of these APIs, and therefore we also leverage the object types defined in the
header files for kernel module development and track object point-to relations to
infer more object types. To capture the point-to relation between objects, we use
the same taint analysis approach as in Argos.

Summary. Our kernel object tracking will track the life time of the dynamically
allocated objects with a red-black tree we call RBinstance tree that is used to
store <v, s, Ti, E(CCkmalloc)>, which is indexed by v, where v is the starting
address, s is the corresponding size, Ti is the taint tag for Oi, and E(CCkmalloc)
is the encoded syntactic type of the allocated object. Also, it will maintain a hash
table we call HTtype that uses E(CCkmalloc) as the index key. This HTtype stores
the decoded callsite chain, the resolved semantic type of the objects based on
kernel APIs and available header files, as well as the captured point-to relations
between them. Also, the resolved access context to each field of a particular type
(described next) is also stored in our HTtype.

Automatic Uncovering of Tap Points from Kernel Executions 55

3.2 Object Access Resolution

Fig. 2. An illustration of the three top
level kernel execution contexts.

Once we have captured each kernel
object and its (field) propagations, the
next step is to resolve the execution
context when an instruction is access-
ing our monitored object. Note that
the execution context captures how
and when a piece of data gets accessed.
In general, when a piece of data gets
accessed, under dynamic binary code
instrumentation based VMM, what we
can observe includes: (i) which instruc-
tion is accessing the data, (ii) through
what kind of access (read, or write).
However, such information is still at
too low level, and what we want is the high level semantic information that
includes (i) which execution context (e.g., syscall, interrupt, kernel thread) is
accessing the object and under what kind of calling context, and (ii) what the
concrete operation is with respect to the accessed object (e.g., create, read, write,
initialize, allocation, deallocation). Therefore, we have to bridge this gap.

A kernel execution context in fact has a hierarchical structure and it can be
classified into three layers. From top to bottom, there are syscall level context,
function call level context, and instruction level context. In the following, we
describe how we resolve these contexts and associate them to the accessed kernel
objects.

Resolving Top Level Execution Context. When a given kernel object gets
accessed, we need to determine under which highest level execution context it
is accessed. As shown in Fig. 2, there are three kinds of disjoint highest level
execution contexts:

– (I) Syscall execution context. When a user level program requests a kernel
service, it has to invoke the syscalls. When a syscall gets executed, kernel
control flow will start from the entry point of the syscall, and continue its
execution until this syscall finishes. There is always a corresponding kernel
stack for each process that tracks the return address of the functions called by
this syscall. Therefore, we have to first identify to which process the current
syscall belongs, and identify the entry point and exit point of this syscall.
In ×86, the entry point and exit point of a syscall for Linux platform can
be easily captured by monitoring the syscall enter and exit instructions (e.g.,
sysenter, sysexit, int 0x80, iret). To identify a process context, we use
the base address of kernel stack pointer, i.e., the 19 most significant bits of the
kernel esp, denoted MSB19(esp), since kernel stack is unique to each process
or kernel thread, as what we have done in Argos.
Therefore, as shown in Fig. 2, when an instruction is executed between the
syscall entry (Control Flow Transition ➀, CFT➀ for brevity) and exit point

56 J. Zeng et al.

(CFT➇), if it is not executed in an interrupt handler’s context (discussed
below), and if the context belongs to the running process, then it is classified
the syscall execution context. We will resolve the corresponding syscall based
on the eax value when the syscall traps to the kernel for this particular process.
The corresponding process is indexed by the base address of each kernel stack,
which is computed by monitoring the memory write to the kernel esp. We
also use another RB-tree, and we call it RBsys tree to dynamically keep the
MSB19(esp) and the eax that is the syscall number, for each process such
that we can quickly retrieve the syscall number when given a kernel esp if the
execution is executed inside a syscall.

– (II) Top-half of an interrupt handler execution context. While most
of the time kernel is executed under certain syscall context for a particular
process, there are other asynchronous kernel events driven by the interrupts
and exceptions, and they can occur at any time during the syscall execution.
To respond them, modern OS such as Linux kernel usually splits the interrupt
handlers into top-half that requires an immediate response and bottom-half
that can be processed later [6].
As illustrated in Fig. 2, top half of an interrupt can occur at anytime dur-
ing a syscall execution (e.g., when a time slice is over, a key is stroke, or
a packet is arrived). It starts from a hardware event (CFT➂ which can be
monitored by our VMM), and ends with an iret instruction (CFT➃). The
execution of a top-half is often very short, and it can use the kernel stack of
the interrupted process to store the return address if there is any function call,
or use a dedicated stack for this particular interrupt depending on how the
interrupt handler is implemented. Meanwhile, an interrupt execution can be
nested. Thus, we have to capture the pair of CFT➂ and CFT➃. This can be
tracked by using a stack-like data structure. Through such, the top half of an
interrupt handler can be precisely identified.

– (III) Bottom-half of an interrupt handler execution context, or ker-
nel thread execution. When the response for an interrupt takes much longer
time, kernel often leaves such an expensive execution to dedicated kernel
threads (to execute the bottom half of an interrupt handler) such as pdflush,
ksoftirqd. Therefore, there must be a context switch event, which can be
observed by the kernel stack exchange. Note that CFT➄, CFT➅, and CFT➆
all denotes the context switch event because of the stack exchange. In other
words, as illustrated in Fig. 2, we can actually uniformly treat them as the
syscall context of user level processes with the only difference that they do
not have a syscall entry and syscall exit point.

Resolving Middle Level Execution Context. Having identified the highest
level execution context, we also need to identify the middle level execution con-
text at a function call level that includes which function is executing the current
instruction and the callers of this function. Naturally it leads us to identify the
function call chain. While we can get the call chain by traversing the stack frame
pointer, it requires kernel to be compiled with this information. To make Auto-
Tap more general, we instrument call/ret instruction and use a shadow stack

Automatic Uncovering of Tap Points from Kernel Executions 57

to track the callsite chain. Based on the above three high level disjoint execution
contexts, we maintain the following three kinds of shadow stacks (SS):

– (I) Syscall SS. When a syscall execution (say si) starts, we will create a corre-
sponding SS(si). Then whenever there is a function call under the execution of
si, we additionally push a tuple <f entry addr, f return addr, stack ret offset>
into the corresponding SS(si), and whenever there is a ret executed under this
syscall context, we additionally pop the tuple whose f return addr matches the
return address from the top of SS(si). Note that without this matching check,
there could exist cases that call and return are not strictly paired. Also, the
push/ret of the return address when calling f will still use the original stack.
The reason of tracking the stack ret offset in the original stack is for quickly
retrieving of the entire calling context for context-sensitive tap points, when
given just a kernel stack without instrumenting any call instructions. Then at
any moment, the callsite chain for the current syscall context can be created
by retrieving the value of f return addr in the corresponding kernel stack based
on the location specified by stack ret offset.

– (II) Top-half SS. When a top half of an interrupt handler for interrupt i (say
ii) is executed, we also create a corresponding SS(ii) to track the call chain
for this interrupt context. When the interrupt returns (observed by iret), we
clear this shadow stack. At anytime during the execution of this interrupt,
we similarly build its callsite chain from SS(ii) as what we do in the syscall
context.

– (III) Kernel Thread SS. If the execution is neither in the syscall context, nor
top half of the interrupt handler, then it must be in kernel thread execution
context (or bottom half of an interrupt), say ti. Similarly, we will create a
corresponding SS(ti) for each of this context. As such, we can retrieve the
callsite chain when a kernel object is accessed under this context.

It should be noted that at runtime there can be multiple instances of each of
these SS, because there can be multiple processes, interrupts, and kernel threads.
We will extract the callsite chain from the corresponding one based on the value
of MSB19(esp).

Resolving Low Level Execution Context. Once we have resolved all these
high level execution contexts, our final step is to resolve the low level context
(e.g., read/write) of how an object is accessed and keep a record in the in-memory
meta-data (i.e., our HTtype). Currently, we focus on seven categories of accesses
as presented in Table 1.

Specifically, whenever there is an access to the monitored kernel object Oi

(including its k-th field Fk and the propagations), we will insert an entry if this
has not been inserted to the field Fk’s access list that is stored in HTtype, which
is indexed by the encoded syntactic type of Oi (i.e., E(CCkmalloc)), and this
entry consists of <AT,EX> where AT denotes the access types of the seven
different categories, and EX denotes the current execution context.

58 J. Zeng et al.

Table 1. Resolved access types based on the behavior.

Category Behavior

Creation (Oi) Oi is created by calling kmalloc

Deletion (Oi) Oi is freed by calling kfree

Read (Oi, Fj) A memory read field Fj of Oi

Traversal (Oi, Fj) Read (Oi, Fj) ∧ Fj ∈ pointer field

Write (Oi, Fj) A memory write to field j of Oi

Initialization (Oi, Fj) Write (Oi, Fj) ∧ first time write to Fj

Others Other contexts, e.g., periodical access

To save both mem-
ory and disk space of
our meta-data, we also
encode EX. Basically,
EX is composed with
(1) the low level access
behavior that includes the
program counter (PC) of
Read, Traversal, Write,
Initialization of (Oi, Fk), or the entry address of kmalloc or kfree if it is
object creation/deletion, as well as the encoding of these accesses; (2) middle
level callsite chain and the corresponding offset in the running kernel stack to
locate each function’s return address; and (3) the top level context that is either
a syscall number, or an interrupt number, or the value of MSB19(esp) of ker-
nel thread. We also encode EX with an integer and use a hash table to store
the mapping between the integer and the concrete execution context. Our tap
points uncovering will scan the dumped meta-data to eventually uncover the tap
points.

3.3 Tap Points Uncovering

Once collected the record describing how a particular type of monitored kernel
object is accessed, the final step of AutoTap is to perform an offline analysis
to further derive the tap points for each type of kernel object. At a high level,
for a given syntactic type of a kernel object, we traverse our memory-dumped
HTtype and locate its field access context <AT,EX>. For each EX, we rebuild
a context-chain according to our encoding. The top of the chain is the highest
level execution context (i.e., syscall, interrupt, or kernel thread), followed by the
callsite chain. Examples of such context-chains are illustrated in Fig. 3. After
having the context-chain, we are then ready to extract the tap points.

Fig. 3. Enumerated and simplified cases for tap points uncovering. Note that si denotes
ith syscall, ii denotes ith interrupt, ti denotes ith kernel thread, f, g, h etc. all denotes
function calls, Ti represents the syntactic type, and Ti[m] denotes the field m of Ti.

Automatic Uncovering of Tap Points from Kernel Executions 59

Introspection Related Tap Points. Among all the tap points, those related
to object creation, deletion, traversal, and field read are of particular interest
to introspection, especially for the detection of hidden kernel objects. In the
following, we present how we uncover these tap points:

– Object Creation and Deletion. Given a specific syntactic type Ti (note
that syntactic type is used to find the tap points, and semantic type is used to
pinpoint the one we want) for a kernel object, we scan the context-chain, if the
leaf node of the chain creates/deletes a kernel object with the matched type,
then the tap points in this context chain will be included in the result. Ideally,
if the leaf node is unique among all the types, we can directly output the
PC that calls the leaf function as the corresponding tap points for this type.
However, these functions might also create other types of object. Therefore,
we will scan the context-chain again, and compare with other types to produce
the final result.
Specifically, there are at most three cases for the creation and deletion related
tap points. One is the leaf node that is unique among all observed types
(Fig. 3(a)), and as discussed we directly output the call-site PC of the leaf
function as the tap points (function h and function k in this case) and these
tap points are context-insensitive. Otherwise, we scan further and compare
their parent functions (Fig. 3(b) and (c)). If they differ at their closest parent
function, then we use the call-chain from the diffed parent function to the leaf
node (Fig. 3(b)) and use the chained call-site PC as the tap points and these
tap points are context-sensitive; otherwise we will scan until we reach their root
node, and in this case we will use the entire context chain (Fig. 3(c)). Recall
that there must exist a unique callchain for each syntactic object (Sect. 3.1).
Therefore, we will not have a case in which we cannot find the unique context
chain even though we have reached the root.

– Object Traversal. The tap points for object traversal are critical for intro-
spection, especially if we aim to identify the hidden objects. To identify such
tap points, we scan the context chain: if we observe there is a pointer field
read from object Oi to reach object Oj , we conclude there is an object traver-
sal in the observed function with the tap point of the PC that performs the
read operation. If this PC only accesses this particular type of object, we just
use this PC as the tap points; otherwise, we will use the call-chain as what
we do in object creation/deletion tap points discovery. Also, we can identify
recursive type traversal if both Oi and Oj share the same type, otherwise it
will be a non-recursive traversal.

– Object Field Read. Pointer field read can allow us to identify the object
traversal tap points. Non pointer field can also lead to certain interesting tap
points. Similarly to how we identify object traversal tap points where we focus
on the pointer field, we will also derive all the non pointer field read tap points.

Other Tap Points. In addition, there are also other types of tap points, such
as object field initialization and object field (hot) write. Though these tap points
may not be directly used in introspection, they could be useful for kernel function

60 J. Zeng et al.

reverse engineering in general. AutoTap does support identify these tap points.
For instance, it becomes straightforward to identify the initialization point (the
first time memory write). The only issue is there may not exist a centralized func-
tion that initializes all the field of an object. For example, as shown in Fig. 3(d),
the leaf node may just initialize partial fields of an object. Therefore, we need to
hoist the field initialization information to their parent functions. Such hoist opera-
tion is a recursive procedure and we will use the lowest parent function that cannot
expand the scope further of the fields of Ti as the initialization tap points for the
observed field. We are also interested in several other particular interesting types of
tap points, such as the periodic functions that are executed in the timer interrupts.
We will demonstrate how to use these tap points in Sect. 5.

4 Evaluation

We have implemented AutoTap. The online analysis component is built atop
Pemu [29] by reusing a large amount of code base from Argos [30], and the
offline component is built using python. In this section, we present our evaluation
result.

Experiment Setup. The input to AutoTap is the kernel API specifica-
tion, the available kernel data structure definitions for kernel module devel-
opers, and the test cases to run the kernel. We acquired kernel API specifica-
tion, namely, function name, the type of its arguments and return values from
/lib/modules/KERNEL VERSION/build. We extracted the kernel data structure
definitions from the available kernel header files. In order to intercept the kernel
APIs for object tracking and semantic type inference, we identified their function
entry addresses from /proc/kallsyms.

 0

 500

 1,000

 1,500

 2,000

 2,500

2.
6.

27
.1

8

2.
6.

28

2.
6.

29

2.
6.

30

2.
6.

31
.8

2.
6.

32
.8

2.
6.

33

2.
6.

38
.8

3.
0.

52

3.
2.

58

m
ea

n

#S
yn

ta
ct

ic
 D

at
a

St
ru

ct
ur

e

Linux Kernel

Untyped
Typed by Header Files
Typed by Kernel API

Fig. 4. Type resolution result for each kernel

To run the kernel, we
used the test cases from
the Linux-test-project [1],
as what we have done in
FpCk [14]. We took 10
recent released Linux ker-
nels, presented in the first
column of Table 2, as the
guest OS for the test, and
executed them inside our
VMM. The testing host
OS runs ubuntu-12.04
with kernel 3.5.0-51-
generic. The evaluation
was performed on a machine
with a 64-bit Intel Core i-7
CPU with 8 GB physical memory.

To identify a tap point for a particular type of object, AutoTap first derives
all the tap points for each syntactic type, and then us0es the resolved semantic

Automatic Uncovering of Tap Points from Kernel Executions 61

type (e.g., task struct) associated with the syntactic type to eventually pin-
point the tap points of introspection interest. Therefore, we first present the
result regarding how AutoTap performed to identify the tap points for the
syntactic type, and then the tap points for the semantic type.

Result for Syntactic Types. We first report how our kernel object tracking
component performed in Fig. 4. As shown in this figure, our kernel object tracking
component identifies on average 1.8 thousand unique syntactic types. We can see
about 57 % of them can be semantically typed by using the kernel APIs. With the
public open kernel module development header files, it can type additionally 35 %
of them. In other words, close to 90 % of the data structures can be semantically
typed.

Next, we report how our second and third components performed in Table 2.
Specifically, the result of our object access resolution is reported from the 2nd
column to the 7th column. The number of the top level context, namely syscall
context, is reported in the 2nd column, interrupt in the 3th column, and kernel
thread in the 4th column. We can notice that on average, AutoTap observed 219
system call contexts, 7 interrupt/exception contexts (e.g., page fault, timer,
keyboard, device-not-available), and 29 kernel thread contexts. Regarding
the middle level context, we report the total number of function call-site chain in
the |FC| column, and there are 104,971 unique call-site chains associated with
these traced types. Finally, for the lowest level context, we report the total num-
ber of field read tap points in |PCR| and write tap points in |PCW | columns. We
can notice that there is a significant large number of the unique field read/write
access contexts. If we perform manual analysis, it is very challenging to system-
atically identify them all.

Finally, we report the statistics of the tap points uncovered for the introspec-
tion in the rest columns of Table 2. In total, we report five categories of intro-
spection related to tap points: object creation, object deletion, object recursive
type traversal (RTraversal), object non-recursive type traversal (NTraversal), and
object field read (FRead). For each category, we report the number of the tap
points that are context-insensitive (i.e., we can directly use the corresponding
PC as the tap points) in column |PC|, and context-sensitive (i.e., we need to
inspect the call-chain in the corresponding stack frame when the PC is executed)

Table 2. Overall result of tap points uncovered for each tested kernel.

Object Access Resolution Tap Points Uncovered
Kernel Creation Deletion RTraversal NTraversal FRead|Sys| |Int| |Thd| |FC| |PCR| |PCW | |PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC|

2.6.27.18 219 7 23 77634 308643 136729 0 1646 47 1507 89 2408 1402 21585 4209 61632
2.6.28 218 7 22 73285 313488 134027 0 1492 61 1452 89 2313 1435 18460 4235 54706
2.6.29 216 7 29 69547 313442 132004 0 1436 59 1485 90 2375 1515 18251 4102 56866
2.6.30 217 7 28 40457 319834 136593 0 1585 62 1506 97 2341 1598 20303 4367 62927

2.6.31.8 217 7 28 74121 346884 147573 0 1666 66 1560 97 2497 1482 21679 4159 74504
2.6.32.8 218 7 31 92690 450004 194353 0 1566 54 1365 93 2322 1500 18192 3943 62115
2.6.33 217 7 31 85544 412563 176407 0 1402 64 1274 94 2208 1221 14084 4082 65531

2.6.38.8 217 7 33 91438 422170 185327 0 1573 56 1293 97 2479 1541 18881 3838 62361
3.0.52 222 7 36 205984 797643 238132 0 1915 68 1768 113 2695 1695 20538 4445 66432
3.2.58 227 7 35 239018 898387 270936 0 2377 71 2085 109 3967 1739 27619 4373 89204

Average 219 7 29 104971 458305 175207 0 1654 62 1545 97 2560 1672 19959 4175 65628

62 J. Zeng et al.

in column |FC|. We can notice that there are many context sensitive tap points
because different syntactic types (which is from the same semantic type) use the
same PC for the allocation, but in different calling context. We can also notice
some tap points can be used to delete different type of object (e.g., in Linux ker-
nel 2.6.32.8, there are 1566 syntactic types allocated, but it only requires 1365
deletion tap points), and there are too many object traversal tap points, which
proves it will be extremely difficult to identify them with just purely manual
analysis. Regarding how to use the derived tap points, we present a case study
in Sect. 5.

Result for Semantic Types. As shown in Table 2, there are too many tap
points. To really use them for introspection, we have to select the ones of our
interest. Therefore, we have to get the tap points based on the semantic types.
We take Linux-2.6.32.8 as an example, and describe in greater details how this
is achieved.

For Linux-2.6.32.8, as our syntactic type is an over-split of the semantic types
(i.e., multiple syntactic types can correspond to just one semantic type), our
technique eventually resolved the semantic types of 87.6 % (1372/1566) of the
syntactic types. Once we have resolved the semantic types, we have to iterate our
tap points uncovering again for each semantic types using the same algorithm
described in Sect. 3.3.

Take task struct as an example, before applying the semantic types, we
acquired 6 different syntactic types of task struct, namely, each of these is
created in a different call-chain. The (64-bit) integer encoding of these syntac-
tic types are presented in the first column of Table 3. For object creation, each
of these syntactic types has a context-sensitive tap point, and none of them
is context-insensitive; similar result also applies to object deletion. For recur-
sive traversal, we observed the 3rd syntactic type of task struct has a heavy
recursive traversal. Compared with other syntactic type, this one has many more
task struct instances. For non recursive type traversal, each syntactic type has
a lot of context-sensitive pointer read. Finally, for the object field (i.e., non-
pointer) read, we can notice most of their tap points are context sensitive.

Table 3. Tap points statistics for 6 different syntactic types of task struct.

Syntactic type Creation Deletion RTraversal NTraversal FREAD

|PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC|
4dd23b5e689e2ad7 0 1 0 1 0 9 3 102 1 299

536881ec388d6516 0 1 0 1 1 7 20 225 36 420

7554a8d7acf81704 0 1 0 1 41 131 403 402 435 563

8649536d24938b96 0 1 0 1 0 0 0 304 1 437

9ac37673946479aa 0 1 0 1 0 30 0 136 14 318

9d41a458fa47a47b 0 1 0 1 0 0 2 289 0 448

Automatic Uncovering of Tap Points from Kernel Executions 63

Table 4. The statistics for the uncovered tap points for the observed semantic types
of linux-2.6.32.8 in slab/slub allocators

Category Semantic #Syntactic Creation Deletion RTraversal NTraversal FRead

Type Type |PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC|
task_struct 6 1 0 1 0 98 93 725 6 1024 24

pid 6 1 0 1 0 2 1 15 3 50 1
Process task_delay_info 6 1 0 1 0 0 0 0 0 24 4

task_xstate 7 2 0 1 0 0 0 0 0 38 1
taskstats 2 1 0 1 0 0 0 0 0 27 0

anon_vma 7 1 0 1 0 0 0 5 1 8 1
Memory mm_struct 4 2 0 1 0 0 0 21 8 235 32

vm_area_struct 44 7 0 2 0 84 94 113 1 395 1
TCP 3 0 1 0 1 7 0 74 8 1023 137
UDP 2 0 1 0 1 0 0 0 0 0 84
UNIX 4 0 1 0 1 8 0 29 4 118 36

neighbour 7 1 0 1 0 2 0 4 0 113 15
inet_peer 1 1 0 1 0 0 0 0 0 23 1

Network rtable 7 1 0 1 0 0 0 11 0 155 3
nsproxy 1 1 0 1 0 0 0 1 0 6 0

request_sock_TCP 2 1 0 1 0 0 0 1 0 70 8
skbuff_fclone 7 0 1 0 1 0 0 76 78 89 161
skbuff_head 53 1 1 0 1 1 0 152 78 148 161
sock_alloc 4 1 0 1 0 0 4 64 2 59 34

bio-0 94 0 1 0 1 3 0 18 0 123 30
biovec-16 5 0 1 0 1 0 0 0 0 0 26
biovec-64 4 0 1 0 1 0 0 0 0 1 30
io_context 17 1 0 1 0 0 0 7 2 15 7

request 60 0 1 0 1 13 99 22 0 164 2
dentry 85 1 0 1 0 80 4 321 4 197 10

ext2_inode_info 4 1 0 1 0 6 17 74 12 136 262
ext3_inode_info 21 1 0 1 0 6 19 38 35 580 348

File fasync_struct 1 1 0 1 0 0 0 1 0 1 1
file_lock 10 1 0 1 0 11 6 17 0 113 3

files_struct 4 1 0 1 0 0 3 25 10 41 41
file 33 1 0 1 0 4 5 227 7 352 4

fs_struct 4 1 0 1 0 0 0 9 2 44 3
inode 5 1 0 1 0 2 5 5 8 15 113

journal_handle 124 1 0 1 0 0 0 28 0 25 0
journal_head 82 1 0 1 0 19 0 66 0 50 0
proc_inode 9 1 0 1 0 0 0 6 3 33 95
sysfs_dirent 36 1 0 1 0 12 0 7 0 31 0

vfsmount 4 1 0 1 0 31 0 21 8 63 3
IPC mqueue_inode_info 1 1 0 1 0 0 0 15 2 37 49

shmem_inode_info 8 1 0 1 0 0 4 0 16 107 194
fsnotify_event 19 1 0 1 0 1 0 8 2 24 2

inotify_event_private_data 19 2 0 1 0 0 0 3 0 2 0
Signal inotify_inode_mark_entry 1 1 0 1 0 1 0 7 1 25 1

sighand_struct 6 1 0 1 0 0 0 0 0 66 4
signal_struct 6 1 0 1 0 0 12 11 4 265 36

sigqueue 17 1 0 1 0 4 2 8 2 8 0
Security cred 41 2 0 1 0 0 3 28 3 352 1

key 4 1 0 1 0 0 10 4 0 53 3
buffer_head 61 1 0 1 0 20 0 21 0 423 0

cfq_io_context 17 1 0 1 0 2 0 15 3 39 1
cfq_queue 15 1 0 1 0 0 0 17 5 106 1

Other idr_layer 12 1 0 3 0 5 5 1 3 19 3
names_cache 58 2 0 3 0 0 0 0 0 16 10

k_itimers 1 1 0 1 0 1 0 12 0 24 24
radix_tree_node 56 1 0 1 0 10 3 2 3 22 9

jbd_revoke_record_s 14 1 0 1 0 1 0 0 0 7 0

64 J. Zeng et al.

After we apply the resolved semantic type to each syntactic type and re-
execute our tappoints uncovering,many of the context-sensitive tappoints become
context-insensitive. For instance, for task struct, as illustrated in the first row
of Table 4, these 6 syntactic types get actually merged into one, and we then can
directly use the PC for object creation and deletion without inspecting their call-
stack. Due to space reason, we report the tap points uncovering statistics for some
of the resolved semantic types in Table 4. In total, there are over 90 resolved seman-
tics, and we only report 56 of them that are visible in the slab allocators.

Performance Result. Regarding the performance of AutoTap, for each tested
kernel, our online analysis took around 12 h on average to finish the testing bench-
mark, and our offline analysis took just a few minutes to process the log files and
produce the final tap points. The dumped log file size is around 500 MB (thanks to
our encoding). The reason why our online analysis took so long is because we have
one thousand test cases to execute and also we have to perform dynamic binary
instrumentation to track object and field propagations in our instrumented VMM.

5 Security Application

In this section, we demonstrate how to use our tap points for a particular type
of introspection application—hidden process detection. Typically when a system
is compromised, it is often very common for attackers to hide the presence of
their attack and also leave certain invisible services for future privileged access.
To achieve this, one simple way is to keep running of a privileged process, and
hide it from the system administrators through rootkit attacks.

At a high level, there are three different categories of rootkits for process
hiding [18,25]. The first category directly modifies program binaries such as ps,
pslist, etc. The second category hooks into the call path between a user appli-
cation and the kernel by modifying system libraries (e.g., glibc), dynamic linker
structures (plt/got table), system call tables, or corresponding operating system
functions that report system status [28]. The third category manipulates kernel
data structures using the so-called direct kernel object manipulation (DKOM) [12]
attack, such as removing the process descriptor (e.g., task struct) from the
accounting list shown by ps.

Our Approach. Since AutoTap has extracted the tap points related to the
task struct, especially the creation/deletion and traversal tap points, it would
enable the monitoring and detection of the hidden processes. One intuitive app-
roach is to use the tap point that traverses all the elements in the accounting
task list. However, we did not find such a tap point that iterates all the element
of the task list. In fact, utility command such as ps will not traverse the account-
ing list to show all the running process, and instead it extracts the process list
from the /proc file system [13].

While there are many traversal tap points for the task struct, as shown
in Table 3, there must be some traversal tap points executed by the schedule
function. Note that schedule function is very easy to identify as it is always

Automatic Uncovering of Tap Points from Kernel Executions 65

executed in the top half of the timer interrupt handler (though it can be called
in various other places), and meanwhile there must be a stack exchange (a kernel
esp write operation). Therefore, if we can identify the task struct accessed by
the schedule function, and if we can know to which task struct instance the
CPU switches, then we can identify the task struct that is to-be-executed by
the CPU.

However, we have to solve another challenge—how to identify the to-be-
executed task struct instance given that schedule function may access a
number of other task struct instances to pick up the next to-be-executed one
(defined by the policy) for the execution. Fortunately, as we have noted, when
performing a context switch, there must be a stack pointer exchange, and the
new stack pointer must come from the to-be-executed process. Typically, this
stack pointer is stored in task struct. Therefore, by monitoring where the stack
pointer comes from, we identify the to-be-executed task struct instance. Recall
that we have tracked all field (and its propagation) read, and we just need to
identify this particular field.

More specifically, we found 123 Object Traversal tap points for task struct
in the context of schedule function. In particular, there are 76 recursive and 26
non-recursive traversal tap points. All of them are context insensitive. Part of
the reason we believe is schedule function is very unique and other functions
will not call it for other purposes other than scheduling. Among these 123 tap
points, we know one of them must be of our interest since we aim to capture
the task struct traversal. Also, we found 121 task struct Field Read, all of
which are also context insensitive. By looking at these field read tap points,
we found there is a particular field read tap point that uses the stack pointer
(i.e., 0xc125e3b1:mov 0x254(%edi),%esp). Interestingly, the base register edi
here actually holds the address of the to-be-executed task struct. Therefore,
we actually do not need the traversal tap points and we just need to hook this
tap point, because we can directly identify the to-be-executed process from edi.

From the above analysis, we can notice that with AutoTap, we have sig-
nificantly reduced the search space of the instruction of our interest from tens
of thousands (4,422 instructions in the context of schedule function in which
a manual analysis has to analyze) to only a few hundred (123 object traversal,
and 121 field read). With insight of how context switch is performed, we fur-
ther reduce the search space to only a few instructions (it is 0xc125e3b1:mov
0x254(%edi),%esp in our case). This is just one case we demonstrated for
task struct. Regarding many other kernel data structures, our system also
applies even though we may have to consider certain data structure specific
insight. For instance, if we want to detect hidden socket, we can use the
insight that socket must be accessed at system call send/sendto/write or
recv/recvfrom/read context.

66 J. Zeng et al.

Table 5. Process hiding rootkits

Rootkits Process hiding mechanism

ps hide Fake ps binary with process hiding function

libprocesshider Override libc’s readdir to hide process

LinuxFu Hide the process by deleting its task struct
from task list

The Detection Algo-
rithm. We use a cross-
view comparison approach
that compares the CPU
time execution from inside
and outside to detect the
hidden processes. Note
that CPU time metric is
the most reliable source (tamper-proof) for rootkit detection. In particular, to
detect rootkit, we first get an inside view by running ps command, and an out-
side view by counting the CPU TIME for the running process. In particular, the
inside view will show the running process PID, TTY, TIME, and CMD. Among them,
TIME is very critical and it is very challenging (nearly impossible) for attacker
to forge a value that will be equivalent to the one counted at the hypervisor
introspection layer.

To count the executed time for a particular process, we hook the tap points of
task struct creation at 0xc102c8be and deletion at 0xc102c7cc by replacing
them with an “int 3” instruction to trap to the hypervisor layer. Then we hook
the tap point “0xc125e3b1:mov 0x254(%edi),%esp” to get the task struct
of the to-be-executed process from edi and then we count its CPU execution
time from this moment to the next context-switch point. We keep a hash table
to store the accumulated CPU time for each process, and meanwhile we store
their PID field. Then right after user running ps to get the inside view, we also
print the list of the live process with the PID and their CPU TIME. If there is a
discrepancy, it indicates there is a hidden process. We can notice while attacker
can change/forge all the PID field, it is impossible for them to forge the correct
CPU TIME to mislead the outside view. That is why we call TIME is a tamper-
proof attribute for a particular process.

Experimental Result. We have implemented the above detection algorithm
in KVM-2.6.37 and tested with a guest Linux kernel 2.6.32.8. We only need to
hook 3 tap points: creation, deletion and field propagation read. We used three
rootkits to test our detection capability. As show in Table 5, these rootkits cover
all the three basic tricks to hide a particular process. Through our cross view
comparison, we have successfully detected all of these hidden processes.

Regarding the performance impact of our rootkit detector, we used a set of
benchmarks including SPEC2006, Apache, and 7zip to evaluate the performance
overhead introduced by our detection at KVM hypervisor layer, and we com-
pared the results on the Native-KVM and our Tapping-KVM. As expected, there
is not noticeable performance overhead for these benchmarks due to our light-
weight instrumentation at the hypervisor layer. We measured that the average
overhead for them is about 2.7 %.

Automatic Uncovering of Tap Points from Kernel Executions 67

6 Limitations and Future Work

First and foremost, AutoTap uses dynamic analysis to uncover the tap points
and its effectiveness relies on the coverage of the dynamic analysis. Therefore, any
kernel path coverage techniques (e.g., guided-fuzzing) would improve AutoTap.
On the other hand, we can also notice that sometimes an incomplete coverage
can still lead to a complete uncovering of the tap points. For instance, as shown
for the task struct creation/deletion tap points, while we may not be able to
exercise all the kernel path and find out all (context-sensitive) tap points, we
can notice that these tap points all eventually become context-insensitive and
we can just use the PC that creates and deletes the task struct instance as the
tap point.

Second, currently AutoTap only reveals the object creation and deletion,
field read, and object traversal tap points and demonstrates their use cases.
We believe in addition to these tap points, there will be also other useful ones.
Another future effort is to uncover more tap points and investigate new applica-
tions. A possible immediate future work is to identify the hot (or cold) read/write
field tap points, namely, frequently read/write field, which might be useful to
identify the likely-invariants (e.g., a field never gets changed) of object field. The
other possible use case is to detect the hidden socket by using our tap points.

Third, when kernel has address space layout randomization (ASLR) enabled
(note that since kernel version 3.14, Linux began to randomize kernel address
space), the tap points we discovered from dynamic execution might not work in
other executions. An immediate fix for this problem is to integrate our recent ker-
nel ASLR derandomization effort [16], which exploited using various signatures
from kernel code and data to derandomize the kernel address space.

Finally, while we have demonstrated our techniques working for Linux kernel,
we would like to validate the generality of our system with other kernels. We plan
to extend our analysis to FreeBSD, since it is also open source and we can validate
our results easily. Eventually, we also would like to test our system with the closed
source OS kernel such as Microsoft Windows. These are other future works.

7 Related Work

Tap Points Uncovering. Recently, Dolan-Gavitt et al. [10] presented TZB, the
first system that can mine (memgrep) the memory access points for user level
applications, to identify the places for active monitoring. While TZB and Auto-
Tap share similar goal (TZB directly inspires AutoTap), we focus on different
applications and use different techniques. Specifically, TZB focused on the user
level applications such as web browser, whereas AutoTap exclusively focused
on OS kernel. TZB starts from visible strings (memgrep type of approach can
apply here), whereas AutoTap faces diversified, many non-string data struc-
tures in OS kernel and it starts from syntactic type of kernel object and then
semantic type and then execution context to eventually derive the tap points for
introspection.

68 J. Zeng et al.

Data Structure Reverse Engineering. Over the past decade, there are signif-
icant efforts on data structure reverse engineering, or more broadly type inference
with executables [7]. Earlier attempts include aggregate structure identification
(ASI) [23], value set analysis (VSA) [3,24]. Recently, Laika [9], REWARDS [22],
TIE [20], Howard [26], Argos [30], and PointerScope [31] all aim to infer the (cer-
tain) data structure types from binary code. To infer the semantic type of data
structures, while AutoTap uses the basic approach proposed in REWARDS, it
extends it to OS kernels. Also, it combines other knowledge such as the data
structure definitions for kernel driver development to resolve more semantic
types, because of the large amount of point-to related kernel data structures.
However, REWARDS only uses the type of arguments and return values from
standard libraries for the inference.

VirtualMachine Introspection. VMI [15] is a security analysis technique that
pushes the traditional in-box analysis into the outside hypervisor layer. It has been
proposed as an effective means for kernel rootkit detection (e.g., [8,11,12,17] and
malware analysis (e.g.,. [19,25]). While there are a number of efforts of using VMI
ormemory analysis technique (e.g., [5,8,21]) for hidden process detection (e.g., [11,
17,18]), in this work we enrich these knowledge with a tamper-proof approach by
applying the tap points related to process descriptor and build a robust hidden
process detection tool.

8 Conclusion

We have presented AutoTap, the first system that can automatically uncover
the tap points of kernel objects of introspection interest from kernel executions.
Specifically, starting from the interface of system call, the exported kernel APIs,
and the data structure definitions for kernel driver developers, AutoTap auto-
matically tracks kernel objects, resolves their kernel execution context, and asso-
ciates the accessed context with the objects, from which to derive the tap points
based on how an object is accessed. The experimental results with a number
of Linux kernel binaries show that AutoTap is able to automatically uncover
all the possible observed tap points for a particular type of object, which would
be very challenging to achieve with manual analysis. We have applied the tap
points uncovered by AutoTap to build a novel hidden process detection tool
that can capture all the existing attacks including the DKOM based with only
2.7 % overhead on our tested benchmarks.

Acknowledgement. We thank the anonymous reviewers for their invaluable feed-
back. This research was partially supported by AFOSR under grant FA9550-14-1-0119
and FA9550-14-1-0173, and NSF CAREER award 1453011. Any opinions, findings, con-
clusions, or recommendations expressed are those of the authors and not necessarily of
the AFOSR and NSF.

Automatic Uncovering of Tap Points from Kernel Executions 69

References

1. Linux test project. https://github.com/linux-test-project
2. QEMU: an open source processor emulator. http://www.qemu.org/
3. Balakrishnan, G., Reps, T. Analyzing memory accesses in ×86 executables. In:

CC, March 2004
4. Bauman, E., Ayoade, G., Lin, Z.: A survey on hypervisor based monitoring:

approaches, applications, and evolutions. ACM Comput. Surv. 48(1), 10:1–10:33
(2015)

5. Bianchi, A., Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Blacksheep: detecting com-
promised hosts in homogeneous crowds. In: Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security (CCS 2012), Raleigh, North
Carolina, USA, pp. 341–352 (2012)

6. Bovet, D., Cesati, M.: Understanding The Linux Kernel. Oreilly & Associates Inc.,
Sebastopol (2005)

7. Caballero, J., Lin, Z.: Type inference on executables. ACM Comput. Surv. 48(4),
65:1–65:35 (2016)

8. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel
objects to enable systematic integrity checking. In: The 16th ACM Conference
on Computer and Communications Security (CCS 2009), Chicago, IL, USA, pp.
555–565 (2009)

9. Cozzie, A., Stratton, F., Xue, H., King, S.T.: Digging for data structures. In:
Proceeding of 8th Symposium on Operating System Design and Implementation
(OSDI 2008), San Diego, CA, pp. 231–244, December 2008

10. Dolan-Gavitt, B., Leek, T., Hodosh, J., Lee, W.: Tappan zee (north) bridge: mining
memory accesses for introspection. In: Proceedings of the ACM Conference on
Computer and Communications Security (CCS) (2013)

11. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: narrowing the
semantic gap in virtual machine introspection. In: Proceedings of the 32nd IEEE
Symposium on Security and Privacy, Oakland, CA, USA, pp. 297–312 (2011)

12. Dolan-Gavitt, B., Srivastava, A., Traynor, P., Giffin, J.: Robust signatures for
kernel data structures. In: Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS 2009), Chicago, Illinois, USA, pp. 566–577.
ACM (2009)

13. Fu, Y., Lin, Z.: Space traveling across VM: automatically bridging the semantic gap
in virtual machine introspection via online kernel data redirection. In: Proceedings
of 33rd IEEE Symposium on Security and Privacy, May 2012

14. Fu, Y., Lin, Z., Brumley, D.: Automatically deriving pointer reference expressions
from executions for memory dump analysis. In: Proceedings of the 2015 ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2015), Bergamo, Italy, September 2015

15. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings Network and Distributed Systems Security
Symposium (NDSS 2003), February 2003

16. Gu, Y., Lin, Z.: Derandomizing kernel address space layout for introspection and
forensics. In: Proceedings of the 6th ACM Conference on Data and Application
Security and Privacy. ACM, New Orelans (2016)

17. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through VMM-based
out-of-the-box semantic view reconstruction. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS 2007), Alexandria,
Virginia, USA, pp. 128–138. ACM (2007)

https://github.com/linux-test-project
http://www.qemu.org/

70 J. Zeng et al.

18. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden
process detection and identification using lycosid. In: Proceedings of the Fourth
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE 2008), Seattle, WA, USA, pp. 91–100. ACM (2008)

19. Lanzi, A., Sharif, M.I., Lee, W.: K-tracer: a system for extracting kernel malware
behavior. In: Proceedings of the 2009 Network and Distributed System Security
Symposium, San Diego, California, USA (2009)

20. Lee, J., Avgerinos, T., Brumley, D., TIE: principled reverse engineering of types
in binary programs. In: NDSS, February 2011

21. Lin, Z., Rhee, J., Zhang, X., Xu, D., Jiang, X. SigGraph: Brute force scanning
of kernel data structure instances using graph-based signatures. In: Proceedings
of the 18th Annual Network and Distributed System Security Symposium (NDSS
2011), San Diego, CA, February 2011

22. Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from
binary execution. In: Proceedings of the 17th Annual Network and Distributed
System Security Symposium (NDSS 2010), San Diego, CA, February 2010

23. Ramalingam, G., Field, J., Tip, F.: Aggregate structure identification and its appli-
cation to program analysis. In: POPL, January 1999

24. Reps, T., Balakrishnan, G.: Improved memory-access analysis for ×86 executables.
In: CC, March 2008

25. Riley, R., Jiang, X., Xu, D.: Multi-aspect profiling of kernel rootkit behavior. In:
Proceedings of the 4th ACM European conference on Computer systems (EuroSys
2009), Nuremberg, Germany, pp. 47–60 (2009)

26. Slowinska, A., Stancescu, T., Bos, H.: Howard: a dynamic excavator for reverse
engineering data structures. In: Proceedings of the 18th Annual Network and Dis-
tributed System Security Symposium (NDSS 2011), San Diego, CA, February 2011

27. Sumner, W.N., Zheng, Y., Weeratunge, D., Zhang, X.: Precise calling context
encoding. In: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, (ICSE 2010), Cape Town, South Africa, vol. 1, pp. 525–534.
ACM (2010)

28. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS 2009), Chicago, Illinois, USA, pp. 545–554 (2009)

29. Zeng, J., Fu, Y., Lin, Z. Pemu: a pin highly compatible out-of-VM dynamic binary
instrumentation framework. In: The 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environment (VEE 2015), Istanbul, Turkey,
March 2015

30. Zeng, J., Lin, Z.: Towards automatic inference of kernel object semantics from
binarycode. In: Proceedings of the 18th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2015), Kyoto, Japan, November 2015

31. Zhang, M., Prakash, A., Li, X., Liang, Z., Yin, H.: Identifying and analysing pointer
misuses for sophisticated memory-corruption exploit diagnosis. In: NDSS, February
2012

Detecting Stack Layout Corruptions
with Robust Stack Unwinding

Yangchun Fu1,2, Junghwan Rhee1(B), Zhiqiang Lin2, Zhichun Li1,
Hui Zhang1, and Guofei Jiang1

1 NEC Laboratories America, Princeton, USA
{rhee,zhichun,huizhang,gfj}@nec-labs.com

2 University of Texas at Dallas, Richardson, USA
{yangchun.fu,zhiqiang.lin}@utdallas.edu

Abstract. The stack is a critical memory structure to ensure the correct
execution of programs because control flow changes through the data
stored in it, such as return addresses and function pointers. Thus the
stack has been a popular target by many attacks and exploits like stack
smashing attacks and return-oriented programming (ROP). We present
a novel system to detect the corruption of the stack layout using a robust
stack unwinding technique and detailed stack layouts extracted from the
stack unwinding information for exception handling widely available in
off-the-shelf binaries. Our evaluation with real-world ROP exploits has
demonstrated successful detection of them with performance overhead of
only 3.93 % on average transparently without accessing any source code
or debugging symbols of a protected binary.

Keywords: Stack layout corruption · Stack layout invariants · Stack
unwinding information · Return oriented programming

1 Introduction

The stack is a critical memory structure to ensure the correct execution of pro-
grams since control flow changes through the values stored in it (e.g., return
addresses and function pointers). Therefore, the stack has been a popular tar-
get of many attacks and exploits [9,33,36,46,48,51] in the security domain. For
instance, the stack smashing attack [33,36,48,51] is a traditional technique that
has been used to compromise programs. Recently return oriented programming
(ROP) [9,46] has gained significant attention due to its strong capability of com-
promising vulnerable programs in spite of up-to-date defense mechanisms, such
as canaries [17], data execution prevention (DEP) [32], and address space layout
randomization (ASLR) [54] under certain conditions (e.g., memory disclosure
vulnerabilities, and the low entropy of ASLR).

Such attacks manipulate one aspect of the stack regarding return addresses
to hijack execution. However, the stack not only contains return addresses but

Y. Fu—Work done during an internship at NEC Laboratories America, Princeton.

c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 71–94, 2016.
DOI: 10.1007/978-3-319-45719-2 4

72 Y. Fu et al.

also stores many other data, such as local variables and frame pointers, with
specific rules on its layout for a correct execution state. These rules are stati-
cally constructed by a compiler precisely for each function. Unfortunately such
constraints on the stack layout are not strictly checked by the CPU as evidenced
by the aforementioned attacks allowed, but a correct program execution strictly
follows such constraints and they are in fact parsed and checked when needed
(e.g., exception handling, backtrace in debug). Our intuition is that the current
ROP attacks are not aimed to follow these stack layout constraints. Thus the
inspection of the stack layout could be an effective inspection method to detect
ROP attacks based on the manipulation and the side-effects in the stack layout.
Our method is applicable to multiple stack-based attacks that tamper with the
stack layout (Sect. 3), but we focus on ROP attacks in this paper since it is one
of the most sophisticated and challenging attacks to date.

While many approaches have been proposed to detect and prevent ROP
attacks [16,19,38], they are not without limitations. In particular, many of them
heavily rely on the patterns of ROP gadgets, e.g., the length of a gadget, and
the number of consequent gadgets. As such, attacks violating these patterns keep
emerging, as witnessed by the recent attacks [12,25].

An early exploration toward this direction, ROPGuard [21], detects ROP
attacks by unwinding stack frames using a heuristic approach, based on the
stack frame pointer [3] (i.e., ebp-based stack unwinding in Windows). This is
one way to check the sanity of the stack with an assumption on the compiler’s
practice. Unfortunately, its detection policy is not general in many operating
systems causing a failure to protect the programs compiled without the stack
frame pointers. For instance, from the version 4.6 of GCC (the GNU Compiler
Collection), the frame pointer option (-fomit-frame-pointer) is omitted by
default for the 32-bit Linux making this approach unreliable.

In this paper we present a novel systematic approach called SLIck1 to verify
the stack layout structure at runtime with accurate and detailed information,
which is generated by a compiler for exception handling [1,2] and available inside
the binaries. From this information, we extract stack layout invariants that must
hold at all times. We show verifying these invariants is effective for detecting
the stack manipulation caused by ROP attacks overcoming the limitations of
previous approaches based on stack unwinding. For our approach to be practical,
this information should not be optional during compilation, or require source
code since in many environments a program is deployed in the binary format.
A pleasant surprise is that the stack frame layout information is widely available
in Linux ELF binaries stored in the .eh frame section due to the support of
exception handling (even for C code). Moreover, this binary section is required
in the x86 64 application binary interface (ABI) [6].

The contribution of this paper is summarized as follows:

– We present two novel security invariants of the stack regarding legitimate
return address chains and legitimate code addresses based on the data stored

1 SLIck represents Stack Layout Invariants Checker similar to fsck.

Detecting Stack Layout Corruptions with Robust Stack Unwinding 73

in the .eh frame. While the .eh frame provides the information regarding
the stack layout, it is not directly applicable to ROP detection. The invariants
proposed in this paper fill this gap.

– We present a novel ROP detection technique based on stack layout invariants
and a robust stack unwinding. This mechanism improves the robustness of
a prior heuristic-based stack unwinding (e.g., ebp-based [21]), which fails to
inspect the binaries that are not compiled with frame pointer support.

– We propose flexible stack unwinding algorithm to overcome a general and
practical challenge in stack unwinding approaches which fail to unwind the
entire stack due to the incompleteness of stack frame information. Our evalu-
ation shows this instance is quite often, which leads to frequent false negative
cases of the stack inspections without addressing this issue.

2 Background

2.1 Return Oriented Programming

Return oriented programming (ROP) is an offensive technique that reuses pieces
of existing code chained together to create malicious logic. An attacker identifies
a set of instruction sequences called gadgets linked together using payloads, which
traditionally are placed in the stack [46] transferring control flow via the return
instructions. Recently the attack pattern became diverse involving the call or jump
instructions, which can trigger an indirect control flow [13] and the payloads can
be also placed in other places, such as the heap [49].

2.2 Stack Frame Information in Binaries for Exception Handling

When a program executes, many low level operations occur in the stack. When-
ever a function is called, its execution context (e.g., a return address) is pushed
to the stack. Also many operations, such as handling local variables, delivering
function call parameters, the flush of registers, occur on the stack exactly as they
are determined during the compilation time. The specific rules on how to use
each byte of each stack frame are predetermined and embedded in the program.

Figure 1 illustrates an example of this stack layout information taken from a
function (ngx pcalloc) of nginx, a high-performance HTTP server and reverse
proxy. The top of the figure shows a part of its disassembled code. The middle
part of the figure shows an example of the stack layout information, which is orga-
nized with the reference to the head of each stack frame. The memory address of
a stack frame is referred to as the Canonical Frame Address (CFA) [1,2], which
is the stack pointer address at the function call site.

The decoded information at the bottom illustrates the detailed stack lay-
out at each instruction. For instance, [40530c: cfa=32(rsp), rbx=-24(cfa),
rbp=-16(cfa), ret=-8(cfa)] shows the exact locations of the top of the cur-
rent stack frame (cfa=), the pushed register values (rbx=, rbp=), and the return
address (ret=) described in terms of the stack pointer address and the offsets at

74 Y. Fu et al.

Fig. 1. A detailed view of the stack layout information of the Nginx binary.

the instruction at 0x40530c. This information shows the detailed rules on the
stack usage which were not considered by the current ROP attacks to evade.

While we have found that the stack frame information is useful for the detec-
tion of ROP exploits, to be a practical solution, this information should be widely
available in binaries. Modern programming languages mostly support exception
handling. To do so, the runtime environment should be capable of interpret-
ing and unwinding stack frames such that the exception handler can correctly
respond to the exceptions. The ELF binary format, which is widely used in the
Linux and BSD operating systems, stores it in the .eh frame and .eh framehdr
sections [2]. Similar information is also available in other platforms to support
exception handling. For instance, the Windows OS has an exception handling
mechanism called Structured Exception Handling (SEH) [5,42]. The mach-O [4]
binary format used by Apple Macintosh programs has similar binary sections
(.eh frame, .cfi startproc, and .cfi def cfa offset).

Our investigation shows that the .eh frame section is included by default
in the compilation using the gcc and g++ compilers for C and C++ pro-
grams. According to the definition of the application binary interface (ABI) for
x86 64, it is a required section for a binary [6]. The strip utility with the most
strict option (e.g., strip --strip-all) does not affect this section. In addi-
tion, most binaries deployed in modern Linux distributions include this section.

Detecting Stack Layout Corruptions with Robust Stack Unwinding 75

For instance, in Ubuntu 12.04 64 bit version all binaries in the /bin directory
have a valid .eh frame section. Among the entire set of the program binaries
examined, over 97 % of around 1700 binaries have this information except special
binaries: the Linux kernel image (e.g., kernel.img) and the binaries compiled
with klibc, which is a special minimalistic version of the C library used for
producing kernel drivers or the code executed in the early stage of a booting.

3 Overview of SLIck

We use the stack layout information available from the binary section for excep-
tion handling to detect ROP exploits. As a research prototype, we present
SLIck, a robust stack unwinding based approach that does not rely on any
gadget patterns, such as a gadget sequence, or behavior. Previous approaches
(e.g., [16,19,38]) are based on the characteristics of ROP gadgets, such as call-
precedence or the length of gadget sequences, which make them vulnerable to
new attacks [12,25]. The overview of SLIck is illustrated in Fig. 2.

SLIck uses two invariants regarding the stack layout information (to be
shortly described in Sect. 4 in details) to detect an ROP attack.

– Stack Frame Chain Invariant (Sect. 4.1). The stack frame information
inside the binary describes how stack frames must be chained, and the unwind-
ing of the runtime stack information should not be different from it.

– Stack Frame Local Storage Invariant (Sect. 4.2). The accumulated stack
operations in a function are summarized as a constant because the memory
usage in each stack frame should be cleaned up when the function returns.

SLIck inspects the runtime status of the monitored program’s stack regard-
ing these two invariants transparently and efficiently so that ROP attacks can
be precisely detected. SLIck has two major system components.

– Derivation of stack layout invariants (Sect. 4). To achieve efficient run-
time checks, the necessary information is derived in an offline binary analysis.
Given a binary executable as an input, this component extracts the stack
frame information from the .eh frame section and constructs stack layout
invariants. Also, the table of valid instructions of this binary is derived to
verify the stack frame local storage invariant.

Fig. 2. System overview of SLIck.

76 Y. Fu et al.

– Runtime inspection of stack invariants (Sect. 5). This component veri-
fies whether stack invariants hold at runtime and detects any violation caused.
SLIck inspects the stack status when an OS event is triggered to avoid high
overhead of fine-grained techniques [14,19]. Diverse OS events with different
characteristics can be used to trigger the inspection as policies. For instance,
the inspection on all system calls will catch the ROP behavior that uses any
system services, such as a file access, and network usage. Using the timer inter-
rupts, which trigger the context switches, enables non-deterministic inspection
points that make it hard to accurately determine our inspection time and also
enables frequent inspections in the CPU intensive workload.

Adversary Model and Assumptions. We consider an adversary who is able
to launch a user-level stack-based return oriented programming (ROP) attack,
which modifies the stack to inject its payload using a native program in the
ELF format with the stack frame layout information widely available in the
Linux platform. There is no assumption on the characteristics of gadget content
(e.g., a sequence, a length, and the call-precedence of gadgets) which can be used
in the attack.

The techniques in this paper are in the context of Linux and the ELF binary
format because the mechanism and the implementation of the stack layout infor-
mation is specific to each OS platform due to the distinct underlying structures
of OSes. However, we believe a similar direction can be explored in other OS
platforms which are described in the discussion section.

We assume that the integrity of the operating system kernel is not compromised
and the ROP attack is not towards the vulnerability and the compromise of the
kernel.While such attack scenarios ofROPexploits are realistic, in this paperwedo
not focus on the countermeasures for such attacks because of the existing detection
and prevention mechanisms on OS kernel integrity [22,23,27,39–41,45]. We rely on
such approaches to ensure the integrity of OS kernel and SLIck, which is designed
to be a module of it.

Finally, we mainly focus on native programs for the detection of ROP
exploits. The programs based on dynamically generated code running on virtual
machines, interpreters, and dynamic binary translators have their own unique
structures on their runtime and the stack layout. Currently, we do not focus on
ROP defense for these binaries.

4 Derivation of Stack Layout Invariants

Rich stack layout information of the .eh frame section can be used to derive
potentially many invariants regarding the layout of the stack. In this paper, we
focus on two invariants that are motivated by the following challenges.

First, ROP attacks can manipulate the valid chains of the function calls of
the original program, and determining such manipulation robustly and trans-
parently is a remaining challenge. Recent approaches on control-flow integrity
have made substantial progress particularly when they can access or transform

Detecting Stack Layout Corruptions with Robust Stack Unwinding 77

source code [18,56]. Some approaches attempted to achieve a practical control-
flow integrity by relaxing strict control-flow [60,61]. However, they still introduce
new attacks [24]. Second, ROP gadgets popularly utilize unintended instructions
and it is non-trivial to detect such usage efficiently. We introduce two stack lay-
out invariants to solve these challenges.

4.1 Stack Frame Chain Invariant (FCI)

Observation. The description regarding the head of a stack frame (CFA), can
validate how far a previous stack frame should be apart from the current one.
For instance, the information [40530c: cfa=32(rsp), ..., ret=-8(cfa)] in
Fig. 1 shows that the CFA is at the address stored in the rsp register plus 32,
and the return address is at ret = −8(cfa) which is resolved as rsp + 32 − 8
using the location of the CFA. This information enables the validation of the
linkage of stack frames.

Invariant. For an instruction c in a function, let us define the accumulation
of stack operations between the function prologue and c in terms of a stack
distance as BL(c) (Backward stack frame Layout). This information generated
by a compiler for the instruction c is retrieved from the CFA of .eh frame. For
instance, the return address at B6 in Fig. 3, BL(B6) is −12(SP) (i.e., stack
pointer + 12 bytes) due to three decrements of the stack pointer (each by 4
bytes) for local variables. A runtime version, BL′(c), is subject to manipulation
under attacks requiring the verification whether it conforms to BL(c) for all
stack frames in a chain. This invariant is presented as BL(c) = BL′(c) called
the Stack F rame Chain Invariant (FCI).

Verification. SLIck checks this invariant using a stack unwinding algorithm
(Sect. 5) iteratively over all stack frames validating the integrity of the BLs as a
chain. Any inconsistency in one of the BLs in the chain causes cascading effects in
the following stack frames, therefore, breaking the BL sequence in the unwinding

Fig. 3. Illustration of stack layout invariants.

78 Y. Fu et al.

procedure. SLIck determines this invariant is satisfied if the unwinding proce-
dure over all stack frames is successful. To perform this runtime verification
efficiently, we precompute the BLs using the CFAs from the .eh frame section.

4.2 Stack Frame Local Storage Invariant (FSI)
Observation. Programs use the stack to store data (e.g., for local variables
and register spills). To limit the impact across stack frames, the allocation and
deallocation of local stack memory in a frame should be paired up so that the
stack memory usage for a function could be cleaned up when the function returns.

Invariant. This observation regarding the gross sum of local stack operations is
summarized as follows. Let us define the accumulated stack operations between
the code c and the function epilogue in terms of a stack distance as FL(c)
(Forward stack frame Layout). The observation on the stack local storage is
represented as BL(c)+FL(c) = k, which we call the Stack F rame Local S torage
Invariant (FSI). In the right figure of Fig. 3, BL(B6) is −12(SP), and FL(B6)
is 12(SP) leading to k = 0. Typically k should be zero except the special corner
cases where functions do not properly return such as the exit. This invariant
allows to determine the usage of unintended code popularly used in ROP attacks
because such code may not follow the original code’s semantic.

Verification. To efficiently check whether the executed code conforms to this
invariant, we precompute a table of instructions originally intended in the pro-
gram, named as a table of valid code addresses (TVC). Its rows show all possible
code addresses (i.e., every byte offset of the code including unintended code in
the program) and the column indicates a boolean state whether the code is valid
(T) or invalid (F) depending on the BL(c) + FL(c).

We use the .eh frame and a binary analysis for the computation of this
table. The instructions derived from the stack frame information are marked
as valid. However, due to its compressed structure, which mainly describes the
instructions involving stack operations, not every instruction is covered. For such
cases, we use a binary analysis to simulate the instructions and determine the
validity. SLIck applies this check as part of a stack unwinding algorithm.

SLIck considers that a program is compromised if either or both of these
two invariants are violated. We present more specific details on how to check
them at runtime in Sect. 5.

5 Runtime Inspection of Stack Invariants

In this section, we present how SLIck inspects stack invariants and robustly
detects their violations.

Detecting Stack Layout Corruptions with Robust Stack Unwinding 79

5.1 Practical Challenges

After we use a traditional stack unwinding algorithm [3] to inspect the invariants,
we have identified the cases that frustrate the current algorithm and limit the
inspection of the full stack. There are two cases categorized.

Failure type Description Attributes of virtual memory pages Binary exist Unwind info

exist

Type Page permission

Type A Incomplete unwinding info Code Executable Yes No

Type B Invalid unwinding Not found Not executable * *

Type A: Incomplete Unwinding Information. We found that a rare por-
tion of code in terms of coverage has incomplete unwinding information mainly
in the low level libraries and the starting point of a program. It is important
to address this issue because such code stays in the stack during execution and
there is a high chance to face it during the unwinding. If this issue happens, the
vanilla stack unwinding algorithm cannot proceed the unwinding procedure due
to the missing location of the next stack frame.

Based on our experiments over 34 programs including widely used server
applications and benchmark, the cases that we identified are summarized into
mainly three cases. First, it is triggered by the entry point of ld, which is the
dynamic linker and loader in Linux. Second, the first stack frame which is the
start of the program can generate a type A error. The third case is the init
section of the pthread library.

Type B: Invalid Unwinding Status. Unlike type A, this case should not
occur in benign execution. However, this incorrect execution state is observed
when the stack layout is manipulated by attacks. The stack unwinding algorithm
strictly verifies the validity of the stack layout information formulated by the
compiler across all stack frames. Any single discrepancy due to stack manipula-
tion leads to invalid unwinding conditions. Specifically this case is characterized
as the state shown in the table: the return code address obtained from the stack
is not found from the executable memory area.

Type A failures can block the full inspection of all stack frames in stack
unwinding-based approaches. Therefore, this issue must be addressed to achieve
robust stack unwinding. We address it using flexible stack unwinding, which is a
novel variant of the stack unwinding algorithm that enables robust detection of
type B errors while addressing type A errors. Next, we present the details of our
algorithm that inspects stack invariants based on the flexible stack unwinding.

80 Y. Fu et al.

Fig. 4. Flexible unwinding. Fig. 5. Stack invariant violation.

5.2 Stack Invariant Inspection Algorithm

Figures 4 and 5 presents a high level illustration of our algorithm to inspect stack
invariants while addressing the practical stack unwinding challenges. When the
inspection is triggered, Algorithm 1 inspects stack frames starting from the top
to the bottom of the stack as shown in Fig. 4. The algorithm bypasses type A
failures while detecting type B errors caused by the violation of stack invari-
ants illustrated in Fig. 5. FCI and FSI violations are respectively caused by an
illegitimate chain of stack frames and return addresses.

The Algorithm 1 is triggered by an operating system event (e.g., a system
call, an interrupt) represented as the OsEvent function (Line 1). This function
executes the SIInspect function (Line 2), the main logic for stack inspection.
When this function detects either a type B error (FCI violation) or an invalid
return code instruction (FSI violation) during stack unwinding, it returns Fail.
Upon the detection of any violation, the PostProcess function is called (Line 4)
to stop the current process and store the current context for a forensic analysis.

Unwinding Library Code. A program executes the code for multiple libraries
as well as the main binary. Such libraries have separate stack frame information
in their binaries which are loaded into distinct virtual memory areas (VMA).
During the scan of the stack, our algorithm dynamically switches the VMA
structure for the return address (Line 11), which is implemented as two nested
loops in SIInspect; the outer while loop (Lines 10–38) switches different VMAs
while the return addresses in the same binary are efficiently handled by the inner
loop (Lines 17–27) without searching for another VMA.

For each VMA, the .eh frame information is retrieved from the binary
(Line 16). For each code address, the algorithm checks its validity (Line 20). If
it is valid and the return code stays in the same VMA, the GetNextRet function
is called to unwind one stack frame. Otherwise the algorithm returns a violation
of FSI at Line 21. This loop is repeated to unwind following stack frames as

Detecting Stack Layout Corruptions with Robust Stack Unwinding 81

Algorithm 1. Stack Invariant Inspection Algorithm
SZ = sizeof(UNSIGNED LONG)

1: function OSEvent(REGS)
2: Ret = SIInspect(UserStack, REGS)
3: if Ret == Fail then
4: PostProcess(REGS, UserStack)

5: return
6: function SIInspect(UserStack, REGS)
7: CFA = REGS → SP; VMA = GetVMA(CFA); UnwindDepth = 0
8: StackTop = REGS → SP; StackBot = GetStackStart(VMA, CFA)
9: InvalidInstr = False

10: while true do � Outer loop
11: VMA = GetVMA(REGS → IP)
12: if VMA is invalid or not executable then
13: return Fail � Type B, FCI violation

14: if VMA → VM FILE does not exist then � Dynamic code
15: Goto DoFlexibleSIInspect

16: EH = GetEHSection(VMA)
17: do � Inner loop
18: if REGS → SP < StackTop or REGS → SP >= StackBot then
19: return Fail � Type B, FCI violation, Stack Pivot Detection

20: if TVC [REGS → IP] == False then � FSI violation
21: return Fail
22: if REGS → IP > VMA → VM Start and REGS → IP < VMA → VM End then
23: UnwindDepth += 1
24: else
25: Ret = GotNext; break � Find another VMA

26: Ret = GetNextRET(CFA, REGS, EH, StackBot, StackTop)
27: while Ret == GotNext
28: if Ret is NoUnwindingInfo then � Type A
29: :DoFlexibleSIInspect

30: offset = FlexibleSIInspect(REGS → SP, StackBot)
31: if offset is EndOfStack then
32: return Success
33: else
34: REGS → SP += offset; REGS → IP = *(REGS → SP) of UserStack,
35: REGS → BP = *(REGS → SP - SZ) of UserStack; REGS → SP += SZ
36: CFA = REGS → SP
37: else if Ret is Invalid then
38: return Fail � Type B, FCI violation

39: return Success
40: function FlexibleSIInspect(Start SP, StackBot)
41: for SP = Start SP; SP < StackBot; SP += SZ do
42: IP = *SP; VMA = GetVMA(IP)
43: if VMA is valid and VMA → VM FILE is available then
44: return SP - Start SP
45: return EndOfStack

long as the function returns GotNext. For code c, its BL(c) is returned by the
GetNextRet function. If a return address is replaced by k, a manipulated value,
the divergence BL(k) =BL′(c) �= BL(c) will cause cascading effects on unwind-
ing of the following stack frames. Any mismatch of a single stack frame with its
unwinding information causes a violation of FCI at Line 13, 19, or 38.

Stack Pivot Detection. During stack unwinding, Algorithm 1 performs var-
ious checks to ensure precise unwinding and detect anomaly cases. A popular
technique in recent ROP attacks is stack pivoting [49,62] that changes the loca-
tion of stack to the manipulated content (e.g., heap). This attack is trivially
detected by our algorithm (Line 18) because SLIck can distinguish an invalid
stack memory address.

82 Y. Fu et al.

Flexible Stack Unwinding. To handle type A failures, we provide flexible
stack unwinding algorithm (Lines 40–45). When a type A case happens, the
FlexibleSIInspect function advances the stack pointer in a brute force way
and checks whether a legitimate stack frame appears next. If the return address
found in this search belongs to a code section based on its memory address
range and the corresponding file, this function returns the offset of the stack.
And then the algorithm goes back to the outer loop (Line 10), and the stack
layout information of the new stack frame is examined. If it is a type B case,
the GetNextRET function will return Invalid in the next loop. If it turns out
to be a type A case again, it will go back to the FlexibleSIInspect function
by returning NoUnwindingInfo. Lastly, if it is a valid frame, it will be unwound
and takes a following loop iteration.

5.3 Stack Inspection Policies

SLIck inspects the runtime status of a program stack based on the policies
regarding which types of OS events trigger the inspection. Here we present two
policies used for our evaluation (Sect. 6.3) and our framework allows user defined
policies as well.

System Call Inspection (SYS). This policy checks the stack on all system
calls which provide lower level services to the program, such as memory alloca-
tion, file operations, network operations, and a change of memory permission.
They are the typical targets of ROP exploits to achieve functionality beyond
the original program, and this policy provides a cost-effective inspection at the
intermediary points of OS operations to observe high impact system activities.

System Call and Non-deterministic Inspection (SYS+INT). This pol-
icy achieves finer-grained inspection by narrowing down the gaps between the
inspections and making inspection intervals non-deterministic by using non-
deterministic OS events, such as interrupts. As an attack scenario against SLIck,
an ROP exploit may attempt to predict SLIck’s inspection time and clean up the
stack manipulation to hide its evidence. Since this scheme uses non-deterministic
OS events to perform inspections, this attack becomes significantly hard to be
successful. This scheme can be further strengthened by increasing the random-
ness, e.g., by performing additional inspections with random intervals.

6 Evaluation

In this section, we present the evaluation of SLIck in the following perspectives.

– How effective is SLIck at detecting real-world ROP exploits?
– What is the impact of SLIck on benign programs?
– How efficient is SLIck for inspecting stack invariants?

Detecting Stack Layout Corruptions with Robust Stack Unwinding 83

We have implemented SLIck for 32 bit and 64 bit Ubuntu 12.04 LTS Linux
systems as a kernel module and user level tools for offline analyses.

6.1 Detection of ROP Attacks

We applied SLIck on 7 real-world ROP exploits available in Linux of 32 bit and
64 bit architectures. Table 1 presents the details of the program’s runtime status
and the detection results by SLIck.

Table 1. Detection of stack invariant violations of ROP exploits. The number of
unwinding failures (#F-unwind) is generally correlated with the number of events (#
Events), but it can be higher if multiple stack frames have failures.

Program Syscall inspection policy Invariant violation Attack description

Name Ver Env #Events ||S|| #F-unwind Detection Type Exploit info Syscall

Nginx 1.4 64 bit 100452 22 96895 � FSI CVE-2013-2028 sys write

Mysql 5.0.45 64 bit 2128 13 2156 � FCI & FSI CVE-2008-0226 sys execve

Nginx 1.4 32 bit 42937 22 40231 � FCI & FSI CVE-2013-2028 sys write

Mysql 5.0.45 32 bit 2027 12 1792 � FCI CVE-2008-0226 sys rt sigaction

Unrar 4.0 32 bit 141 10 142 � FCI CVE-2007-0855 sys write

HT Editor 2.0.20 32 bit 292 13 326 � FCI CVE-2012-5867 sys lstat64

MiniUPnPd 1.0 32 bit 56 8 50 � FCI CVE-2013-0230 sys time

The first three columns show the description of the program, its name
(Name), version (Ver.), and the architecture that it runs on (Env). For this
experiment, we use the system call inspection policy. The 4th, 5th, and 6th
columns show the runtime status: the number of system call events (# Events),
the average stack depth (||S||) during the execution, and the number of type
A stack unwinding errors (# F-unwind) that flexible stack unwinding algorithm
successfully addressed. The next two columns show the detection of ROP exploits
based on stack invariant inspection: the “Detection” column shows whether the
violation of an invariant is detected. Our algorithm stops a program on the first
violation of an invariant which could be either an FCI or an FSI. If both of them
occur in the same iteration of algorithm, it is presented as FCI & FSI. The type
of violation is presented in the “Type” column. Exploit information (Exploit
Info) and the system call at the time of detection (Syscall) are presented in the
next columns.

We experimented with real-world exploits against widely used server and
desktop software: Nginx, Mysql, Unrar, HT Editor, and MiniUPnPd. These
software and the ROP exploits have different characteristics shown as various
numbers of system calls and the depths of the stack. All tested ROP exploits
are successfully detected due to violations of stack invariants.

84 Y. Fu et al.

6.2 Impact on Benign Programs

For a practical usage of SLIck, it should have low false positives in benign
programs. For this evaluation, we used total 34 programs from popular open
source projects and benchmarks: 3 widely used server programs (Nginx, Apache,
Mysql), a CPU benchmark for Linux (NBench), a data compression utility (7zip),
and 29 programs from the SPEC 2006 benchmark. The stack invariants are
inspected with two inspection policies: the system call inspection policy (SYS),
and the system call and non-deterministic inspection policy (SYS+INT).

Table 2 summarizes our results. The first column describes the program name.
We present the data for two inspection policies in different groups of columns.
The next three columns describe the evaluation using the SYS inspection policy.
The following three columns show the result using the SYS+INT policy. The
SYS+INT inspection policy increases the number of inspection events in the
CPU intensive benchmarks more significantly (e.g., 434.zeusmp has over 28 times
higher events because of timer interrupts). I/O intensive programs get most
timer interrupts from the kernel code, such as another interrupts or system
calls. Such cases are not additionally inspected because the programs are already
checked on the transition from the user mode to the kernel mode. This policy
can harden the inspection of CPU intensive programs that have a low number
of system calls. Timer interrupts capture a program call stack at arbitrary non-
deterministic execution points. Therefore, the average call stack depth (||S||) is
different between two experiments in many cases of the SPEC benchmark.

In general the number of type A failures that flexible unwinding addresses
(#F-unwind) is highly correlatedwith the number of inspection events (#Events).
One reason for this behavior is that the first stack frame created on the start of the
programstays in the stack and triggers a typeA failure on each systemcall.Another
reason is the pthread library; large programs using multiple threads get additional
type A errors due to this library.

While most of programs triggered non-trivial number of type A failures, in
all cases, no violation of stack invariants is detected causing zero false positives
of our approach.

6.3 Performance Analysis

We evaluate the runtime performance impact of SLIck on the protected pro-
grams in the prior evaluation. The overhead is related to the frequency of the
inspections and the depth of stack unwinding. SLIck is configured to scan the
full stack. We used the apache bench with the load of a thousand requests to
generate the workload for Apache and Nginx webservers. The performance of
the Mysql database and the 7zip tool are measured using the packaged bench-
marking suites. The Nbench and SPEC 2006 benchmarks are executed using
the standard setting. Performance numbers from different types of benchmarks
are normalized in a relative way so that the performance of native execution
becomes 1. Our measurement data are presented in Fig. 6. We present SLIck’s
performance in two inspection policies.

Detecting Stack Layout Corruptions with Robust Stack Unwinding 85

Table 2. Stack invariant inspection of benign applications. No violation is detected.

Program name SYS SYS+INT

#Events ||S|| #F-unwind #Events ||S|| #F-unwind

Nginx 16164 16 16171 16183 16 16190

Apache 24466 15 24472 24481 15 24488

Mysql 40347778 12 40377139 40451780 12 40481318

Nbench 87371 7 87371 163973 7 163973

7zip 59922 8 74874 68516 8 82650

400.perlbench 35361 12 35361 35666 12 35666

401.bzip 450 7 450 4649 8 4649

403.gcc 714 15 714 1578 13 1568

410.bwaves 993 9 993 9048 9 9048

416.gamess 16848 17 16848 17057 17 17057

429.mcf 1023 8 1023 2945 7 2945

433.milc 19092 11 19092 26020 10 26020

434.zeusmp 258 8 258 7422 6 7422

435.gromacs 3009 15 3009 3651 14 3651

436.cactusADM 2115 16 2115 3869 14 3869

437.leslie3d 303 9 303 7646 5 7646

444.namd 6159 9 6159 14018 7 14018

445.gobmk 8799 12 8799 21492 23 21492

450.soplex 360 9 360 372 9 372

453.povray 5040 21 5040 5386 21 5386

454.calculix 537 9 537 568 9 568

456.hmmer 207 9 207 2168 5 2168

458.sjeng 1671 12 1671 4511 15 4511

459.GemsFDTD 1626 9 1626 2825 7 2825

462.libquantum 120 8 120 149 8 149

464.h264ref 1236 8 1236 9909 11 9909

465.tonto 6303 16 6303 6743 16 6743

470.lbm 2091 8 2091 3280 6 3280

471.omnetpp 570 12 570 829 11 829

473.astar 783 9 783 7371 6 7371

481.wrf 5598 17 5598 7666 15 7666

482.sphinx3 9213 12 9231 10510 11 10510

988.specrand 378 10 378 384 9 384

999.sperand 378 10 378 385 9 385

86 Y. Fu et al.

 0%

 20%

 40%

 60%

 80%

 100%
N

gi
nx

A
pa

ch
e

M
ys

ql
N

be
nc

h
7z

ip
40

0.
pe

rl
be

nc
h

40
1.

bz
ip

40
3.

gc
c

41
0.

bw
av

es
41

6.
ga

m
es

s
42

9.
m

cf
43

3.
m

ilc
43

4.
ze

us
m

p
43

5.
gr

om
ac

s
43

6.
ca

ct
us

A
D

M
43

7.
le

sl
ie

3d
44

4.
na

m
d

44
5.

go
bm

k
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
45

6.
hm

m
er

45
8.

sj
en

g
45

9.
G

em
sF

D
T

D
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

46
5.

to
nt

o
47

0.
lb

m
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
1.

w
rf

48
2.

sp
hi

nx
3

98
8.

sp
ec

ra
nd

99
9.

sp
er

an
dN
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Vanilla
SYS
SYS+INT

Fig. 6. Runtime performance of SLIck.

Runtime Impact for the SYS Policy. With this policy, the average overhead
of SLIck in 34 evaluated programs is 3.09 % with the maximum overhead of
22.8 % in Mysql. High overhead of Mysql is due to very intensive stress tests for
a database in I/O and low level services. As an evidence, the second column of
Table 2 which is the system call count shows that Mysql benchmark generates a
significantly higher number of system calls over 40 millions compared to other
programs having under 164 thousands system calls.

Runtime Impact for the SYS+INT Policy. A finer-grained inspection
based on system calls and timer interrupts is offered with a slightly higher per-
formance cost of 3.93 % on average and with the maximum overhead of 22.8 % in
Mysql. This policy causes increased overhead on CPU intensive workloads due
to additional inspections introduced by timer interrupts.

7 Discussion

Comparison with ROPGuard/EMET. Our work is closely related to an
early exploration based on stack unwinding, ROPGuard/EMET [21]. How-
ever, there are several major differences that distinguish SLIck from ROP-
Guard/EMET as follows.

– Our approach has a higher and reliable inspection coverage compared to ROP-
Guard: SLIck inspects the user stack with the full depth on all system calls
and timer interrupts. In contrast, ROPGuard inspects the stack only on a
selective set of critical user level APIs with a limited depth of the stack. Thus
ROPGuard/EMET cannot detect the attacks that directly trigger system
calls without using the APIs. Also if the binary is built statically, ROPGuard
cannot be applied due to its base on the library interposition technique.

– ROPGuard operates in the same user level as the monitored program. There-
fore, it is subject to manipulation by the attacker. However, SLIck is isolated
from the user space due to its implementation in the OS kernel.

– SLIck’s inspections are performed with a higher frequency compared to ROP-
Guard: SLIck inspects the stack on all system calls and non-deterministic

Detecting Stack Layout Corruptions with Robust Stack Unwinding 87

timer interrupts. ROPGuard, however, only checks the stack on a set of
critical API functions.

– SLIck achieves a reliable stack walking and improved ROP detection by using
precise stack layout information extracted from the unwinding data while
ROPGuard uses a heuristic based on the frame pointer which is not reliable.

– This work proposes two stack layout invariants which are derived from the
unwinding information, and these invariants are verified by using an improved
and reliable stack walking mechanism.

– We discovered that a small number of binaries have incomplete unwinding
information which affects the current stack walking mechanisms. We propose
flexible stack unwinding algorithm to overcome this issue and enable a reliable
and high quality inspection of the entire stack.

Stack Pivoting Attacks. A stack pivoting attack [49,62] manipulates the
stack pointer to point to the data controlled by ROP gadgets. This attack is
trivially detected by our approach because SLIck uses the valid stack memory
address ranges assigned by the OS. When an unexpected memory area is used
for the stack pointer, SLIck detects it as a FCI violation (Sect. 5.2). A related
work [43] achieves this feature using a compiler approach and source code while
SLIck can prevent this attack transparently for existing binaries.

Stack Manipulation Detection. Traditional buffer overflow attacks [36,48,51]
attempting to overwrite the return addresses in the stack are likely to violate the
invariants. Thus such attacks can be transparently detected by SLIckwithout any
recompilation, or instrumentation of the program.

Support of Dynamic Code. Dynamically generated code is used by several
platforms such as virtual machines, interpreters, dynamic binary translators,
and emulators. While they are out of the scope of this paper, we believe our
approach can be extended to support them with engineering efforts because
these platforms also provide ways to unwind stack frames for dynamic code. For
instance, Java has a tool called jstack that can dump the whole stack frames
including both of the Java code and the underlying native code and libraries.
If such a platform-specific logic is integrated into our stack unwinding algorithm,
we should be able to support such dynamic code as well as native code.

Integrity of a Kernel Monitor. SLIck resides in the OS kernel. While the
attack scenarios of ROP exploits against the kernel is certainly possible, in this
paper we do not focus on the countermeasures for such attacks because of existing
detection or prevention mechanisms on OS kernel integrity [22,23,27,39–41,45].
We rely on such approaches to ensure the integrity of SLIck.

Control-Flow Integrity. Our approach raises the bar for ROP exploits by
introducing new security invariants on the layout of the stack. Essentially code

88 Y. Fu et al.

and the stack status have correspondence generated by compilers, but it is not
strictly enforced at runtime. SLIck verifies this loose correspondence by using
a novel variant of a stack unwinding [3] inspecting stack layout invariants.

Control-flow integrity (CFI) [8] provides strong measures to defeat ROP
attacks by strictly checking the control-flow of programs. Recent approaches made
a significant progress in the compiler-based techniques [18,56] and achieved practi-
cal solutions by relaxing strict control-flows [60,61]. When only program binaries
are available, the stack frame chain invariant of SLIck provides a practical and
transparent alternative to verify the backward chain of control flow while provid-
ing a performance benefit and high applicability without requiring source code,
program transformation, or a complete control flow.

User-Space-Only Self-hiding ROP Attacks. ROP gadgets are typically
used to achieve a new logic which may not exist in the original program. Most
real exploits typically make use of the OS level services [57], such as allocating
memory and changing its permissions. Technically it is possible to execute ROP
gadgets and recover the manipulation of the stack before the transition to the OS
to hide the evidence from SLIck. Such user-space-only ROP attacks in practice
would be non-trivial to keep track of the manipulated states and implement a
clean up logic without stack pivoting which SLIck detects. The inspections on
system calls will capture any such attempt on system related activities. Non-
deterministic OS events, such as timer interrupts (varying between 4–20 ms in
our experiments), and the inspection events with random intervals will make
it further difficult for the exploit to precisely predict the inspection time. This
advanced attack to hide itself is an aspect that needs further study which is our
future work.

Integrity of Stack Frame Information. For a robust detection of ROP
attacks, SLIck ensures the integrity of stack frame information as follows. The
integrity of this information inside a binary is verified using a file integrity checker
[30]. Given the file integrity, SLIck makes its own shadow copy of the .eh frame
section copied directly from the binary to prevent any manipulation. However,
its copy loaded into the program’s memory for exception handling is subject to
potential attacks [34]. The OS kernel makes it read-only, but it is not immutable.
Thus SLIck enforces the read-only permission on the program’s copy to prevent
the attack [34].

Attacks Using Binaries Without Stack Frame Information. Our study
presented in Sect. 2 shows that most Linux ELF binaries except special binaries,
such as a Linux kernel image and kernel drivers, have stack frame information.
A typical compilation of programs includes stack frame information to support
exceptions and debugging by default. Binaries without stack frame information
are not supported by SLIck due to the lack of required information for stack
walking. Such unusual binaries can be prevented from running using system wide

Detecting Stack Layout Corruptions with Robust Stack Unwinding 89

program execution policies. For instance, SLIck can prevent the execution of
such binaries when stack frame information is lacking.

Implementing SLIck on Other Platforms. This work focuses on the stack
layout information in the ELF binary format, which is popular in Linux and
BSD environments. However, other OS environments have similar informa-
tion for exception handling and debugging. For instance, Windows has the
RtlVirtualUnwind API that can unwind the stack by using the unwind descrip-
tors of the structured exception handling (SEH) tables in the program images,
which can be dumped using the dumpbin utility with the /UNWINDINFO option [7].
Mac OS’ main binary format, Mach-O [4], has similar binary sections, such as
.eh frame, .cfi startproc, .cfi def cfa offset etc. These information can
be used to implement a similar function as SLIck in those OS platforms.

Attacks Using Type A Cases for ROP Gadgets. Based on our study
of diverse binaries, a very small number of common libraries have the missing
unwinding information in a rare portion of their code: the entry point of the
dynamic linker and loader, the first stack frame which is the start of the program,
and the init section of the pthread library. Although the portion of code is
small and its capability could be limited, it is possible for the attacker to use
this code for gadgets. While we have not presented a specific mechanism to
defeat this attack, it can be easily prevented by supplementing the incomplete
unwinding information because the scope of such code is very limited. Similar to
the technique that we used for constructing the TVC, the unwinding information
can be generated by emulating the stack operations of the binary code.

8 Related Work

ROP and Related Attacks. Return oriented programming (ROP) [46] is an
offensive technique that reuses pieces of existing program code to compromise
a vulnerable program and bypass modern security mechanisms, such as DEP
and some ASLR implementations [9] under certain conditions (e.g., memory
disclosure vulnerabilities or low entropy ASLRs). It has also been applied in
other attack vectors, such as rootkits [15,29]. In addition to the local application
of this technique, Bittau et al. proposed the blind ROP (BROP) [9] which can
remotely find ROP gadgets to fetch the vulnerable binary over network.

Similar to ROP, another type of control-flow transfer attack based on gadget-
reuse is jump oriented programming (JOP) [10], which uses jumps instead of
returns. Bosman et al. [11] proposed another type of ROP based on the signal
handling function which is universal in UNIX systems. This technique called
SigReturn Oriented Programming (SROP) is triggered by the manipulated signal
frames stored on a user stack.

90 Y. Fu et al.

ROP Defense. Several mitigation techniques were proposed to defend against
ROP attacks such as ASLR [26,28,37,44,53,59,60], compiler techniques [31,35],
runtime instrumentation techniques [14,19], and hardware techniques [16,38].

ASLR has been used to block code reuse attacks by dynamically assigning
the memory addresses of the code and data sections such that the predeter-
mined memory addresses can be illegal. However, in practice some code may
not be compatible with this scheme, thereby leaving attack vectors. Also sev-
eral approaches have shown that it is possible to bypass this scheme based on
information leakage or brute-force attacks [20,47,49,50,52,58].

When source code is available, it is possible to remove attack gadgets through
a compiler transformation as shown in [31,35]. If source code is not available,
dynamic binary instrumentation can be used to monitor the execution and detect
ROP attacks. Drop [14] used the length of gadgets and the contiguous length
of gadget chains to characterize and detect ROP attacks. ROPdefender [19]
uses binary instrumentation to manage a shadow stack which is not tampered by
stack manipulation. These approaches in general have a low runtime efficiency
due to a high cost of dynamic binary translation.

RoPecker [16] and kBouncer [38] proposed to utilize the Last Branch
Record (LBR) registers to efficiently inspect the runtime history. These
approaches are established on the assumptions of gadget patterns, such as the
short length of gadgets and a long sequence of consecutive gadgets. Unfortu-
nately, new ROP attack techniques showed such gadget-pattern based schemes
can be bypassed [12,25]. ROPGuard [21] (later integrated into the Microsoft
EMET [55]) performs stack inspections for a limited depth at selective critical
Windows APIs. This inspection unwinds the user stack using the heuristic on
the frame pointer which would be limited based on the build conditions; unless
programs are compiled to use the frame pointers, they could not be reliably
inspected. In contrast, the stack frame information in the .eh frame enables a
precise and reliable unwinding regardless of the requirement of the frame pointer.

The comparison between SLIck and related work in Table 3 highlights that
SLIck does not have assumptions on the characterization of ROP gadgets. Hence
it is not affected by recent attacks [12,25]. Also its stack unwinding technique

Table 3. Comparison of ROP detection approaches. CL: without using a chain length,
GL: without using a gadget length. SC: without using source code. RW: without rewrit-
ing. RE: Runtime efficiency. RU: Reliable unwinding.

ROP detector CL GL SC RW RE RU Main techniques

Returnless [31] � � ✗ ✗ � - Gadget removal based on a compiler technique

GFree [35] � � ✗ ✗ � - Gadget removal based on a compiler technique

Drop [14] ✗ ✗ � ✗ ✗ - ROP detection based on gadget characteristics

ROPdefender [19] � � � ✗ ✗ - Shadow stack and dynamic instrumentation

kBouncer [38] ✗ ✗ � ✗ � - Last branch recording and gadget characteristics

RoPecker [16] ✗ ✗ � � � - Last branch recording and sliding window

ROPGuard [21] � � � ✗ � ✗ Stack unwinding based on the frame pointer

SLIck � � � � � � Stack invariants verified by a reliable stack unwinding

Detecting Stack Layout Corruptions with Robust Stack Unwinding 91

is more reliable based on the precise stack frame information widely available in
the binaries of mainstream Linux distributions. These unique properties enable
SLIck to achieve a practical solution which does not require source code, or
rewriting of the program binaries for ROP detection.

9 Conclusion

We have presented SLIck, a robust and practical detection mechanism of ROP
exploits that is not affected by recent attacks based on the violation of previous
assumptions on gadget patterns [12,25]. SLIck detects ROP exploits by using
stack layout invariants derived from the stack unwinding information for excep-
tion handling widely available in Linux binaries. Our evaluation on real-world
ROP exploits shows robust and effective detection without any requirements on
source code or recompilation while it incurs low overhead.

Acknowledgments. We would like to thank our shepherd, Michalis Polychronakis,
and the anonymous reviewers for their insightful comments and feedback. Yangchun Fu
and Zhiqiang Lin were supported in part by the AFOSR grant no. FA9550-14-1-0173
and the NSF award no. 1453011. Any opinions, findings, conclusions, or recommenda-
tions expressed are those of the authors and do not necessarily reflect the views of any
organization.

References

1. Dwarf debugging information format, version 4. http://www.dwarfstd.org/doc/
DWARF4.pdf

2. Exception frames. https://refspecs.linuxfoundation.org/LSB 3.0.0/LSB-Core-
generic/LSB-Core-generic/ehframechpt.html

3. Exceptions and stack unwinding in C++. http://msdn.microsoft.com/en-us/
library/hh254939.aspx

4. Mach-o executables, issue 6 build tools. http://www.objc.io/issue-6/mach-o-
executables.html

5. Structured exception handling. http://msdn.microsoft.com/en-us/library/windows/
desktop/ms680657(v=vs.85).aspx

6. System V Application Binary Interface (ABI), AMD64 Architecture Processor Sup-
plement, Draft Version 0.98

7. x64 manual stack reconstruction and stack walking. https://blogs.msdn.
microsoft.com/ntdebugging/2010/05/12/x64-manual-stack-reconstruction-and-
stack-walking/

8. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of CCS (2005)

9. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., Boneh, D.: Hacking blind.
In: Proceedings of IEEE Security and Privacy (2014)

10. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: Proceedings of ASIACCS (2011)

11. Bosman, E., Bos, H.: Framing signals - a return to portable shellcode. In: Proceed-
ings of IEEE Security and Privacy (2014)

http://www.dwarfstd.org/doc/DWARF4.pdf
http://www.dwarfstd.org/doc/DWARF4.pdf
https://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
https://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
http://msdn.microsoft.com/en-us/library/hh254939.aspx
http://msdn.microsoft.com/en-us/library/hh254939.aspx
http://www.objc.io/issue-6/mach-o-executables.html
http://www.objc.io/issue-6/mach-o-executables.html
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680657(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680657(v=vs.85).aspx
https://blogs.msdn.microsoft.com/ntdebugging/2010/05/12/x64-manual-stack-reconstruction-and-stack-walking/
https://blogs.msdn.microsoft.com/ntdebugging/2010/05/12/x64-manual-stack-reconstruction-and-stack-walking/
https://blogs.msdn.microsoft.com/ntdebugging/2010/05/12/x64-manual-stack-reconstruction-and-stack-walking/

92 Y. Fu et al.

12. Carlini, N., Wagner, D.: ROP is still dangerous: breaking modern defenses. In:
Proceedings of USENIX Security (2014)

13. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proceedings of CCS (2010)

14. Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., Xie, L.: DROP: detecting return-
oriented programming malicious code. In: Prakash, A., Sen Gupta, I. (eds.) ICISS
2009. LNCS, vol. 5905, pp. 163–177. Springer, Heidelberg (2009)

15. Chen, P., Xing, X., Mao, B., Xie, L.: Return-oriented rootkit without returns (on
the x86). In: Proceedings of ICICS (2010)

16. Cheng, Y., Zhou, Z., Yu, M., Ding, X., Deng, R.H.: ROPecker: a generic and
practical approach for defending against ROP attacks. In: Proceedings of NDSS
(2014)

17. Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S., Grier,
A., Wagle, P., Zhang, Q.: Stackguard: automatic adaptive detection and prevention
of buffer-overflow attacks. In: Proceedings of USENIX Security (1998)

18. Criswell, J., Dautenhahn, N., Adve, V.: KCoFI: complete control-flow integrity for
commodity operating system kernels. In: Proceedings of the IEEE Security and
Privacy (2014)

19. Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: a detection tool to defend
against return-oriented programming attacks. In: Proceedings of ASIACCS (2011)

20. Durden, T.: Bypassing PaX ASLR protection. Phrack Mag. 59(9), June 2002.
http://www.phrack.org/phrack/59/p59-0x09

21. Fratric, I.: ROPGuard: runtime prevention of return-oriented programming
attacks. https://code.google.com/p/ropguard/

22. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual
machine-based platform for trusted computing. In: Proceedings of SOSP (2003)

23. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of NDSS (2003)

24. Goktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: overcom-
ing control-flow integrity. In: Proceedings of IEEE Security and Privacy (2014)

25. Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G.: Size
does matter: why using gadget-chain length to prevent code-reuse attacks is hard.
In: Proceedings of USENIX Security (2014)

26. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.W.: ILR: where’d my
gadgets go? In: Proceedings of IEEE Security and Privacy (2012)

27. Hofmann, O.S., Dunn, A.M., Kim, S., Roy, I., Witchel, E.: Ensuring operating
system kernel integrity with OSck. In: Proceedings of ASPLOS (2011)

28. Howard, M., Thomlinson, M.: Windows ISV software security defenses. http://
msdn.microsoft.com/en-us/library/bb430720.aspx

29. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: bypassing kernel code
integrity protection mechanisms. In: Proceedings of USENIX Security (2009)

30. Kim, G.H., Spafford, E.H.: The design and implementation of tripwire: a file system
integrity checker. In: Proceedings of CCS (1994)

31. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootk-
its with “return-less” kernels. In: Proceedings of EuroSys (2010)

32. Microsoft: A detailed description of the Data Execution Prevention (DEP) feature
in Windows XP Service Pack 2 (2008). http://support.microsoft.com/kb/875352

33. Mudge: How to Write Buffer Overflows (1997). http://l0pht.com/advisories/
bufero.html

34. Oakley, J., Bratus, S.: Exploiting the hard-working DWARF: trojan and exploit
techniques with no native executable code. In: Proceedings of WOOT (2011)

http://www.phrack.org/phrack/59/p59-0x09
https://code.google.com/p/ropguard/
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://support.microsoft.com/kb/875352
http://l0pht.com/advisories/bufero.html
http://l0pht.com/advisories/bufero.html

Detecting Stack Layout Corruptions with Robust Stack Unwinding 93

35. Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-free: defeat-
ing return-oriented programming through gadget-less binaries. In: Proceedings of
ACSAC (2010)

36. Aleph One: Smashing the stack for fun and profit. Phrack 7(49), November 1996.
http://www.phrack.com/issues.html?issue=49&id=14

37. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: hindering
return-oriented programming using in-place code randomization. In: Proceedings
of IEEE Security and Privacy (2012)

38. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP exploit miti-
gation using indirect branch tracing. In: Proceedings of USENIX Security (2013)

39. Petroni Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a coprocessor-
based kernel runtime integrity monitor. In: Proceedings of USENIX Security (2004)

40. Petroni Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An architecture for
specification-based detection of semantic integrity violations in kernel dynamic
data. In: Proceedings of USENIX Security (2006)

41. Petroni Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: Proceedings of CCS (2007)

42. Pietrek, M.: A crash course on the depths of win32 structured exception handling.
Microsoft Syst. J. 12(1), January 1997

43. Prakash, A., Yin, H.: Defeating ROP through denial of stack pivot. In: ACSAC
(2015)

44. Roglia, G.F., Martignoni, L., Paleari, R., Bruschi, D.: Surgically returning to ran-
domized lib(c). In: Proceedings of ACSAC (2009)

45. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In: Proceedings of SOSP (2007)

46. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: Proceedings of CCS (2007)

47. Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of CCS (2004)

48. Smith, N.P.: Stack Smashing Vulnerabilities in the UNIX Operating System (2000)
49. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.R.:

Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: Proceedings of IEEE Security and Privacy (2013)

50. Sotirov, A., Dowd, M.: Bypassing browser memory protections in windows vista.
http://www.phreedom.org/research/bypassing-browser-memory-protections/

51. Spafford, E.H.: The internet worm program: an analysis. SIGCOMM Comput.
Commun. Rev. 19, 17–57 (1989)

52. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.:
Breaking the memory secrecy assumption. In: Proceedings of EuroSec (2009)

53. PaX Team: http://pax.grsecurity.net/
54. PaX Team: Pax address space layout randomization (ASLR) (2003). http://pax.

grsecurity.net/docs/aslr.txt
55. The Enhanced Mitigation Experience Toolkit, Microsoft. http://technet.microsoft.

com/en-us/security/
56. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano,

L., Pike, G.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
Proceedings of USENIX Security (2014)

57. Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.: On the expres-
siveness of return-into-libc attacks. In: Proceedings of RAID (2011)

58. Vreugdenhil, P.: Pwn2own 2010: Windows 7 internet explorer 8 exploit. http://
vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf

http://www.phrack.com/issues.html?issue=49&id=14
http://www.phreedom.org/research/bypassing-browser-memory-protections/
http://pax.grsecurity.net/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://technet.microsoft.com/en-us/security/
http://technet.microsoft.com/en-us/security/
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf

94 Y. Fu et al.

59. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: Proceedings of CCS (2012)

60. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
Proceedings of IEEE Security and Privacy (2013)

61. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Proceedings of
the USENIX Security (2013)

62. Zovi, D.A.D.: Return oriented exploitation. In: Blackhat (2010)

Low-Level Attacks and Defenses

APDU-Level Attacks in PKCS#11 Devices

Claudio Bozzato1, Riccardo Focardi1,2(B), Francesco Palmarini1,
and Graham Steel2

1 Ca’ Foscari University, Venice, Italy
cbozzato@dsi.unive.it, {focardi,palmarini}@unive.it

2 Cryptosense, Paris, France
graham@cryptosense.com

Abstract. In this paper we describe attacks on PKCS#11 devices that we
successfully mounted by interacting with the low-level APDU protocol, used
to communicate with the device. They exploit proprietary implementa-
tion weaknesses which allow attackers to bypass the security enforced at
the PKCS#11 level. Some of the attacks leak, as cleartext, sensitive crypto-
graphic keys in devices that were previously considered secure. We present
a new threat model for the PKCS#11 middleware and we discuss the new
attacks with respect to various attackers and application configurations.
All the attacks presented in this paper have been timely reported to man-
ufacturers following a responsible disclosure process.

1 Introduction

Cryptographic hardware such as USB tokens, smartcards and Hardware Security
Modules has become a standard component of any system that uses cryptog-
raphy for critical activities. It allows cryptographic operations to be performed
inside a protected, tamper-resistant environment, without the need for the appli-
cation to access the (sensitive) cryptographic keys. In this way, if an application
is compromised the cryptographic keys are not leaked, since their value is stored
securely in the device.

Cryptographic hardware is accessed via a dedicated API. PKCS#11 defines
the RSA standard interface for cryptographic tokens and is now administered
by the Oasis PKCS11 Technical Committee [14,15]. In PKCS#11, fresh keys are
directly generated inside devices and can be shared with other devices through
special key wrapping and unwrapping operations, that allow for exporting and
importing keys encrypted under other keys. For example, a fresh symmetric key
k can be encrypted (wrapped) by device d1 under the public key of device d2 and
then exported out of d1 and imported (unwrapped) inside d2 that will perform,
internally, the decryption. In this way, key k will never appear as cleartext out
of the devices. One of the fundamental properties of PKCS#11 is, in fact, that
keys marked as sensitive should never appear out of a device unencrypted.

In the last 15 years, several API-level attacks on cryptographic keys have
appeared in literature [1,3–6,9,12]. As pioneered by Clulow [6], the attributes of
a PKCS#11 key might be set so to give the key conflicting roles, contradicting the
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 97–117, 2016.
DOI: 10.1007/978-3-319-45719-2 5

98 C. Bozzato et al.

standard key separation principle in cryptography. For example, to determine
the value of a sensitive key k1 given a second key k2, an attacker simply wraps
k1 using k2 and decrypts the resulting ciphertext using k2 once again. The fact
that a key should never be used to perform both the wrapping of other keys
and the decryption of arbitrary data (including wrapped keys) is not explicitly
stated in the specification of PKCS#11 and many commercial devices have been
recently found vulnerable to Clulow’s attack [5].

In this paper, we describe new, unpublished attacks that work at a different
API-level. The PKCS#11 API is typically implemented in the form of a middle-
ware which translates the high-level PKCS#11 commands into low-level ISO 7816
Application Protocol Data Units (APDUs) and exposes results of commands in the
expected PKCS#11 format. In our experiments, we noticed that this translation
is far from being a 1-to-1 mapping. Devices usually implement simple building
blocks for key storage and cryptographic operations, but most of the logic and,
in some cases, some of the sensitive operations are delegated to the middleware.

We have investigated how five commercially available devices implement var-
ious security-critical PKCS#11 operations, by analyzing in detail the APDU traces.
Our findings show that APDU-level attacks are possible and that four out of the
five analyzed devices leak symmetric sensitive keys in the clear, out of the device.
We also show that, under a reasonable attacker model, the authentication phase
can be broken, allowing for full access to cryptographic operations. Interestingly,
we found that most of the logic of PKCS#11 is implemented at the library level.
Key attributes that regulate the usage of keys do not have any importance at the
APDU-level and can be easily bypassed. For example, we succeeded performing
signatures under keys that do not have this functionality enabled at the PKCS#11
level. For one device, we also found that RSA session keys are managed directly
by the library in the clear violating, once more, the PKCS#11 basic requirement
that sensitive keys should never leave the token unencrypted.

The focus of this paper is primarily on USB tokens and smartcards, so our
threat model refers to a typical single-user desktop/laptop configuration. In par-
ticular, we consider various application configurations in which the PKCS#11 layer
and the authentication phase are run at different privileges with respect to the
user application. Protecting the PKCS#11 middleware turns out to be the only
effective way to prevent the APDU-level attacks that we discovered, assuming that
the attacker does not have physical access to the token. In fact, physical access
would enable USB sniffing, revealing any key communicated in the clear from/to
the token. Separating authentication (for example using a dialog running at a
different privilege) offers additional protection and makes it hard to use the
device arbitrarily through the PKCS#11 API. However, an attacker might still
attach to the process and mount a Man-In-The-Middle attack at the PKCS#11
layer, injecting or altering PKCS#11 calls.

Contributions. In this paper we present: (i) a new threat model for PKCS#11
middleware; (ii) new, unpublished APDU-level attacks on commercially available
tokens and smartcards, some of which were considered secure; (iii) a security
analysis of the vulnerabilities with respect to the threat model.

APDU-Level Attacks in PKCS#11 Devices 99

Related work. Many API-level attacks have been published in the last 15 years.
The first one is due to Longley and Rigby [12] on a device that was later revealed
to be a Hardware Security Module manufactured by Eracom and used in the
cash machine network. In 2000, Anderson published an attack on key loading
procedures on another similar module manufactured by Visa [1] and presented
more attacks in two subsequent papers [3,4]. Clulow published the first attacks
on PKCS#11 in [6]. All of these attacks had been found manually or through
ad-hoc techniques. A first effort to apply general analysis tools appeared in
[20], but the researchers were unable to discover any new attacks and could
not conclude anything about the security of the device. The first automated
analysis of PKCS#11 with a formal statement of the underlying assumptions was
presented in [9]. When no attacks were found, the authors were able to derive
precise security properties of the device. In [5], the model was generalized and
provided with a reverse-engineering tool that automatically refined the model
depending on the actual behaviour of the device. When new attacks were found,
they were tested directly on the device to get rid of possible spurious attacks
determined by the model abstraction. The automated tool of [5] successfully
found attacks that leak the value of sensitive keys on real devices.

Low-level smartcard attacks have been studied before but no previous APDU-
level attacks and threat models for PKCS#11 devices have been published in
literature. In [2], the authors showed how to compromise the APDU buffer in
Java Cards through a combined attack that exploits both hardware and software
vulnerabilities. In [8], the authors presented a tool that gives control over the
smart card communication channel for eavesdropping and man-in-the-middle
attacks. In [13], the authors illustrated how a man-in-the-middle attack can
enable payments without knowing the card PIN.

In [10] a subset of the authors investigated an automated method to system-
atically reverse-engineer the mapping between the PKCS#11 and the APDU layers.
The idea is to provide abstract models in first-order logic of low level communi-
cation, on-card operations and possible implementations of PKCS#11 functions.
The abstract models are then refined based on the actual APDU trace, in order to
suggest the actual mapping between PKCS#11 commands and APDU traces. The
two papers complement each other: the present one illustrates real attacks with
a threat model and a security analysis, while [10] focuses on automating the
manual, non-trivial reverse engineering task. All of the attacks presented here
have been found manually and some of them have been used as test cases for
the automated tool of [10].

Finally, for what concerns the threat model, in the literature we find a number
of general methodologies (e.g., [17–19]) that do not directly apply to our setting.
In [7] the authors discussed threat modelling for security tokens in the setting of
web application while [16] described in details all the actors and threats for smart
cards, but none of these papers considered threats at the PKCS#11 middleware
layer. To the best of our knowledge, the threat model we propose in this work is
the first one in the setting of PKCS#11 tokens and smartcards which takes into
account the APDU layer as an attack entry point.

100 C. Bozzato et al.

Structure of the paper. The paper is organized as follows: in Sect. 2 we give
background about the PKCS#11 and APDU layers; in Sect. 3 we present the threat
model; in Sect. 4 we illustrate in detail our findings on five commercially available
devices; in Sect. 5 we analyze the attacks with respect to the threat model and
in Sect. 6 we draw some concluding remarks.

2 Background

PKCS#11 defines the RSA standard interface for cryptographic tokens and is now
developed by the Oasis PKCS11 Technical Committee [14,15].

The PKCS#11 API is typically implemented in the form of a middleware which
translates the high-level PKCS#11 commands into low-level ISO 7816 Application
Protocol Data Units (APDUs) and exposes results of commands in the expected
PKCS#11 format. Thus, from an architectural perspective, the PKCS#11 middle-
ware can be seen as the combination of two layers: the PKCS#11 API and the
device API. All of the devices we have analyzed are based on the PC/SC speci-
fication for what concerns the low-level device API.1 This layer is the one that
makes devices operable from applications and allows for communication with the
device reader, exposing both standard and proprietary commands, formatted as
ISO 7816 APDUs. In the following, we will refer to this layer as the APDU layer.

The PKCS#11 and the APDU layer are usually implemented as separate
libraries. As an example, in Windows systems PC/SC is implemented in the
winscard.dll library. Then, a separate, device-specific PKCS#11 library links to
winscard.dll in order to communicate with the device.

It is important to notice that, even if PC/SC provides a standard layer for
low-level communication, different devices implement the PKCS#11 API in var-
ious, substantially different ways. As a consequence, each device requires its
specific PKCS#11 library on top of the PC/SC one. Figure 1 gives an overview of
a typical PKCS#11 middleware architecture with two cards requiring two differ-
ent PKCS#11 libraries which communicates with the cards using the same PC/SC
library.

In Subsects. 2.1 and 2.2 we illustrate the PKCS#11 and the APDU layers more in
detail. Readers familiar with these layers can safely skip the following sections.

2.1 The PKCS#11 Layer

As well as providing access to cryptographic functions – such as encryption,
decryption, sign and authentication – PKCS#11 is designed to provide a high
degree of protection of cryptographic keys. Importing, exporting, creating and
deleting keys stored in the token should always be performed in a secure way.
In particular, the standard requires that even if the token is connected to an
untrusted machine, in which the operating system, device drivers or software
might be compromised, keys marked as sensitive should never be exported as
cleartext out of the device.
1 http://www.pcscworkgroup.com/.

http://www.pcscworkgroup.com/

APDU-Level Attacks in PKCS#11 Devices 101

Fig. 1. PKCS#11 middleware for two PC/SC (winscard.dll) cards with different
PKCS#11 libraries.

In order to access the token, an application must authenticate by supplying a
PIN and initiate a session. Notice, however, that if the token is connected to an
untrusted machine the PIN can be easily intercepted, e.g., through a keylogger.
Thus, the PIN should only be considered as a second layer of protection and it
should not be possible to export sensitive keys in the clear even for legitimate
users, that know the PIN (cf. [15], Sect. 7).

PKCS#11 defines a number of attributes for keys that regulate the way keys
should be used. We briefly summarize the most relevant ones from a security
perspective (see [14,15] for more detail):

CKA SENSITIVE the key cannot be revealed as plaintext out of the token. It
should be impossible to unset this attribute once it has been set, to avoid
trivial attacks;

CKA EXTRACTABLE the key can be wrapped, i.e. encrypted, under other keys and
extracted from the token as ciphertext; unextractable keys cannot be reve-
lead out of the token even when encrypted. Similarly to CKA SENSITIVE, it
should not be possible to mark a key as extractable once it has been marked
unextractable;

CKA ENCRYPT, CKA DECRYPT the key can be used to encrypt and decrypt arbi-
trary data;

CKA WRAP, CKA UNWRAP the key can be used to encrypt (wrap) and decrypt
(unwrap) other CKA EXTRACTABLE, possibly CKA SENSITIVE keys. These two
operations are used to export and import keys from and into the device;

CKA SIGN, CKA VERIFY the key can be used to sign and verify arbitrary data;
CKA PRIVATE the key can be accessed even if the user is not authenticated to

the token when it is set to false;
CKA TOKEN the key is not stored permanently on the device (discarded at the

end of the session) when it is set to false.

102 C. Bozzato et al.

0 /* Session initialization and loading of DESkey has been omitted ... */
1

2 CK_BYTE_PTR plaintext = "AAAAAAAA"; /* plaintext */
3 CK_BYTE iv[8] = {1, 2, 3, 4, 5, 6, 7, 8}; /* initialization vector */
4 CK_BYTE ciphertext[8]; /* ciphertext output buffer */
5 CK_ULONG ciphertext_len; /* ciphertext length */
6 CK_MECHANISM mechanism = {CKM_DES_CBC, iv, sizeof(iv)}; /* DES CBC mode with given iv */
7

8 /* Initialize the encryption operation with mechanism and DESkey */
9 C_EncryptInit(session, &mechanism, DESkey);

10

11 /* Encryption of the plaintext string into ciphertext buffer */
12 C_Encrypt(session, plaintext, strlen(plaintext), ciphertext, &ciphertext_len);

Listing 1.1. PKCS#11 DES/CBC encryption under key DESkey.

Example 1. (PKCS#11 symmetric key encryption). Listing 1.1 reports a fragment
of C code performing symmetric DES/CBC encryption of plaintext "AAAAAAAA"
with initialization vector 0x0102030405060708. PKCS#11 session has already
been initiated and session contains a handle to the active session. We also
assume that DESkey is a valid handle to a DES encryption key.

We can see that C EncryptInit initializes the encryption operation by
instantiating the DES/CBC cryptographic mechanism and the cryptographic key
DESkey. Then, C Encrypt performs the encryption of the string plaintext and
stores the result and its length respectively in ciphertext and ciphertext len.
In order to keep the example simple, we skipped checks for errors that should
be performed after every PKCS#11 API call (cf. [15], Sect. 11). In Subsect. 2.2 we
will show how this example is mapped in APDUs on one token.

2.2 The APDU Layer

The ISO/IEC 7816 is a standard for identification, integrated circuit cards. Orga-
nization, security and commands for interchange are defined in part 4 of the
standard [11]. The communication format between a smartcard and an off-card
application is defined in terms of Application Protocol Data Units (APDUs). In
particular, the half-duplex communication model is composed of APDU pairs:
the reader sends a Command APDU (C-APDU) to the card which replies with a
Response APDU (R-APDU). The standard contains a list of inter-industry com-
mands whose behaviour is specified and standardized. Manufacturers can inte-
grate these standard commands with their own proprietary commands.

A C-APDU is composed of a mandatory 4-byte header (CLA,INS,P1,P2), and
an optional payload (Lc,data,Le), described below:

CLA one byte referring to the instruction class which specifies the degree of
compliance to ISO/IEC 7816 and whether the command and the response are
inter-industry or proprietary. Typical values are 0x00 and 0x80, respectively
for inter-industry and proprietary commands;

INS one byte representing the actual command to be executed, e.g. READ
RECORD;

APDU-Level Attacks in PKCS#11 Devices 103

0 # The challenge-response authentication is omitted. For details see

Subsect. 4.1

1

2 # ISO-7816 SELECT FILE command to select the folder (DF) where the

key is stored

3 APDU: 00 a4 04 0c 00 00 06 50 55 42 4c 49 43

4 SW: 90 00

5 # ISO-7816 SELECT FILE command to select the file (EF) containing the

encryption key

6 APDU: 00 a4 02 0c 00 00 02 83 01

7 SW: 90 00

8 # Encryption of the plaintext (red/italic) using the selected key and

the given IV (green/overlined). The ciphertext is returned by

the token (blue/underlined).

9 APDU: 80 16 00 01 00 00 10 01 02 03 04 05 06 07 08

41 41 41 41 41 41 41 41 00 00

10 SW: d2 ef a5 06 92 64 44 13 90 00

Listing 1.2. APDU session trace of the PKCS#11 symmetric key encryption.columns

P1,P2 two bytes containing the instruction parameters for the command, e.g.
the record number/identifier;

Lc one or three bytes, depending on card capabilities, containing the length of
the optional subsequent data field;

data the actual Lc bytes of data sent to the card;
Le one or three bytes, depending on card capabilities, containing the length

(possibly zero) of the expected response.

The R-APDU is composed of an optional Le bytes data payload (absent when Le
is 0), and a mandatory 2-bytes status word (SW1,SW2). The latter is the return
status code after command execution (e.g. FILE NOT FOUND).

Example 2. (Symmetric Key Encryption in APDUs). We show how the PKCS#11
code of Example 1 is mapped into APDUs on the Athena ASEKey USB token.
Notice that this token performs a challenge-response authentication before any
privileged command is executed. For simplicity, we omit the authentication part
in this example but will discuss it in detail in Sect. 4.1.

The encryption operation begins by selecting the encryption key from the
right location in the token memory: at line 3, the token selects the directory
(called Dedicated File in ISO-7816) and, at line 6, the file (Elementary File)
containing the key. At line 9, the encryption is performed: the Initialization Vec-
tor and the plaintext are sent to the token which replies with the corresponding
ciphertext.

We describe in detail the APDU format specification of SELECT FILE com-
mand at line 3:

CLA value 0x00 indicates that the command is ISO-7816 inter-industry;

104 C. Bozzato et al.

INS value 0xA4 corresponds to inter-industry SELECT FILE (cf. [11], Sect. 6);
P1 value 0x04 codes a direct selection of a Dedicated File by name;
P2 value 0x0C selects the first record, returning no additional information about

the file;
Lc the tokens is operating in extended APDU mode, thus this field is 3 bytes

long. Value 0x000006 indicates the length 6 of the subsequent field;
data contains the actual ASCII-encoded name (“PUBLIC”) of the DF to be

selected;
SW1,SW2 the status word 0x90 0x00 returned by the token indicates that the

command was successfully executed.

It is important to notice that the C EncryptInit function call sends no APDU to
the token: we can infer that the low level protocol of the encryption operation
is stateless and the state is managed inside the PKCS#11 library. This example
shows that the mapping between the PKCS#11 layer and the APDU layer is not
1-to-1 and the PKCS#11 library is in some cases delegated to implement critical
operations, such as maintaining the state of encryption. We will see how this
leads to attacks in Sect. 4.

3 Threat Model

In this section we analyze various threat scenarios and classify them based on
the attacker capabilities.

We consider a typical scenario in which the target token is connected to a
desktop or laptop computer running in a single-user configuration. We describe
the threat model by focusing on the following sensitive targets:

PIN If the attacker discovers the PIN he might be able to perform cryptographic
operations with the device when it is connected to the user’s host or in case
he has physical access to it;

Cryptographic operations The attacker might try to perform cryptographic
operations with the token, independently of his knowledge of the PIN;

Cryptographic keys The attacker might try to learn sensitive keys either by
exploiting PKCS#11 API-level attacks such as Clulow’s wrap-and-decrypt [6]
(cf. Subsect. 2.1) or by exploiting the new APDU-level vulnerabilities we will
discuss in Sect. 4.

3.1 Administrator Privileges

If the attacker has administration privileges, he basically has complete control of
the host. He can modify the driver, replace the libraries, intercept any input for
the users and attach to any running process2. As such, he can easily learn the
PIN when it is typed or when it is sent to the library, use the PIN to perform
any cryptographic operations and exploit any PKCS#11 or APDU level attacks to
extract cryptographic keys in the clear.
2 This is typically done by using the operating system debug API to instrument or

inspect the target process memory. Examples are the Event Tracing API for Windows
and the Linux ptrace() syscall.

APDU-Level Attacks in PKCS#11 Devices 105

3.2 User Privileges

The most common situation is when the attacker has user privileges. In this case
we have different scenarios:

Monolithic. The application is run by the same user as the attacker and directly
links both the PKCS#11 and the APDU library. The attacker can easily sniff and
alter data by attaching to the application process and by intercepting library
calls. The attacker can easily learn the PIN when it is sent to the library, use
the PIN to perform any cryptographic operations and exploit any PKCS#11 or
APDU level attacks to extract cryptographic keys in the clear.

Separate Authentication Mechanism. The application is run by the same
user as the attacker and directly links the PKCS#11 library but authentication
is managed by a separate software or hardware which is not directly accessible
with user privileges. Examples could be a separate dialog for entering the PIN
running at different privileges or some biometric sensor integrated in a USB
token. The attacker cannot directly log into the token but can still sniff and
alter data by attaching to the application process and by intercepting library
calls. If the attacker is able to place in the middle and alter data, he could
additionally exploit PKCS#11 or APDU-level attacks to extract cryptographic keys
in the clear. Notice that, knowing the PIN, this can be done by simply opening
a new independent session. Without knowledge of the PIN, instead, the attacker
needs a reliable Man-In-The-Middle (MITM) attack.

Separate Privileges. If the middleware layer is run as separate process at a
different privilege level, the attacker cannot attach to it and observe or alter
APDUs. The attacker can still try to access the token directly, so if there are ways

Table 1. Threats versus attackers and applications.

106 C. Bozzato et al.

to bypass authentication he might be able to perform cryptographic operations
and exploit PKCS#11 or APDU-level attacks.

3.3 Physical Access

If the attacker has physical access to the user host he might install physical key-
loggers and USB sniffers. This is not always feasible for example if the devices
are integrated, as in laptops. In the case of a key-logger, the attacker can easily
discover the PIN if it is typed through the keyboard. The case of directly sniff-
ing APDUs passing, e.g., through USB, is interesting and more variegated since
different sensitive data could be transmitted through the APDU layer, as we will
illustrate in Sect. 4.

3.4 Summary of the Threat Model

Table 1 summarizes what the various attackers can access and exploit in different
settings. We distinguish between passive APDU attacks, where the attacker just
sniffs the APDU trace, and active APDU attacks, where APDUs are injected or altered
by the attacker. In some cases active APDU attacks require mounting a MITM,
e.g., when the PIN is now known or when the attacker does not have access to
the middleware, as in physical attacks.

We point out that, if the application is monolithic, an attacker with user privi-
leges is as powerful as one with administrative privileges. The maximum degree of
protection is when the application offers separate authentication and the middle-
ware runs with different privileges. We notice that the attacker can still perform
PKCS#11-level attacks without knowing the PIN by mounting a MITM and alter-
ing or hijacking the API calls. Finally, physical attacker can in principle perform all
the attacks, except the ones that are based on inspecting process (or middleware)
memory and assuming, in some cases, MITM capabilities.

4 APDU-Level Attacks on Real Devices

We have tested the following five devices from different manufacturers for pos-
sible APDU-level vulnerabilities.

– Aladdin eToken PRO (USB)
– Athena ASEKey (USB)
– RSA SecurID 800 (USB)
– Safesite Classic TPC IS V1 (smartcard)
– Siemens CardOS V4.3b (smartcard)

For readability, in the following we will refer to the above tokens and smart-
cards as eToken PRO, ASEKey, SecurID, Safesite Classic and Siemens CardOS,
respectively. These five devices are the ones tested in [5] for which we could find
APDU-level attacks. It is worth noticing that we could not inspect the APDU traces

APDU-Level Attacks in PKCS#11 Devices 107

of some other devices analyzed in [5] because they encrypt the APDU-level com-
munication. We leave the study of the security of encrypted APDUs as a future
work.

We have systematically performed various tests on selected sensitive oper-
ations and we have observed the corresponding APDU activity. We have found
possible vulnerabilities concerning the login phase (Subsect. 4.1), symmetric sen-
sitive keys (Subsect. 4.2), key attributes (Subsect. 4.3), private RSA session keys
(Subsect. 4.4).

Quite surprisingly, we have found that, in some cases, cryptographic keys
appear as cleartext in the library which performs cryptographic operations in
software. Moreover, we have verified that the logic behind PKCS#11 key attributes
is, in most of the cases, implemented in the library. We have also found that all
devices are vulnerable to attacks that leak the PIN if the middleware is not
property isolated and run with a different privilege (which is usually not the
case). Moreover, attackers with physical access could sniff an authentication
session through the USB port and brute-force the PIN once the authentication
protocol has been reverse-engineered.

Our findings have been timely reported to manufacturers following a respon-
sible disclosure process and are described in detail in the following subsec-
tions. Official answers from manufacturers, if any, will be made available at
https://secgroup.dais.unive.it/projects/apduattacks/.

4.1 Authentication

In PKCS#11 the function C Login allows a user to authenticate, in order to
activate a session and perform cryptographic operations. For the five devices
examined, we found that authentication is implemented in two different forms:
plaintext and challenge-response.

Plain Authentication. This authentication method is used by Safesite Classic
and Siemens CardOS. When the function C Login is called, the PIN is sent
as plaintext to the token to authenticate the session. This operation does not
return any session handle at the APDU level, meaning that the low level protocol
is stateless: a new login is transparently performed by the library before any
privileged command is executed. The fact the PIN is sent as plaintext allows to
easily sniff the PIN even without having control of the computer, for example
using a hardware USB sniffer.

In Table 2 we report an excerpt of a real APDU session trace of the C Login
function. We can see that Safesite Classic and Siemens CardOS tokens use (line 4)
the standard ISO-7816 VERIFY command to authenticate: the PIN, in red col-
or/italic, is sent as a ASCII encoded string (“1234” and “12345”, respectively).

Challenge-Response Authentication. In the eToken PRO, ASEKey and
SecurID tokens the function C Login executes a challenge-response protocol to

https://secgroup.dais.unive.it/projects/apduattacks/

108 C. Bozzato et al.

Table 2. APDU session trace of the PKCS#11 C Login function for the five devices.

authenticate the session: the middleware generates a response based on the chal-
lenge provided by the token and the PIN given by the user. At the APDU level,
eToken PRO and ASEKey do not return any session handle thus, as for the pre-
vious devices, the low level protocol is stateless and a new login is transparently
performed by the library before executing any privileged command. Instead, on
the SecurID the challenge-response routine is executed only once for each session
as it returns a session handle.

PKCS#11 standard allows PIN values to contain any valid UTF8 character,
but the token may impose restrictions. Assuming that the PIN is numeric and
short (4–6 digits), which is the most common scenario, an attacker is able to
bruteforce the PIN offline, i.e. without having access to the device, as it is enough
to have one APDU session trace containing one challenge and one response. As
a proof of concept, we have reverse engineered the authentication protocol of
eToken PRO and ASEKey implemented in the PKCS#11 library. This allowed us
to try all possible PINs and check whether or not the response computed from
the challenge and the PIN matches the one in the trace.

APDU-Level Attacks in PKCS#11 Devices 109

In Table 2 we can see that eToken PRO makes use of proprietary commands to
request the challenge and provide the response, while ASEKey uses the standard
ISO-7816 GET CHALLENGE and EXTERNAL AUTHENTICATE commands. We have
not reverse engineered the challenge-response protocol of the SecurID token but,
looking at the APDU session trace, we can identify a three-steps authentication
protocol. At line 1 eight random bytes are sent to the token; then, a standard
ISO-7816 GET RESPONSE command is issued to retrieve the challenge (highlighted
in red and italic at line 5) and the identifier of the PKCS#11 session (highlighted in
green and overlined). Line 7 contains the response generated by the middleware.

On both plain and challenge-response authentication, we have found that
tokens implement no protection against MITM: if an attacker can place himself
in the middle of the connection he could exploit an authentication exchange to
alter user commands or inject his own ones.

4.2 Sensitive Symmetric Keys

We discovered that in Siemens CardOS, eToken PRO and SecurID encryption
and decryption under a sensitive symmetric key is performed entirely by the
middleware. As a consequence, the value of the sensitive key is sent out of the
token as plaintext. This violates the basic PKCS#11 property stating that sen-
sitive keys should never be exported in the clear. We also found that ASEKey
surprisingly reuses the authentication challenge (sent in the clear) as the value
of freshly generated DES keys.

In the following, we describe the four devices separately.

Siemens CardOS V4.3b. This smartcard does not allow to create symmetric
keys with CKA TOKEN set to true, meaning that symmetric keys will always be
session keys. According to PKCS#11 documentation, session keys are keys that
are not stored permanently in the device: once the session is closed these keys
are destroyed. Notice that this does not mean that sensitive session keys should
be exported in the clear out of the token. What distinguishes a session key from
a token key is persistence: the former will be destroyed when the session is closed
while the latter will persist in the token.

We observed that encryption under a sensitive key sends no APDUs to the
token. This gives evidence that encryption takes place entirely in the middle-
ware. Moreover, we verified that even C GenerateKey function does not send any
APDU: in fact, it just calls the library function pkcs11 CryptGenerateRandom to
generate a random key value whose value is stored (and used) only inside the
library.

Aladdin eToken PRO. In Table 3 (first row), we show that symmetric key
generation in eToken PRO is performed by the middleware. We can see, in red
and italic, a DES key value sent to the token in the clear.

The value of symmetric keys stored in the eToken PRO can be read by using
the proprietary APDU command 0x18. No matter which attributes are set for

110 C. Bozzato et al.

the key, its value can be read. We tested it over a DES key with attributes
CKA TOKEN, CKA PRIVATE, CKA SENSITIVE set to true. In order to perform this
attack a valid login is required. Since symmetric key operations are performed
by the library, this APDU command is used to retrieve the key from the token
before performing operations in software.

As an example, in Table 3 (second row) we see part of a C WrapKey operation
that retrieves a the DES cryptographic key from the token. We can see the value
of the key in the clear.

RSA SecurID 800. In Table 3 (third row), we show that symmetric key gen-
eration in SecurID is also performed by the middleware. We can see, in red and
italic, a 3DES key value sent to the token in the clear.

We were also able to retrieve the value of a sensitive key stored inside
the SecurID by just issuing the correct APDU command. In fact, when trying
to use the C GetAttributeValue function, the library correctly returns the
CKR ATTRIBUTE SENSITIVE error. However, what really happens is that the key

Table 3. Leakage of sensitive symmetric keys during PKCS#11 operations.

APDU-Level Attacks in PKCS#11 Devices 111

0 # Manage security environment
1 APDU: 00 22 41 b6 06 80 01 12 84 01 07
2 SW: 90 00
3 # Custom perform security operation
4 APDU: 80 2a 9e ac 16 90 14 59 b7 b5 0c 2e 69 4e 3f 7e 2f 06 7f 07 1d 8e dd de ba 8c c0
5 SW: 61 80
6 # Custom getData
7 APDU: 80 c0 00 00 80
8 SW: 9d 70 aa 8d c4 af 7a 88 ba e4 6c ab 47 3e 02 19 81 e5 85 53 8a 6a 1b 83 8c 73 39

29 9e 49 bb 24 a7 27 4f 8e 38 60 b6 d1 71 c6 92 75 58 fe 33 78 d2 fe 99 5c 96 4e
3e 43 15 9d 67 f9 db 7b 8b 3c 29 d4 97 d5 ec 2e 46 7e 2b c9 c4 92 0f 38 eb 65 11
2b e1 ba 61 33 7c a1 03 62 f4 2c 2c f2 52 85 2a ee ab 77 ca 6e 37 8e 3b 5a 57 dd
c1 64 ea d0 76 71 2a 46 0b bc d4 2a ef c0 6c 32 77 c3 5e 79 90 00

Listing 1.3. Forced signature sample

is read from the token but the library just avoids to return it. In Table 3 (fourth
row) we can see (in red and italic) the value of the sensitive key leaked by the
token.

Athena ASEKey. The most surprising behaviour is shown by the ASEKey:
the value of token sensitive symmetric keys cannot be read arbitrarily via APDU
commands, as they are stored in a separated Dedicated File (DF) which requires
authentication. Nonetheless the key value is unnecessarily leaked when the key
is generated.

In Table 3 (fifth row) we report an excerpt of APDU session for the
C GenerateKey function. We notice that C GenerateKey sends (line 9) the
key encrypted under RSA with a modulus (line 7), using the public exponent
0x010001. In fact, the library encrypts the whole Elementary File (EF) con-
taining the key value, that is going to be written in the token. This means that
special care was taken to avoid leaking the value as plaintext when importing it
in the token. Unfortunately the key value already appeared in the clear: quite
surprisingly, key generation re-uses the 8-bytes random string which is used by
the authentication step (line 2) as the sensitive key value.

As a proof of concept, we encrypted a zero-filled 8-bytes buffer using the
C Encrypt function with the generated key and a null initialization vector. We
then performed the same encryption using the 8-bytes challenge as the DES key
value obtaining the same value.

4.3 Bypassing Attribute Values

In all five tokens examined, PKCS#11 attributes are interpreted by the middleware
and do not have any import on the internal behaviour of the token. We performed
a simple test by signing a text using an RSA key having the attribute CKA SIGN
set to false:

1. take a private RSA key with CKA SIGN false;
2. verify that it cannot sign a message via the PKCS#11 API, as expected;

112 C. Bozzato et al.

>>> signed = 0x9d70aa8dc4af7a88bae46cab473e021981e585538a6a1b838c7339299e49bb24a7274f8e3860b6
d171c6927558fe3378d2fe995c964e3e43159d67f9db7b8b3c29d497d5ec2e467e2bc9c4920f38eb65112be1b
a61337ca10362f42c2cf252852aeeab77ca6e378e3b5a57ddc164ead076712a460bbcd42aefc06c3277c35e79

>>> modulus =0xc1886b5f26ad5349426b8e8bfc9f73385d14f6cf2b2f1d95b080ae2df7a1db11b91d36db33f3b9
8f16871774711c03b22d7d97939062031df2d15371173b468f9986701d144f315005ec99a71b226fc71b95660
8c60747ceb4ac0c3725b7d04484ac286196975f18911361e28ec50b661273362131b4a4183e01667b090c96f9

>>> pubkey = 0x010001
>>> hex(pow(signed, pubkey, modulus))
’0x1fff
’ff
’fffffffffffffffffffffffffffff0059b7b50c2e694e3f7e2f067f071d8edddeba8cc0L

Listing 1.4. Signature verification in Python

3. perform the sign operation manually, via APDU, using the private key and
the message. Some tokens use the standard ISO-7816 command PERFORM
SECURITY OPERATION and some others use a proprietary command but, in
both cases after sniffing, it is easy to replicate any valid APDU trace for a
signature.

This confirms that the low-level behaviour of the token is not compliant to
PKCS#11 specification as it allows to perform signature under a key that has
CKA SIGN attribute set to false. Since the behaviour of all five tokens is similar,
in Listing 1.3 we illustrate the case of Safesite Classic as a representative APDU
example trace. At line 4 the message is sent to the token and, at line 8, the
corresponding signature is returned.

We can verify that signature corresponds using Python shell, as shown in
Listing 1.4. In particular, notice that the obtained message corresponds to the
one we signed.

4.4 RSA Session Keys

When using session RSA keys on the eToken PRO, we discovered that key gen-
eration, encryption and decryption operations are performed inside the library.
This means that the value of the private key is exposed in the clear out of the
token.

Even if one might regard to session keys as less important than long-term
keys, as we already discussed in Subsect. 4.2 for Siemens CardOS, PKCS#11 still
requires that if such keys are sensitive they should not be exported out the token
in the clear. For example we can generate a session key which, at some point
before the end of the session, is persisted in the token’s memory by calling the
C CopyObject function. Clearly this newly created object cannot be considered
secure as the value of the private RSA key has already been leaked in the clear
out of the token.

5 Security Analysis

In Table 4 we summarize the APDU-level attacks we found on the five devices.
In the columns labelled PKCS#11 we also report the PKCS#11 attacks from [5],

APDU-Level Attacks in PKCS#11 Devices 113

Table 4. Summary of the vulnerabilities found.

for comparison. In particular, the only token that allows for PKCS#11 Clulow-
style attack extracting a sensitive key in the clear is eToken PRO. For SecurID
we reported that it was possible to directly read the value of sensitive symmetric
keys and RSA released a fix starting from RSA Authentication Client version
3.5.3.3 In the literature we found no known API-level attacks on sensitive keys
for the remaining devices.

All devices are affected by attacks on the PIN, some of which requiring
reverse engineering and brute forcing, and by attacks bypassing key attributes.
For what concerns sensitive keys, only Safesite Classic is immune to attacks.
For the remaining four tokens we have reported new attacks that compromise
sensitive keys that are instead secure when accessed from the PKCS#11 API.

In order to clarify under which conditions the attacks are possible we cross-
compare Table 1 with Table 4 producing table Table 5. In particular, for each
device we take the vulnerabilities reported in Table 4 and we check from Table 1
if the combination attacker/application offers the necessary conditions for the
attack. We omit the Admin attacker as it is in fact equivalent to the User attacker
when the application is monolithic. In particular, we observe that:

User/Monolithic the attacker can attach to the process and eavesdrop the
PIN at the PKCS#11 level. Knowing the PIN the attacker can perform any
operation and inspect the process memory. So all attacks of Table 4 are
enabled;

User/Separate authentication mechanism the attacker cannot eavesdrop
the PIN directly. Interestingly PKCS#11-level attacks and attribute bypass
are still possible through a MITM on the middleware. Moreover, APDU-level
attacks on keys are still valid as they only require to eavesdrop the APDUs;

User/Separate privileges the attacker can still eavesdrop the PIN and work at
the PKCS#11 level but all APDU-level attacks are prevented. In this setting the

3 See https://secgroup.dais.unive.it/projects/tookan/.

https://secgroup.dais.unive.it/projects/tookan/

114 C. Bozzato et al.

Table 5. Summary of vulnerabilities with respect to attackers and applications.

APDU-Level Attacks in PKCS#11 Devices 115

only insecure token is eToken PRO since it allows for PKCS#11-level attacks on
sensitive keys;

User/Separate authentication and privileges this is the more secure set-
ting: the attacker con only perform PKCS#11-level attacks on eToken PRO
through a MITM, since he cannot learn the PIN. All the other tokens are
secure;

Physical/Any application through a keylogger or a USB sniffer the attacker
can learn the PIN. In case of a USB sniffer, for the tokens adopting challange-
response it is also necessary to reverse-engineer the protocol in the library and
perform brute-forcing on the PIN. APDU-level attacks are possible only when
the keys are transmitted from/to the device. So, for eToken PRO RSA session
keys and Siemens CardOS symmetric keys the attacks are prevented, as keys
are directly handled by the library and are never transmitted to the device.
Other attacks can be performed only through a MITM at the USB level.

5.1 Fixes and Mitigations

Compliant PKCS#11 devices should implement all the cryptographic operations
inside the hardware. This would prevent all of the attacks we have discussed
so far, except for the ones on authentication. However, fixing this at the hard-
ware level requires to redesign the device and is probably just not affordable, in
general.

We have seen, however, that having separate authentication and privileges is
a highly secure setting that fixes the problem of cryptographic operations imple-
mented at the library level and, at the same time, protects PIN authentication.
It is worth noticing that running the middleware with separate privileges can
be done transparently to the application while having separate authentication
requires to modify the application so that the login step is managed by separate
software or hardware.

An alternative way to mitigate attacks on PIN, with no changes in applica-
tions, could exploit the OTP functionality of the devices with a display, such
as SecurID. A one-time PIN might be generated by the token and shown on
the display asking the user to combine it with the secret token PIN. In this
way, offline brute-forcing would be slowed down by the longer, combined PIN
and, even if successful, would require physical access to the token in order to
re-authenticate since part of the PIN is freshly generated by the token each time
the user authenticates.

6 Conclusion

We have presented a new threat model for the PKCS#11 middleware and we have
analysed the APDU-level implementation of the PKCS#11 API for five commercially
available devices. Our findings show that all devices present APDU-level attacks
that, for four of them, make it possible to leak sensitive keys in the clear. The
only smartcard immune to attacks to keys is Safesite Classic. We have also found

116 C. Bozzato et al.

that all devices are vulnerable to attacks that leak the PIN if the middleware
is not property isolated and run with a different privilege (which is usually not
the case). Moreover, attackers with physical access could sniff an authentication
session through the USB port and brute-force the PIN once the authentication
protocol has been reverse-engineered.

We have reported our finding to manufacturers following a responsible dis-
closure principle and we are interacting with some of them to provide further
information and advices.

References

1. Anderson, R.: The correctness of crypto transaction sets. In: Christianson, B.,
Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2000. LNCS, vol.
2133, pp. 128–141. Springer, Heidelberg (2001)

2. Barbu, G., Giraud, C., Guerin, V.: Embedded eavesdropping on Java card. In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376,
pp. 37–48. Springer, Heidelberg (2012)

3. Bond, M.: Attacks on cryptoprocessor transaction sets. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg
(2001)

4. Bond, M., Anderson, R.: API level attacks on embedded systems. IEEE Comput.
Mag. 34(10), 67–75 (2001)

5. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: Proceedings of the 17th ACM Conference on Com-
puter and Communications Security (CCS 2010), pp. 260–269. ACM (2010)

6. Clulow, J.: On the Security of PKCS #11. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (2003)

7. De Cock, D., Wouters, K., Schellekens, D., Singelee, D., Preneel, B.: Threat mod-
elling for security tokens in web applications. In: Chadwick, D., Preneel, B. (eds.)
Communications and Multimedia Security, pp. 183–193. Springer, Cham (2005)

8. de Koning, G., Gans, J., de Ruiter.: The smartlogic tool: analysing and testing
smart card protocols. In: Fifth IEEE International Conference on Software Testing,
Verification and Validation, ICST 2012, pp. 864–871 (2012)

9. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11 and proprietary
extensions. J. Comput. Secur. 18(6), 1211–1245 (2010)

10. Gkaniatsou, A., McNeill, F., Bundy, A., Steel, G., Focardi, R., Bozzato, C.: Get-
ting to know your card: reverse-engineering the smart-card application protocol
data unit. In: Proceedings of the 31st Annual Computer Security Applications
Conference, ACSAC 2015, pp. 441–450. ACM (2015)

11. ISO, IEC 7816–4.: Identification cards - Integrated circuit cards - Part 4: Organi-
zation, security and commands for interchange (2013)

12. Longley, D., Rigby, S.: An automatic search for security flaws in key management
schemes. Comput. Secur. 11(1), 75–89 (1992)

13. Murdoch, S.J., Drimer, S., Anderson, R.J., Bond, M.: Chip and PIN is broken.
In: 31st IEEE Symposium on Security and Privacy (S&P 2010), 16–19 May 2010,
Berleley/Oakland, California, USA, pp. 433–446 (2010)

14. OASIS Standard: PKCS #11 Cryptographic Token Interface Base Spec-
ification Version 2.40. http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/
pkcs11-base-v2.40.html

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html

APDU-Level Attacks in PKCS#11 Devices 117

15. RSA Laboratories: PKCS #11 v2.30: Cryptographic Token Interface Standard.
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptogra
phic-token-interface-standard.htm

16. Schneier, B., Shostack, A., et al.: Breaking up is hard to do: modeling secu-
rity threats for smart cards. In: USENIX Workshop on Smart Card Technology,
Chicago, Illinois, USA (1999). http://www.counterpane.com/smart-card-threats.
html

17. Shostack, A.: Experiences threat modeling at microsoft. In: Modeling Security
Workshop. Department of Computing, Lancaster University, UK (2008)

18. Swiderski, F., Snyder, W.: Threat Modeling. Microsoft Press, Redmond (2004)
19. Wang, L., Wong, E., Dianxiang, X.: A threat model driven approach for security

testing. In: Proceedings of the Third International Workshop on Software Engineer-
ing for Secure Systems, SESS 2007, p. 10, Washington, D.C, USA. IEEE Computer
Society (2007)

20. Youn, P., Adida, B., Bond, M., Clulow, J., Herzog, J., Lin, A., Rivest, R., Anderson,
R.: Robbing the bank with a theorem prover. Technical Report UCAM-CL-TR-
644, University of Cambridge, August 2005

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.counterpane.com/smart-card-threats.html
http://www.counterpane.com/smart-card-threats.html

CloudRadar: A Real-Time Side-Channel Attack
Detection System in Clouds

Tianwei Zhang1(B), Yinqian Zhang2, and Ruby B. Lee1

1 Princeton University, Princeton, NJ, USA
{tianweiz,rblee}@princeton.edu

2 The Ohio State University, Columbus, OH, USA
yinqian@cse.ohio-state.edu

Abstract. We present CloudRadar , a system to detect, and hence
mitigate, cache-based side-channel attacks in multi-tenant cloud sys-
tems. CloudRadar operates by correlating two events: first, it exploits
signature-based detection to identify when the protected virtual machine
(VM) executes a cryptographic application; at the same time, it uses
anomaly-based detection techniques to monitor the co-located VMs to
identify abnormal cache behaviors that are typical during cache-based
side-channel attacks. We show that correlation in the occurrence of
these two events offer strong evidence of side-channel attacks. Com-
pared to other work on side-channel defenses, CloudRadar has the fol-
lowing advantages: first, CloudRadar focuses on the root causes of cache-
based side-channel attacks and hence is hard to evade using metamor-
phic attack code, while maintaining a low false positive rate. Second,
CloudRadar is designed as a lightweight patch to existing cloud sys-
tems, which does not require new hardware support, or any hypervisor,
operating system, application modifications. Third, CloudRadar pro-
vides real-time protection and can detect side-channel attacks within
the order of milliseconds. We demonstrate a prototype implementation
of CloudRadar in the OpenStack cloud framework. Our evaluation sug-
gests CloudRadar achieves negligible performance overhead with high
detection accuracy.

Keywords: Attack detection · Side-channel attacks · Performance
counters · Cloud computing · Mitigation

1 Introduction

Infrastructure-as-a-Service (IaaS) cloud systems usually adopt the multi-tenancy
feature to maximize resource utilization by consolidating virtual machines (VMs)
leased by different tenants on the same physical machine. Virtualization tech-
nology is used to provide strong resource isolation between different VMs so
each VM’s memory content is not accessible to other co-tenant VMs. However,
confidentiality breaches due to cross-VM side-channel attacks become a major
concern. These attacks often operate on shared hardware resources and extract
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 118–140, 2016.
DOI: 10.1007/978-3-319-45719-2 6

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 119

sensitive information, such as cryptographic keys, by making inferences on the
observed side-channel events due to resource sharing. CPU caches are popular
attack surfaces that lead to cross-VM side-channel attacks. Several prior work
have shown the possibilities of cross-VM secret leakage via different levels of
CPU caches [10,14,15,21,42,45,46].

Mitigating side-channel attacks in clouds is challenging. Past work on defeat-
ing side-channel attacks have some practical drawbacks: they mostly require sig-
nificant changes to the hardware [6,20,39,40], hypervisors [17,18,31,33,35,48]
or guest OSes [48], making them impractical to be deployed in current cloud dat-
acenters. Other work have proposed to mitigate these attacks in cloud contexts
by periodic VM migrations to reduce the co-location possibility between vic-
tim VMs and potential malicious VMs [25,47]. These heavy-weight approaches
cannot effectively prevent side-channel leakage unless performed very frequently,
making them less practical as VM co-location takes on the order of minutes [34]
while side-channel attacks can be done on the order of milliseconds [21,42].

In this paper, we propose to detect side-channel attacks as they occur and
prevent information leakage by triggering VM migration upon attack detec-
tion. However, side-channel attack detection is non-trivial. To do so, we must
overcome several technical challenges in the application of traditional detection
techniques, like signature-based detection and anomaly-based detection, to side-
channel attacks. Signature-based side-channel detection exploits pattern recog-
nition to detect known attack methods [4,5,13]. While low in false negatives for
existing attacks, it fails to recognize new attacks; anomaly-based detection flags
behaviors that deviate significantly from the established normal behaviors as
attacks, which can potentially identify new attacks in addition to known ones.
However, differentiating side-channel attacks from normal applications is diffi-
cult as these attacks just perform normal memory accesses which resemble some
memory intensive applications.

To overcome these challenges, we design CloudRadar , a real-time system to
detect the existence of cross-VM side-channel attacks in clouds. There are two
key ideas behind CloudRadar : first, the victim has unique micro-architectural
behaviors when executing cryptographic applications that need protection from
side-channel attacks. So the cloud provider is able to identify the occurrence of
such events using a signature-based detection method. Second, the attacker VM
creates an anomalous cache behavior when it is stealing information from the
victim. Such anomaly is inherent in all side-channel attacks due to the inten-
tional cache contention with the victim to induce side-channel observations. By
correlating these two types of events, CloudRadar is able to detect the stealthy
cache side-channel attacks with high fidelity.

We implement CloudRadar as a lightweight extension to the virtual machine
monitors. Specially, it (1) utilizes the existing host system facilities to collect
micro-architectural features from hardware performance counters that are avail-
able in all modern commodity processors, and (2) non-intrusively interacts with
the existing virtualization framework to monitor the VM’s cache activities while

120 T. Zhang et al.

inducing little performance penalty. Our evaluations show that it effectively
detects side-channel attacks with high true positives and low false positives.

Compared to past work, CloudRadar has several advantages. First,
CloudRadar focuses on the root causes of cache-based side-channel attacks and
hence is hard to evade using different attack code, while maintaining a low
false positive rate. Our approach is able to detect different types of side-channel
attacks and their variants with a simple method. Second, CloudRadar is designed
as a lightweight patch to existing cloud systems, which does not require new
hardware support or hypervisor/OS modifications. Therefore CloudRadar can be
immediately integrated into modern cloud fabric without making drastic changes
to the underlying infrastructure. Third, CloudRadar exploits hardware perfor-
mance counters to monitor VM activities, which detects side-channel attacks
within the order of milliseconds with negligible performance overhead. Finally,
CloudRadar requires no changes to the guest VM or the applications running in
it, and thus is transparent to cloud customers.

To summarize, CloudRadar achieves the following contributions:

• The first approach to detect cache side-channel attacks using techniques that
combine both signature-based and anomaly-based detection techniques.

• A novel technique to identify the execution of cryptographic applications,
which are of interest in its own right.

• A non-intrusive system design that requires no changes to the hardware,
hypervisor and guest VM and applications, which shows potential of imme-
diate adoption in modern clouds.

• Full prototype implementation and extensive evaluation of the proposed app-
roach and detection techniques.

The rest of this paper is organized as follows: Sect. 2 presents the back-
ground of cache side-channel attacks and defenses, and other detection systems
based on performance counters. Section 3 presents the design challenges and sys-
tem overview. Section 4 discusses the signature-based methods to detect cryp-
tographic applications. Section 5 shows the anomaly-based method to detect
side-channel activities. Section 6 presents the architecture and implementation
of CloudRadar . Section 7 evaluates its performance and security. We discuss the
limitations of CloudRadar and potential evasive attacks against it in Sect. 8.
Section 9 concludes.

2 Background and Related Work

2.1 Cache Side-Channel Attacks

In cache-based side-channel attacks, the adversary exfiltrates sensitive informa-
tion from the victim via shared CPU caches. The sensitive information are usu-
ally associated with cryptographic operations (e.g., signing or decryption), but
may also be extended to other applications [46]. Such sensitive information are

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 121

leaked through secret-dependent control flows or data flows that lead to attacker-
observable cache use patterns. The adversary, on the other hand, may exploit
several techniques to manipulate data in the shared cache to deduce the victim’s
cache use patterns, and thereby make inference on the sensitive information that
dictates these patterns. Two cache manipulation techniques are well-known for
side-channel attacks:

Prime-Probe Attacks: The adversary allocates an array of cacheline-sized,
cacheline-aligned memory blocks so that these memory blocks can exactly fill up
a set of targeted cache sets. Then the adversary repeatedly performs two attack
stages: in the prime stage, the adversary reads each memory block in the array to
evict all the victim’s data in these cache sets. The adversary waits for some time
interval before performing the probe stage, in which he reads each memory block
in the array again, and measures the time of memory accesses. Longer access
time indicates one or more cache misses, which means this cache set has been
accessed by the victim between the prime and probe stages. The adversary
will repeat these two steps for significant amount of times to collect traces that,
hopefully, overlap with the victim’s execution of cryptographic operations, for
offline analysis. This technique was first proposed by Percival [27], and then
applied to the cloud environment in [14,21,28,45].

Flush-Reload Attacks: This type of attacks assumes identical memory pages
can be shared among different VMs, so that the adversary and victim VMs
may share the same pages containing cryptographic code or data. The adver-
sary carefully selects a set of cacheline-sized, -aligned memory blocks from these
shared pages. Then he also conducts two stages repeatedly: in the flush stage,
the adversary flushes the selected blocks out of the entire cache hierarchy (e.g.,
using the clflush instruction). Then it waits for a fixed interval in which the vic-
tim might issue the critical instructions and fetch them back to the caches. In the
reload stage, the adversary reloads these memory blocks into the caches and
measures the access time. A short access time for one memory block indicates
a cache hit, so this block has been accessed by the victim during the interval.
By repeating these two stages the adversary can obtain traces of the victim’s
memory accesses and deduce the confidential data. This Flush-Reload tech-
nique was first proposed in [11], and further demonstrated in different virtualized
platforms with different variants [9,10,15,46].

2.2 Defenses Against Side-Channel Attacks

Previous studies propose to defeat cache-based Side-channel attacks in one of
these three ways:

– Partitioning caches: One straightforward approach is to prevent the cache
sharing by dividing the cache into different zones by sers or ways for different
VMs. This can be achieved by hardware [6,19,40] or software methods [17,31].

122 T. Zhang et al.

– Randomization: This idea is to add randomization to the attacker’s mea-
surements, making it hard for him to get accurate information based on his
observations. This includes random memory-to-cache mappings [39,40], cache
prefetches [20], timers [18,35] and cache states [48].

– Avoiding co-location: New VM placement policies were designed [1,12] to
reduce the co-location probability between victim and attacker VMs. Zhang
et al. [47] and Moon et al. [25] frequently migrated the VMs to add difficulty
of VM co-location for the attackers.

These approaches, when applied in the cloud setting, require significant
modification of computing infrastructure, and thus are less attractive to cloud
providers for practical adoption. In our study, we aim to build atop existing cloud
framework a lightweight side-channel attack detection system to detect, and then
mitigate, the attacks as they take place, while doing so without modifying guest
OS, hypervisor or hardware.

2.3 Intrusion Detection Using Hardware Performance Counters

Hardware performance counters are a set of special-purpose registers built into
×86 (e.g., Intel and AMD) and ARM processors. They work along with event
selectors which specify certain hardware events, and update a counter after a
hardware event occurs. Most modern processors provide a Performance Monitor
Unit (PMU) that enables applications to control performance counters. One of
the basic working modes of PMUs is the interrupt-based mode. Under this work-
ing mode, an interrupt is generated when the occurrences of a given event exceed
a predefined threshold or a predefined amount of time has elapsed. Therefore, it
makes both event-based sampling and time-based sampling possible.

Performance counters were originally designed for software debugging and
system performance tuning. Recently, researchers exploited performance coun-
ters to detect security breaches and vulnerabilities [2,5,23,32,36,37,41,43]. The
intuition is that the performance counters can reveal programs’ execution char-
acteristics, which can further reflect the programs’ security states. Besides, per-
formance counter detection introduces negligible performance overhead to the
programs. Related to ours were signature-based side-channel attack detection
using performance counters [4,5,13], which, unfortunately, could be easily evaded
by smarter attackers by slightly changing cache probing pattern.

3 Design Challenges and Overview

In this paper, we explore an oft-discussed, but never successfully implemented,
idea: exploiting hardware performance counters available in commodity proces-
sors to detect side-channel attacks that abuse processor caches. We first system-
atically explore the design challenges and then sketch our design of CloudRadar .

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 123

Threat Model and Assumptions. We focus on cross-VM side-channel threats
in public IaaS clouds based on Last Level Caches (LLC) that are shared between
processor cores. We assume the adversary is a legitimate user of the cloud service
who is able to launch VMs in the cloud and has complete control of his VMs.
We further assume the attacker is able to co-locate one of his VMs on the same
server as the victim VM, and the two VMs will share the same processor package,
thus the LLC, with non-negligible probability. We consider both Prime-Probe
side-channel attacks and Flush-Reload side-channel attacks, which represent
all known LLC side channels in modern computer systems.

3.1 Design Challenges

Signature-Based Detection. Signature-based detection approaches are
widely used techniques in detecting network intrusion and malware, by compar-
ing monitored application or network characteristics with pre-identified attack
signatures. Similarly, to detect side-channel attacks, signatures of side-channel
attacks must be generated from all known side-channel attack techniques and
used to compare with events collected from production systems. Prior work [4,5]
has preliminarily explored such ideas. Particularly, Demme et al. demonstrated
in a simplified experiment setting that classification algorithms could success-
fully differentiate normal programs from Prime-Probe attack programs. The
advantage of this approach is that they have high true positive rate in detecting
known attacks. However, such detection method is very fragile and easy to evade
by clever attackers. It also fails to recognize unknown attacks even with only sub-
tle changes from existing ones. For instance, the attacker can change the mem-
ory access pattern (e.g., sequential order, access frequency) in a Prime-Probe
attack to evade signature-based detection.

Anomaly-Based Detection. In anomaly-based detection, the normal behav-
iors of benign applications are modeled and any substantial deviation from such
models are detected as attacks. To detect side-channel attacks using such tech-
niques, one can build models for benign application behaviors. Then for each VM
to be monitored, we check if its behaviors conform to the models in the database.
Compared to signature-based detection, anomaly-based detection can potentially
identify “zero-day” attacks in addition to known ones. However, the difficulty
of applying the anomaly-based approach to side-channel attacks stems from the
challenge of precisely modeling benign application activities using performance
counters. Cache side-channel attacks resemble benign memory intensive applica-
tions (e.g., memory streaming application [24]), and therefore they are difficult
to be differentiated using only hardware performance counters. False positive or
false negative rates can be extremely high due to imprecise application behavior
modeling. We are not aware of successful side-channel detection methods that
are based on anomaly detection.

124 T. Zhang et al.

3.2 Design Overview

We design a side-channel attack detection system, CloudRadar , that combines
both anomaly-based and signature-based techniques. The only features used by
CloudRadar are hardware event values read from the performance counters avail-
able in commercial processors. The key insight that motivates CloudRadar is
derived from our prior research in side-channel attacks: in cache side-channel
attacks, to effectively exfiltrate secret information from the victim’s sensitive
execution, the attacker needs to repeatedly conduct side-channel activities (e.g.,
Prime-Probe or Flush-Reload) and deduce his own cache uses based on the
execution time of his own memory activities. Then he can make inferences on the
victim’s cache use pattern by looking at the statistics of his use of caches (e.g.,
cache hits and cache misses). As such, the attacker’s cache use patterns must be
different when the victim executes sensitive operations so that the attacker can
differentiate them in his own analysis. Our intuition is that if such distinction
can be detected by the attacker using timing channels, it can be detected by the
cloud provider using performance counters.

We design CloudRadar to monitor all VMs running on a cloud server and col-
lect their cache use patterns using hardware performance counters. Once anom-
aly in cache use patterns are detected by CloudRadar , these anomalies will be
correlated with the sensitive operations (usually cryptographic operations) in
the co-located protected VM (i.e., VMs owned by customers paying for such
services). Strong correlation will serve as a good indicator of cache-based side-
channel attacks.

Two key technical challenges in our design are (1) identifying the execu-
tion of the protected VM’s sensitive operations without asking the customers
to modify their applications and (2) detecting untrusted VM’s abnormal cache
use patterns. We aim to achieve both by using only values read from perfor-
mance counters. To do so, we first propose to use signature-based techniques to
detect sensitive applications of the protected VM, because they are conducted
by honest parties and will not attempt to evade detection intentionally—a per-
fect target of signature-based detection techniques. Second, we propose to use
anomaly-based detection techniques to detect abnormal cache patterns due to
side-channel activities, as they are expected to vary due to different attack tech-
niques and intensity. As side-channel attack detection is done via correlation
with sensitive operations, false positives that are common challenges to anomaly
detection techniques can be ruled out. We will highlight our design of these two
components in Sects. 4 and 5.

4 Signature Detection of Cryptographic Applications

As sensitive operations that are targeted by side-channel attacks are usually
cryptographic operations, we consider detection of cryptographic applications in
this paper. Our working hypothesis here is that all cryptographic applications
have unique signatures that can be easily identified by performance counters. In
this section, we validate our hypothesis by a set of preliminary experiments.

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 125

4.1 Cryptographic Signature Generation

To generate signatures for detecting cryptographic applications, we need to select
a proper hardware performance feature that uniquely characterizes a certain
execution phase [30] of such applications.

Feature Selection. Modern processors allow a large number of events to be
measured and reported by performance counters. The signature generated from
a proper hardware event should satisfy two requirements: (1) uniqueness: the
signatures of different applications should be highly distinguishable; (2) repeata-
bility : the signature of a cryptographic application should be identical each time
it is generated, regardless of the platform’s configurations and the inputs.

We consider different events from three main categories: CPU events, cache
events and kernel software events. We use the Fisher Score [7] to test the repeata-
bility and uniqueness of these events in identifying cryptographic applications.
Fisher Score is one of the most widely used methods to select features quickly. It
finds the optimal feature so that the distances between data points in the feature
space of different classes are maximized, while the distances between data points
in the same class are minimized.

To test the uniqueness of an event, we use performance counters to measure
the number of this event every 100µs during the execution of six representative
cryptographic applications (i.e., asymmetric cryptography: ElGamal and DSA
from GnuPG; symmetric cryptography: AES and 3DES from OpenSSL; hash:
HMAC from OpenSSL and SHA512 from GnuPG). We select 10 consecutive
counter values (collected from 10 × 100µs) from the beginning of each applica-
tion to form a timing sequence as one training data point. We repeat this 100
times for each cryptographic application. For each hardware event we consid-
ered, we calculate the Fisher Score using 600 training data points from the six
cryptographic applications to test the uniqueness of this event in distinguishing
different applications. Table 1 (Inter-class F-Score column) shows the results.
Note a larger inter-class F-Score indicates a better uniqueness of this event.
We can see some CPU events (instructions, branches and mispredicted branch
instructions) and cache events (L1I load misses) are better candidates for signa-
ture generation. They vary significantly for different cryptographic applications.
The events that rarely happen during the cryptographic execution (e.g., context
switches and page faults), or remain identical for different cryptographic appli-
cations (e.g., CPU cycles or clock) fail to satisfy the uniqueness requirement.

To test the repeatability of an event, we repeat the above experiments on three
servers with different hardware and software configurations. For each crypto-
graphic application, we calculate the Fisher Score from 300 training data points
collected from three servers. Table 1 (Intra-class F-Score column) shows the aver-
age Fisher Score of the six cryptographic programs. A smaller Intra-class F-Score
indicates the signature with this event is more repeatable. We are able to find
some events with good repeatability (e.g., instructions, branches and mispre-
dicted branch instructions).

126 T. Zhang et al.

Table 1. Fisher scores for different events.

Category Events Inter-class F-Score Intra-class F-Score

CPU events Instructions 1.49 0.13

Branch instructions 1.55 0.14

Mispredicted branch instructions 1.11 0.15

CPU cycles 0.01 0.30

Cache events L1D load accesses 0.37 0.72

L1D load misses 0.69 0.42

L1I load misses 1.14 0.20

LLC load accesses 0.79 0.31

LLC load misses 0.05 0.36

iTLB load accesses 0.55 0.27

iTLB load misses 0.23 0.21

dTLB load accesses 0.22 0.63

dTLB load misses 0.36 0.62

Software events Context switches 0.00 0.00

Page faults 0.00 0.00

CPU clock 0.01 0.50

Based on the inter-class and intra-class Fisher Scores, we can choose the
features with both good uniqueness and repeatability for signature matching.
For instance, we can use instructions and branch instructions to conduct multi-
feature classification. Further evaluations in Sect. 7 show one single feature (i.e.,
branch instructions) is already enough to give good accuracy. So we will collect
the number of branch instructions as the feature to generate signatures in the
following sections.

Phase Selection. It has been shown in prior studies that programs run in
different phases [30]. Therefore, another question we need to solve is which phase
of the cryptographic application we should use to generate the signature. The
selected phase should be able to distinguish cryptographic applications from
non-cryptographic applications. It should also be independent of the inputs.

We conducted the following experiments: we ran the same six cryptographic
applications as above. For each cryptographic application, the cryptographic keys
and input message (for signing or encryption) are randomly chosen each time
the applications are executed. We exploit the performance counters to record
the number of branch instructions taking place in the program within 100µs
windows. Figure 1 shows the profiling results for each cryptographic application.
For comparison, we also show the profiling results for three non-cryptographic
applications: Apache, Mysql and the Network File System (NFS).

We observe that the cryptographic applications have different behaviors from
the non-cryptographic ones. Each cryptographic application exhibits three dis-
tinguishable stages, labeled in Fig. 1. (1) The first stage initializes the program

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 127

Fig. 1. Signatures of different applications based on the number of branches

and variables. Specifically, it analyzes the application’s parameters, allocates
buffers for the input and output messages, retrieves keys from passphrase or
salts, and sets up the cipher context. This stage does not depend on the inputs.
(2) The second stage computes the cryptographic operations (e.g., multiply or
square operations, checking lookup tables, etc.), the characteristics of which are
input dependent: the duration of this stage is linearly related to the length of the
plaintext/ciphertext, and the pattern depends on the values of the cryptographic
key and the plaintext/ciphertext blocks. (3) The last stage ends the application,
frees the memory buffer and reports the results. We chose the first stage as the
signature to represent a crypto application, because it is input independent. The
Fisher Score in Table 1 were also generated for this stage.

4.2 Cryptographic Application Detection

To detect the execution of the sensitive applications, CloudRadar only requires
the customers to provide the signature generated offline using performance coun-
ters (not necessarily on the same hardware) or simply the executables for the
service provider to generate the signature. At runtime, CloudRadar keeps mon-
itoring the protected VM using the same set of performance counters. It then
compares the data points collected at runtime with the signature of the crypto-
graphic application. If a signature match is found, CloudRadar will assume the

128 T. Zhang et al.

Fig. 2. DTW distances of different cryptographic programs. The lowest distance indi-
cates a signature match.

cryptographic application is being executed by the protected VM (In fact, our
evaluation in Sect. 7 shows high fidelity of this approach).

Because the cryptographic signatures and runtime measurements are tem-
poral sequences of performance counter values, we cast the signature detection
problem as a time series analysis problem: i.e., measuring the similarity between
the two sequences that represent the signature and the runtime measurement,
respectively. We adopt the Dynamic Time Warping (DTW) algorithm [29] to
calculate the distance between the two sequences. DTW is able to measure the
similarity between temporal sequences which may vary in speed: it tries differ-
ent alignments between these sequences and finds the optimal one that has the
shortest distance. This distance is called the DTW distance. We chose the DTW
algorithm because the runtime sequence may be slightly stretched or shrunk
due to the difference of the computing environment (e.g., CPU models, running
speed, interruption, etc.). DTW is powerful enough to find the similarity between
two temporal sequences even with distortion.

We normalize the DTW distance to the magnitude of the signature sequence,
which is used as the metric for pattern matching. Figure 2 shows the normalized
DTW distance of different cryptographic programs. We observe that occurrence
of cryptographic programs yields very small DTW distances, which indicates a
signature match. We defer a more systematic evaluation of the signature-based
cryptographic program detection technique to Sect. 7.

5 Anomaly Detection of Side-Channel Activities

The cache use patterns that CloudRadar monitors for anomaly detection are
characterized by the cache hit count and the cache miss count measured by
the performance counters: In Prime-Probe side-channel attacks, the attacker

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 129

Probes certain cache sets and measures if there are cache miss via timing the
accesses to this set after the victim executes. It is expected that cache misses
will be higher than normal when the protected VM executes the cryptographic
operations, since cache misses will be the tell-tale signal for the attacker to detect
these operations in the first place. In Flush-Reload side-channel attacks, the
attacker Reloads certain cache lines and tries to detect a cache hit. Cache hits
should occur more frequently during the protected VM’s sensitive operations.

To validate this hypothesis, we conducted a set of experiments to show
that abnormal cache activities in the untrusted VM can be correlated with the
protected VM’s sensitive operations. We first consider a Prime-Probe attack
against the ElGamal cipher [21]. Figure 3 shows the DTW distance (low dis-
tance indicates a signature match) between the runtime sequence and the sig-
nature sequence observed on the protected VM (top figure), correlates with
the attacker VM’s high cache miss counts (bottom figure). We next consider
a Flush-Reload attack against the RSA cipher [42]. Figure 4 shows the low
DTW distance of the protected VM correlates with the high cache hit counts
of the attacker VM. We align the top figures and the bottom figures according
to timestamps. Strong correlation can be observed in both set of experiments,
which suggest that this method can be used for side-channel attack detection.

To describe our detection algorithm more precisely, when CloudRadar detects
that the victim VM starts executing crypto applications (a low DTW dis-
tance), two short sub-sequences are selected from the entire monitored runtime
sequences in the untrusted VMs: S, data points of size w before the DTW dis-
tance reaches its minimum, and S

′, data points of size w after the minimum
points of DTW distance, where w is a parameter of the detection system. If
CloudRadar detects that the difference between any value in S

′ and any value in
S is larger than a pre-determined threshold T , CloudRadar will raise an alarm
of a possible side-channel attack. This rule can be formally expressed in Eq. 1.
We will further evaluate this side-channel detection method in Sect. 7.

Alarm: v′ − v > T, ∀v ∈ S, v′ ∈ S
′ (1)

Fig. 3. Prime-Probe attack Fig. 4. Flush-Reload attack

130 T. Zhang et al.

6 Implementation

6.1 System Architecture Overview

CloudRadar is provided by the cloud operator as a security service to the cus-
tomers who are willing to pay extra cost for better security, as in Security-
on-Demand cloud frameworks [16,44]. Figure 5 shows the architecture of
CloudRadar , and the workflow of detecting side-channel attacks. We implement
CloudRadar in the opensource cloud software OpenStack platform. Two types
of servers, the Cloud Controller and regular Cloud Servers, are relevant to our
discussion.

The Cloud Controller is a dedicated server to manage the provided security
services and coordinate the interaction between service users (cloud customers
paying to use the side-channel detection service) and the Cloud Servers. The
Signature Database is used to store signatures of crypto programs. The Con-
troller Server is built upon the OpenStack Nova module. We modified the Nova
API to enable the customers to request for the side-channel detection services.

CloudRadar ’s functionality within a Cloud Server is tightly integrated with
the host OS. As shown in Fig. 5, CloudRadar consists of three modules, with
each one running on a dedicated core. The Victim Monitor is responsible for
collecting the protected VM’s runtime events, which will be fed to Signature
Detector to detect the cryptographic programs using our signature-based tech-
nique; The Attacker Monitor is responsible for collecting cache activities of
the other VMs, using anomaly-based detection approach to identify side-channel
attackers. We used the Linux perf event kernel API for the PMU to manage the
performance counters, therefore no change is needed to the hypervisor itself.

6.2 Operations

CloudRadar includes four steps, as shown in Fig. 5 with different paths. Each
step is described below:

Fig. 5. Architecture overview of CloudRadar

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 131

Step 1: Generating Cryptographic Signature. In this step, the customer
who seeks side-channel detection services for his protected VM can indicate to
the Cloud Controller what sensitive applications to be protected, by providing
the signatures generated offline using performance counters (not necessarily on
the same hardware) or simply the executables. Then the Cloud Controller will
run these crypto programs on a dedicated server with the same configuration as
the Cloud Server that hosts the protected VM, and use performance counters
to generate the signatures for the customer. The signatures will be stored in the
Signature Database for future reference. They will also be sent to the Cloud
Server that hosts this VM.

Step 2: Detecting Cryptographic Applications. This step takes place at
runtime. In this step, the Victim Monitor monitors the protected VM using
performance counters. It periodically (e.g., every 100µs) records the event counts
(e.g., branch instructions) as a time sequence, while the Signature Detector
keeps comparing the most recent window of data points in the sequence with the
signature. If a signature match is found, the Signature Detector can identify
the protected VM is performing a cryptographic application, and signal this
result to the Attacker Monitor.

Step 3: Monitoring Cache Activities. This step happens concurrently with
Step 2. The Attacker Monitor exploits performance counters to monitor all
untrusted VMs simultaneously. One challenge is that not enough performance
counters are available on the servers to monitor all VMs, if this number is large:
most of the Intel and AMD processors support up to six counters, and the number
of counters does not scale with the number of cores. So when there are a lot of
VMs on the server, the Attacker Monitor cannot monitor them concurrently.

To solve this problem, we use a time-domain multiplexing method: Attacker
Monitor identifies active vCPUs that share LLC with the protected VM as the
monitored vCPUs, and then measures each of them in turn. Specifically, in each
period, the Attacker Monitor uses a kernel module to check the state and
CPU affinity of each vCPU of each VM from its task struct in the kernel. The
Attacker Monitor marks the vCPUs in the running state that are sharing the
same LLC with the protected VM as monitored. Then it sets up performance
counters to measure each monitored vCPU’s cache misses and hits in turn. When
the Attacker Monitor is notified that a cryptographic application is happening
in the protected VM, it will compare each monitored vCPU’s cache misses and
hits before and during the cryptographic application, as specified in Sect. 5. If
one vCPU has an abrupt increase in the number of cache misses or hits during
the cryptographic application, the Attacker Monitor will flag an alarm.

Step 4: Eliminating Side Channels. Once the Attack Monitor notices that
one co-tenant VM has abnormal cache behavior exactly when the protected VM
executes cryptographic applications, it will raise alarm for side-channel attacks.

132 T. Zhang et al.

It will migrate this malicious VM to a different processor socket which does
not share the Last Level Cache (LLC), or another cloud server (i.e., via VM
migration [25,47], to cut off the cache side channels. In addition, the Cloud
Controller will report this incident to the cloud provider for further processing,
such as shut down the malicious VM or eventually block the attacker’s account.

7 Evaluation

We used four servers to evaluate the security and performance of CloudRadar .
A Dell R210II Server (equipped with one quad-core, 3.30 GHZ, Intel Xeon
E3-1230v2 processor with 8 GB LLC) is configured as the Controller Server.
Two Dell PowerEdge R720 Servers are deployed as the host cloud servers: one
is equipped with one eight-core, 2.90 GHz Intel Xeon E5-2690 processor with
20 GB LLC; one is equipped with two six-core, 2.90 GHz Intel Xeon E5-2667
processors with 15 GB LLC. We also use another Dell 210II server as the client
machine outside of the cloud system to communicate with cloud applications.
Each VM in our experiments has one virtual CPU, 4 GB memory and 30 GB
disk size. We choose Ubuntu 14.04 Linux, with 3.13 kernel as the guest OS.

7.1 Detection Accuracy

We measure the detection accuracy of cryptographic signature detection and
cache anomaly detection.

Accuracy of Cryptographic Operation Detection. To detect a crypto-
graphic operation, we used the branch instruction counts as the signature. We
consider the detection of a cryptographic application as a binary classification,
and measure its true positive rate and false positive rate. True positive happens
when a cryptographic application is correctly identified as such. We used the
same six cryptographic applications from Sect. 4.1. CloudRadar first generates
a signature for each application. In the detection phase, the victim VM gen-
erates a random memory block and feeds it to the crypto application. We run
the experiment 100 times, and measure the number of times CloudRadar can
correctly identify the cryptographic under different thresholds. False positive is
defined as non-cryptographic applications identified as cryptographic. We select
30 common linux commands and utilities [26] which do not contain cryptographic
operations. In each experiment the victim VM run these commands in a random
order. We repeated the experiment 100 times and measure the number of times
false positives take place under different thresholds. We plot the ROC (Receiver
Operating Characteristic) curves to show the relations between the true positive
rate and false positive rate.

We explored the effect of changing performance counter sampling granu-
larities (i.e., period with which performance counter value is taken) on detec-
tion accuracy. We choose two different sampling granularities: 100µs and 1 ms.
Figure 6 shows the ROC curves of the six cryptographic applications under these

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 133

two granularities. From this figure we can see 100µs gives better accuracy than
1 ms: CloudRadar can achieve close to 100 % true positive rate with zero false
positive rate when the DTW threshold is set between 0.3 and 0.4. For 1 ms,
Elgamal and DSA application can be detected with less accuracy, while SHA512,
AES, HMAC and 3DES cannot be differentiated from non-cryptographic appli-
cations with reasonable false positive and false negative at the same time.

The optimal sampling granularity depends on the length of the cryptographic
application’s initialization stage: if the sampling period is much shorter than the
initialization stage, the signature will contain more data points, thus yielding
more accurate results. In our experiments, the initialization stages of Elgamal,
DSA, SHA512, AES, HMAC and 3DES last for 10 ms, 5 ms, 1.6 ms, 2 ms, 2 ms
and 2 ms respectively. So a granularity of 100µs can give good results for all the
six applications, while 1 ms granularity performs worse, especially for SHA512,
AES, HMAC and 3DES whose signatures only contain two data points.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(a) Elgamal

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(b) DSA

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(c) SHA512

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(d) 3DES

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(e) AES

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

false positive rate

100us
1ms

(f) HMAC

Fig. 6. ROC curve of crypto detection under two sampling intervals.

Accuracy of Cache Side-Channel Attack Detection. We measure the
true positive rate and false positive rate of side-channel attack detection. True
positive is the cases where side-channel attacks that are correctly identified.
We test the Prime-Probe attack [21] and Flush-Reload attack [42]. False
positive is defined as benign programs that are falsely identified as an attack.
We select different common linux commands and utilities as benign applications.
We change the threshold and draw the ROC curves to show the relations between
true positive and false positive rate.

134 T. Zhang et al.

We first considered different window sizes w for S and S
′ (Sect. 5). Figure 7

shows the attack detection accuracy under three window size: w = 1, 3 and 5.
In these experiments, we set the sampling granularity as 1 ms (this sampling
rate is different from that of signature detection). From these results we see
that CloudRadar has an excellent true positive rate: with appropriate thresholds
(100–300 events per 1 ms), the true positive rate can be 100 %. However, it also
has false positives. When w = 1, the false positive rate can be as high as 20 %–
30 %. False positives are caused by the coincidence that a benign application
experiences a phase transition at exactly the same time as the victim application
executes a crypto operation. CloudRadar will observe changes in the benign
application’s cache behavior and think it is due to interference with the victim.
Then it will flag this benign VM as malicious. We can increase w to reduce the
false positive rate without affecting the true positive rate: when w = 5, the false
positive rate is close to 0 while true positive rate is 100 %.

Fig. 7. ROC curve of attack detection under different window lengths.

We also tested different sampling granularities. Figure 8 shows the ROC
curves of detecting two attacks under two different sampling intervals: 1 ms and
100µs. The window size is 5 data points. We can see the 1 ms interval is bet-
ter than the 100µs. This is because when the sampling interval is small, the
number of cache events occurring within a sampling period is comparable to the
measurement noise. So the measurements under this sampling granularity are
not very accurate. It is interesting to note that we need different granularities to
sample the victim’s CPU events (100µs) and attacker’s LLC events (1 ms). This
is because victim’s CPU events occur more frequently than the attacker’s LLC
events. So at the granularity of 100µs, sampling the victim can give finer infor-
mation, while sampling the attacker will introduce large Signal-to-noise ratio
(SNR), making the results less accurate.

7.2 Performance

Detection Latency. Table 2 reports the detection latency of CloudRadar under
different window sizes w and sampling granularities. This detection latency is
defined as the period from the time the victim VM starts to execute sensitive

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 135

Fig. 8. ROC curve of attack detection under different sampling intervals.

operations (i.e., start of the second stage in Fig. 1) to the time an alarm for
side-channel attacks is flagged. We see that CloudRadar can identify the attack
on the order of milliseconds. Considering side-channel attackers usually need at
least several cryptographic operations to steal the keys, this small latency can
achieve our real-time design goal. We also observe that smaller window sizes
and finer granularity can effectively reduce the detection latency, at the cost of
slightly lower accuracy.

Table 2. Detection latency (µs) under different window sizes and sampling intervals

(µs) granularity = 1 ms granularity = 100µs

w = 1 w = 3 w = 5 w = 1 w = 3 w = 5

Prime-Probe 1021.41 3065.86 5110.04 120.49 361.97 603.03

Flush-Reload 1021.50 3064.38 5107.57 122.48 363.27 605.30

Performance Overhead. We select a mix of benchmarks and real-world appli-
cations to evaluate the performance of CloudRadar . Our benchmarks can be
categorized into three types: (1) crypto programs (AES, SHA, HMAC, BF and
MD5 from OpenSSL; ElGamal, RSA and DSA from GnuPG); (2) CPU bench-
marks (mcf, gobmk, omnetpp, astar, soplex and lbm from SPEC2006; canneal
and streamcluster from PARSEC); (3) Cloud applications from CloudSuite [8]
(data analytics, data caching, data serving, graph analytics, media streaming,
software testing, web searching and web serving).

We test the performance penalty due to CloudRadar and show the normalized
run time of each of the benchmark applications in Fig. 9 (results are average of 5
runs, error bars show one standard deviation). The results suggest CloudRadar
has little impact on the performance of the monitored VM: even in the worst
case, performance overhead is within 5 %.

136 T. Zhang et al.

0.7

0.8

0.9

1.0

1.1

1.2

CloudSuiteCPU benchmarks

1ms
100us

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

ser.sea.tes.str.ana.ser.cac.ana.
webwebsof.med.gra.dat.dat.dat.str.can.lbm.sop.ast.omn.gob.mcfDSARSAELG.BFMD5HMA.SHA.AES

Crypto

Fig. 9. Performance of different benchmarks under CloudRadar

8 Discussions

8.1 Detecting Other Side Channels

One can extend CloudRadar to detect cache-based side-channel attacks in other
cloud models (e.g., PaaS [46]), or in non-virtualization environments. The only
change we need to make is to use performance counters to monitor the processes
or threads instead of VMs. Besides, this method can be applied to other micro-
architectural side-channel attacks that exploit resource contention. We can use
performance counters to count the corresponding events that the attacker uses to
retrieve information. For instance, we can monitor the DRAM bandwidth event
to detect the DRAM side-channel attacks in [38]. Generalization of this method
beyond cache-based side-channel attacks will be future work.

8.2 Potential Evasive Attacks

There can be potential evasive attacks against CloudRadar . To evade the detec-
tion of CloudRadar , a side-channel attacker can try to reduce the cache probing
speed, so the abnormal increase in cache misses or hits may not be observed
by CloudRadar . However, the attacker needs a much longer time to recover the
keys, making side-channel attacks more difficult and less practical. An attacker
can also try to evade the detection by adding noise to CloudRadar ’s observa-
tions. However, such noise can also blur the attacker’s observations, making it
more difficult to extract side-channel information. How to design efficient evasive
attacks and how to detect such attacks will be future work.

8.3 Limitations

CloudRadar may be limited in several aspects. First, each of its three modules
(Victim Monitor, Attacker Monitor and Signature Detector) requires an
exclusive use of one physical CPU core as they keep conducting data collection
and analysis at full CPU speed. This can potentially reduce the server’s capac-
ity for hosting VMs. However, as many cloud servers today are equipped with

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 137

dozens of CPU cores, the impact is not as big as one might imagine. Besides,
public clouds usually have low server utilization (<20%) for preserving VMs’
QoS [3,22]. So using three cores will not affect VMs’ performance. Second,
due to the limited number of performance counters available in modern proces-
sors, CloudRadar has to multiplex the monitoring for each VM using the same
counter. When the number of monitored vCPUs scales up, CloudRadar may miss
attacks. We expect future generations of processors will incorporate more perfor-
mance counters and CloudRadar can make use of different counters to monitor
different VMs at the same time.

9 Conclusions

This paper designs CloudRadar , a real-time detection system to detect cache-
based side-channel attacks in clouds. CloudRadar leverages the existing hard-
ware performance counter feature to both monitor a victim VM’s cryptographic
operations and capture a potential attacker VM’s abnormal behavior during this
time. CloudRadar is designed as a lightweight extension to the cloud system and
does not require new hardware, hypervisor/OS or application modifications. The
feasibility of CloudRadar is validated by our implementation on the open source
OpenStack cloud system. Our evaluation shows CloudRadar can detect cache-
based side-channel attacks with high fidelity, while introducing little overhead
to the cloud applications.

Acknowledgements. We thank Fangfei Liu and Dr. Yuval Yarom for providing side-
channel attack codes, and the anonymous reviewers for their feedback on this work.
This work was supported in part by the National Science Foundation under grants
NSF CNS-1218817 and NSF CNS-1566444. Any opinions, findings, and conclusions or
recommendations expressed in this work are those of the authors and do not necessarily
reflect the views of the NSF.

References

1. Azar, Y., Kamara, S., Menache, I., Raykova, M., Shepard, B.: Co-location-resistant
clouds. In: ACM Workshop on Cloud Computing Security (2014)

2. Bahador, M., Abadi, M., Tajoddin, A.: HPCMalHunter: behavioral malware detec-
tion using hardware performance counters and singular value decomposition. In:
IEEE International Conference on Computer and Knowledge Engineering (2014)

3. Barr, J.: Cloud computing, server utilization & the environment (2015). https://
aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/

4. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-
channel attacks using hardware performance counters. Cryptology ePrint Archive,
Report 2015/1034 (2015). http://eprint.iacr.org/

5. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan,
S., Stolfo, S.: On the feasibility of online malware detection with performance
counters. In: ACM International Symposium on Computer Architecture (2013)

https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/
https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/
http://eprint.iacr.org/

138 T. Zhang et al.

6. Domnitser, L., Jaleel, A., Loew, J., Abu-Ghazaleh, N., Ponomarev, D.: Non-
monopolizable caches: low-complexity mitigation of cache side channel attacks.
ACM Trans. Archit. Code Optim. 8, 35:1–35:21 (2012)

7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-
Interscience, Hoboken (2000)

8. EPFL: Cloudsuite. http://parsa.epfl.ch/cloudsuite/cloudsuite.html
9. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+flush: a fast and stealthy

cache attack. In: Detection of Intrusions and Malware and Vulnerability Assess-
ment (2016)

10. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX Conference on Security Symposium
(2015)

11. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on aes to practice. In: IEEE Symposium on Security and Privacy (2011)

12. Han, Y., Alpcan, T., Chan, J., Leckie, C.: Security games for virtual machine
allocation in cloud computing. In: Das, S.K., Nita-Rotaru, C., Kantarcioglu, M.
(eds.) GameSec 2013. LNCS, vol. 8252, pp. 99–118. Springer, Heidelberg (2013)

13. Herath, N., Fogh, A.: These are not your grand daddys CPU performance counters:
CPU hardware performance counters for security. In: Black Hat USA (2015)

14. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: IEEE
Symposium on Security and Privacy (2015)

15. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast, cross-
VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 299–319. Springer, Heidelberg (2014)

16. Jamkhedkar, P., Szefer, J., Perez-Botero, D., Zhang, T., Triolo, G., Lee, R.B.: A
framework for realizing security on demand in cloud computing. In: IEEE Confer-
ence on Cloud Computing Technology and Science (2013)

17. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protection
against cache-based side channel attacks in the cloud. In: USENIX Conference on
Security Symposium (2012)

18. Li, P., Gao, D., Reiter, M.K.: Stopwatch: a cloud architecture for timing channel
mitigation. ACM Trans. Inf. Syst. Secur. 17, 8:1–8:28 (2014)

19. Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., Lee, R.B.: Cata-
lyst: defeating last-level cache side channel attacks in cloud computing. In: IEEE
International Symposium on High Performance Computer Architecture (2016)

20. Liu, F., Lee, R.B.: Random fill cache architecture. In: IEEE/ACM International
Symposium on Microarchitecture (2014)

21. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE Symposium on Security and Privacy (2015)

22. Liu, H.: A measurement study of server utilization in public clouds. In: IEEE
International Conference on Dependable, Autonomic and Secure Computing (2011)

23. Malone, C., Zahran, M., Karri, R.: Are hardware performance counters a cost
effective way for integrity checking of programs. In: ACM Workshop on Scalable
Trusted Computing (2011)

24. McCalpin, J.D.: Stream: sustainable memory bandwidth in high performance com-
puters. http://www.cs.virginia.edu/stream/

25. Moon, S.-J., Sekar, V., Reiter, M.K.: Nomad: mitigating arbitrary cloud side chan-
nels via provider-assisted migration. In: ACM Conference on Computer and Com-
munications Security (2015)

http://parsa.epfl.ch/cloudsuite/cloudsuite.html
http://www.cs.virginia.edu/stream/

CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds 139

26. Natarajan, R.: 50 most frequently used unix/linux commands (with exam-
ples). http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm source=
feedburner

27. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan (2005)
28. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: ACM Conference
on Computer and Communications Security (2009)

29. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26, 43–49 (1978)

30. Sherwood, T., Perelman, E., Hamerly, G., Sair, S., Calder, B.: Discovering and
exploiting program phases. IEEE Micro 23, 84–93 (2003)

31. Shi, J., Song, X., Chen, H., Zang, B.: Limiting cache-based side-channel in multi-
tenant cloud using dynamic page coloring. In: IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (2011)

32. Tang, A., Sethumadhavan, S., Stolfo, S.J.: Unsupervised anomaly-based malware
detection using hardware features. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.)
RAID 2014. LNCS, vol. 8688, pp. 109–129. Springer, Heidelberg (2014)

33. Varadarajan, V., Ristenpart, T., Swift, M.: Scheduler-based defenses against cross-
VM side-channels. In: USENIX Conference on Security Symposium (2014)

34. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerability
study in multi-tenant public clouds. In: USENIX Security Symposium (2015)

35. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in Xen.
In: ACM Workshop on Cloud Computing Security (2011)

36. Wang, X., Karri, R.: Numchecker: detecting kernel control-flow modifying rootkits
by using hardware performance counters. In: ACM/EDAC/IEEE Design Automa-
tion Conference (2013)

37. Wang, X., Konstantinou, C., Maniatakos, M., Karri, R.: Confirm: detecting
firmware modifications in embedded systems using hardware performance coun-
ters. In: IEEE/ACM International Conference on Computer-Aided Design (2015)

38. Wang, Y., Ferraiuolo, A., Suh, G.E.: Timing channel protection for a shared mem-
ory controller. In: IEEE International Symposium on High Performance Computer
Architecture (2014)

39. Wang, Z., Lee, R.: A novel cache architecture with enhanced performance and
security. In: IEEE/ACM International Symposium on Microarchitecture (2008)

40. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channelattacks. In: ACM International Symposium on Computer Architecture
(2007)

41. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: detecting violation of control flow
integrity using performance counters. In: IEEE/IFIP International Conference on
Dependable Systems and Networks (2012)

42. Yarom, Y., Falkner, K.: Flush+reload: a high resolution, low noise, l3 cache side-
channel attack. In: USENIX Conference on Security Symposium (2014)

43. Yuan, L., Xing, W., Chen, H., Zang, B.: Security breaches as PMU deviation:
detecting and identifying security attacks using performance counters. In: Asia-
Pacific Workshop on Systems (2011)

44. Zhang, T., Lee, R.B.: Cloudmonatt: an architecture for security health monitoring
andattestation of virtual machines in cloud computing. In: ACM International
Symposium on Computer Architecture (2015)

45. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: ACM Conference on Computer and Commu-
nications Security (2012)

http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_source=feedburner
http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_source=feedburner

140 T. Zhang et al.

46. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: ACM Conference on Computer and Communications
Security (2014)

47. Zhang, Y., Li, M., Bai, K., Yu, M., Zang, W.: Incentive compatible moving tar-
get defense against VM-colocation attacks in clouds. In: Gritzalis, D., Furnell, S.,
Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376, pp. 388–399. Springer,
Heidelberg (2012)

48. Zhang, Y., Reiter, M.K.: Düppel: retrofitting commodity operating systems to
mitigate cache side channels in the cloud. In: ACM Conference on Computer and
Communications Security (2013)

Measurement Studies

The Abuse Sharing Economy: Understanding
the Limits of Threat Exchanges

Kurt Thomas1(B), Rony Amira1, Adi Ben-Yoash1, Ori Folger1, Amir Hardon1,
Ari Berger1, Elie Bursztein1, and Michael Bailey2

1 Google, Inc., Mountain View, USA
kurtthomas@google.com

2 University of Illinois, Urbana-Champaign, Champaign, USA

Abstract. The underground commoditization of compromised hosts
suggests a tacit capability where miscreants leverage the same machine—
subscribed by multiple criminal ventures—to simultaneously profit from
spam, fake account registration, malicious hosting, and other forms of
automated abuse. To expedite the detection of these commonly abusive
hosts, there are now multiple industry-wide efforts that aggregate abuse
reports into centralized threat exchanges. In this work, we investigate the
potential benefit of global reputation tracking and the pitfalls therein. We
develop our findings from a snapshot of 45 million IP addresses abusing
six Google services including Gmail, YouTube, and ReCaptcha between
April 7–April 21, 2015. We estimate the scale of end hosts controlled by
attackers, expose underground biases that skew the abuse perspectives of
individual web services, and examine the frequency that criminals re-use
the same infrastructure to attack multiple, heterogeneous services. Our
results indicate that an average Google service can block 14 % of abusive
traffic based on threats aggregated from seemingly unrelated services,
though we demonstrate that outright blacklisting incurs an untenable
volume of false positives.

Keywords: Threat exchanges · Reputation systems · Underground spe-
cialization

1 Introduction

The underground commoditization of compromised hosts enables miscreants to
purchase, rent, or repurpose a glut of machinery in order to relay abusive traf-
fic [1,32]. This suggests a tacit capability where miscreants leverage the same
machine—subscribed by multiple criminal ventures—to simultaneously profit
from spam, denial of service, malicious hosting, and other forms of automated
abuse. Evidence to this effect includes the Torpig botnet which acted as an infor-
mation stealer, SOCKS proxy, and HTTP proxy [30]; and the ZeroAccess botnet
involved in search hijacking, automated clickfraud, and bitcoin mining [21]. More
broadly, the pay-per-install business model enables miscreants to pay $10–180 for

c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 143–164, 2016.
DOI: 10.1007/978-3-319-45719-2 7

144 K. Thomas et al.

a thousand installs of an arbitrary payload [4]. Prolific botnets such as ZeroAc-
cess, Mariposa, and Torpig provided similar install capabilities [20,28,30]. As a
consequence, a single infected client may host multiple malware families, such
as 6–15 % of Confickr infections overlapping with Gameover Zeus [2], or 7–10 %
of search bots overlapping with spamming hosts [35].

In the absence of coordinated action among affected Internet services, each
target must redundantly detect and filter commonly abusive hosts. While long-
standing domain and IP blacklists have proven effective at bridging the informa-
tion divide between email providers [12,26,36], there is no similarly mature sys-
tem for globally tracking reputation across heterogeneous services such as cloud
providers, mail servers, and social networks. To address this gap, an industry-
wide effort has emerged in recent years to collate intelligence on active attacks
and abusive clients into centralized threat exchanges [9,19,25,27]. Under the
mantra of “stronger together”, these many-to-many exchanges have attracted
participants across a spectrum of web services including Facebook, Bitly, Drop-
box, Twitter, and Yahoo [9]. Despite momentum within industry, an important
question remains for whether global threat intelligence will significantly improve
current standalone anti-abuse pipelines, and if so, how best to reconcile, pri-
oritize, and act upon warnings generated by algorithms and users rather than
curated honeypots.

In this work, we design a threat exchange called Babel to explore the chal-
lenges and pitfalls inherent to any centralized reputation tracking of Internet
devices. In particular, we measure: (1) the scale and network composition of
infrastructure controlled by attackers; (2) the impact of network churn and eva-
sion on long-term threat tracking; (3) the ratio of benign and abusive traffic
originating from end hosts; and (4) ultimately whether commoditization has cre-
ated a common substrate of abusive hosts that underpin multiple profit vectors.
The answers to these questions serve to inform the nascent design of industry-
lead threat exchanges and to illuminate any value in threat sharing between
companies and government institutions.

To start, we develop an experimental threat exchange that collates hundreds
of millions of real abuse incidents as reported by any of six federated Google
services contending with spam, bulk account creation, fake engagement, and
malware distribution over a 14 day period between April 7–April 21, 2015.1

Each service relies on a specialized definition of abuse where incidents target
semantically distinct entities (e.g., messages, accounts, domains) that are not
immediately reconcilable—an inherent challenge for all threat exchanges. We
decompose these application-specific, through context-rich abuse reports into a
single repository of 45 million abusive IP addresses that serve as the launching
point of attacks. We annotate each address with the volume of abuse per network,
the services affected, and the duration of attacks.

1 We opt for these reports over existing threat exchange data because the nascent (and
invite-only) state of industry threat exchanges precludes a representative dataset for
study.

The Abuse Sharing Economy 145

We find that miscreants operate a vast apparatus of 8 million daily abusive
hosts. Despite the sheer scale of infected devices in the wild, we find that the
distribution of attacks across the Google services in our study is heavily skewed
towards a small number of devices. The top 1 % of abusive IP addresses gen-
erate 48–82 % of abusive traffic per service, with email spam representing the
most concentrated extreme. While this Zipf-like distribution holds for all abuse
verticals, we also find evidence of regional specialization that biases the abuse
perspective of individual Google services. In particular, we find the United States
serves the majority of malware and drive-bys, Russian networks focus on fake
YouTube engagement, and Indian networks create the most fake accounts. These
non-uniform perspectives of abusive networks reduce the effectiveness of central-
ized threat exchanges, but as we will show does not render sharing inoperative.

Before actioning any network-based abuse intelligence, threat exchange con-
sumers must contend with the possibility of coarse or stale abuse signals. To
this end, we introduce a set of techniques to detect IP address re-assignment
and quantify overlap between legitimate and abusive traffic on the same net-
work. We find that a single device will cycle through an average of twenty IP
addresses in two weeks. Translated into an abuse context, 66 % of abusive IP
addresses remain active for a single day before the associated device acquires a
new IP address due to DHCP churn. As such, we find that while abuse lasts long
enough to justify reporting, threat exchanges must enforce explicit time frames
after which stale IP reputation expires.

Ultimately, by accounting for IP dynamism and taking advantage of skew
where a small number of hosts are responsible for the vast majority of abuse,
we find that at most 13 % of Gmail spam and 43 % of fake accounts can be
caught due to simultaneous attacks on other products. These results illustrate
that underground commoditization has yet to manifest into the purported ideal
of miscreants maximizing the value of an infected host by engaging in all possi-
ble profit-generating activities. Nevertheless, we argue there is a value to threat
exchanges that unify the abuse perspectives of heterogeneous web services. How-
ever, acting on this intelligence remains a challenge: outright blacklisting results
in an unacceptable level of collateral damage as 62 % of abusive IP addresses
also relay legitimate content due to either NATing or simultaneous use by the
device’s owner. We discuss potential alternatives, such as incorporating central-
ized reputation signals into application-specific classifiers.

In summary, we highlight some of our key findings:

– Exchanges must track millions of incidents: We estimate miscreants
control over 8 million daily IP addresses from a perspective of just six Google
services.

– Exchanges benefit even unrelated services: Miscreants re-use under-
ground infrastructure across abuse verticals. This allows an average service
to catch 14 % of abuse even when comparing spamming to fake account cre-
ation.

146 K. Thomas et al.

– Exchanges must prioritize threats: An inherent skew in miscreant strate-
gies results in 1 % of abusive devices generating 48–82 % of attacks across
services.

– Exchanges must contend with transient abuse: We find 66 % of abusive
IP addresses impact services for only a single day. Relying on stale incident
reports results in unacceptable false positives.

2 Threat Exchanges: Design and Challenges

We begin by outlining current industry proposals for threat exchanges and poten-
tial challenges inherent to their design, the impact of which we evaluate through-
out our work.

2.1 Existing Threat Exchanges

Threat exchanges are a community-driven, many-to-many broadcast platform for
sharing abuse reports. This contrast with traditional domain and IP blacklists
like Spamhaus or Safe Browsing that rely on a curated one-to-many model for
reporting abuse. Examples include Microsoft’s Interflow [25], Facebook’s Threa-
tExchange [9], IBM’s X-Force Exchange [27], and Alien Vault’s Open Threat
Exchange [19]—all launched between 2012–2015. More historical examples also
exist such as DShield, dating back to 2001, which serves as a bulletin of net-
work intrusion incidents [7]. In practice, exchanges serve as a platform for alert-
ing other participants to malicious IP addresses, URLs, binaries, extensions,
email addresses, and even phone numbers: the support infrastructure underpin-
ning digital fraud and abuse. Early adopters include Twitter, Pinterest, Tumblr,
Dropbox, Bitly, and Yahoo [9] while IBM reports over 1,000 business partici-
pants [27].

2.2 Challenges

While threat exchanges are invaluable in theory for improving anti-abuse
pipelines and providing access to training data, it remains up to participants
to sift through the data deluge to identify credible threats. We summarize the
potential challenges that arise from community-driven reporting.

Translating Threats: The foremost challenge for threat exchange members is
translating intelligence across abuse verticals. Email operates on messages, social
networks on accounts and posts, URL shorteners on pages, and hosting providers
on domains. Conveying threats between such web services requires decomposing
abuse reports into universally recognizable subcomponents, potentially at the
loss of rich contextual details such as collusion among accounts or domains all
hosting the same spam template.

Competing Policies: Participants in threat exchanges each have competing
definitions of abuse (e.g., Terms of Service). For example, one social network may

The Abuse Sharing Economy 147

flag a host for aggressive account creation due to registering five accounts in a
short window, while a second network might consider that typical behavior for a
mobile endpoint. Similarly, a search engine may de-list URLs flagged for blackhat
SEO while a URL shortener’s abuse policy may restrict penalties to drive-by and
phishing domains. Due to the arbitrary nature of many policies, threat exchange
participants must learn which other members most closely match their rule sets.

Implicit Bias: Abuse detection pipelines introduce an unmeasured bias due
to the technology deployed, incomplete training data, and potentially skewed
threats. Consequently, every reported (or unreported) entity carries an implicit
false positive and negative rate that is unknown to all other participants absent
longitudinal monitoring. While honeypots are highly curated to minimize false
positives, any algorithm or user can report abuse to a threat exchange.

Stale Identifiers: Abuse indicators such as IP addresses and domains, unlike
file hashes, suffer from an innate instability introduced by network management
(e.g., DHCP churn), takedown, and compromise remediation after which a host
should no longer be treated as malicious. Reported entities are potentially cred-
ible only for a short time window before they become stale.

Coarse Identifiers: Abuse indicators such as IP addresses and domains rep-
resent coarse identifiers for abusive hosts or pages. In particular, NATs, prox-
ies, and middleboxes serve multiple simultaneous clients. Similarly, free hosting
providers and URL shorteners serve content from a variety of owners all from
the same domain. Blacklisting coarse identifiers inadvertently penalizes legiti-
mate clients.

3 Building a Threat Exchange

With threat exchanges only recently launching, there is no agreed upon best
practice for reconciling abuse incidents across web services. We present our app-
roach for distilling application-specific abuse intelligence into a universal format.
We apply this technique to hundreds of millions of abuse records collected by
Google over a two week period ending on April 21, 2015. We note our limited
collection window arises due to privacy restrictions.

3.1 Collating Abuse Reports

The greatest common divisor among services combating spam, malicious hosting,
and account-related abuse is the IP address (and thus device) perpetrating the
attack. Given a raw feed of labeled abusive and legitimate traffic belonging to a
single web service, we aggregate threat intelligence into a tuple 〈service, IP, date,
volume, badness〉 that contains a service identifier (e.g., Gmail), IP address, the
date of abuse (restricted to 24 h granularity), the volume of traffic originating
from the address over the 24 h period (e.g., email received), and the ratio of the
traffic the service flagged as abusive. This approach allows us to identify which
services are most impacted by mixed legitimate and abusive traffic and whether

148 K. Thomas et al.

attacks persist for long periods. While other approaches exist, such as restricting
analysis to domains or file hashes, we opt for IP addresses in our study because
they are more expensive for miscreants to acquire and also universally applicable.
We discuss limitations with this approach later in this section.

3.2 Abusive Traffic Dataset

In order to conduct our study, we rely on an abuse dataset that consists of
45 million IPv4 addresses reported by any of six Google services combating
fraud and abuse. We detail each source of reports and highlight false positive
and negative rates of respective feeds when previously published. A detailed
breakdown of feeds is available in Table 1. As mentioned in Sect. 2, each of these
datasets carries an implicit bias due to unknown accuracy, skewed threats, and
orders of magnitude more traffic that are fundamental to threat exchanges.

Table 1. Summary of abusive IPv4 addresses and the service targeted. We use the
abbreviated names of services for all figures throughout our study.

Abbr. Reporting service IP addresses ASNs

– Total abusive IPs 45,171,301 40,069

GML Gmail spam 19,818,529 31,088

CAP ReCaptcha failures 14,892,992 34,018

YTB YouTube engagement 5,910,688 19,007

CMT Comment spam 4,233,722 21,607

SIG Bulk account creation 1,616,067 15,627

SAF Safe browsing 49,117 3,348

Gmail Inbound Email [Spam]: Our Gmail dataset consists of SMTP relay
IP addresses that sent an inbound spam email to a Gmail user, including mes-
sages blocked at the delivery layer and via content-based classification. Previous
studies estimated this accuracy at above 99 % [3]. We annotate each IP address
with the total number of emails sent and the fraction Gmail blocked as spam.

Bulk Account Registration [Fake Accounts]: Our bulk account dataset
includes IP addresses tied to automated account registration attempts blocked
at creation or retroactively disabled upon detection where our timestamp reflects
the original creation time of the account. We annotate each IP address with the
number of registration attempts and the fraction Google identified as fraudulent.

YouTube Likes, Subscribes [Fake Engagement]: Our YouTube dataset
contains IP addresses belonging to Google accounts polluting videos with fake
“likes” and “subscribes”, a form of signed-in abuse. We annotate each IP address
with the total volume of likes and subscribes and the fraction YouTube flagged
as abusive.

The Abuse Sharing Economy 149

Comments [Spam]: Our comment dataset contains IP addresses tied to Google
accounts that post spam comments to Blogger, YouTube, and Google+. We
annotate each IP address with the total number of comments posted via the
address and the fraction Google blocked as spam.

ReCaptcha [Automation]: Our ReCaptcha dataset consists of IP addresses
that fail to correctly solve a CAPTCHA challenge. Unlike our other datasets
where blocked activity is a concrete abuse verdict, we caution that CAPTCHA
failure is a soft measure of abuse. We annotate each IP address with the num-
ber of CAPTCHA attempts and the fraction failed. We set a minimum failure
threshold of 50 %; we exclude IP addresses below this threshold from our dataset.
We make no initial assumptions that unfiltered IP addresses are in fact abusive;
instead, we rely on comparing CAPTCHA abuse to other verticals to draw con-
clusions.

Safe Browsing [Malicious Hosting]: Our final dataset consists of web server
IP addresses reported by Safe Browsing for hosting malware and drive-by
exploits [23]. We annotate each IP address with the number of web pages hosted
on the IP and the fraction Safe Browsing flagged for distributing malware.

3.3 Inbound HTTP Requests Dataset

In order to contrast abuse with legitimate behavior, we rely on a second dataset
that consists of de-identified HTTP logs restricted to signed-in users to the
same subset of Google services we study for abuse. Log entries consist of 〈PUID,
User-Agent, service, IP, t〉 containing a hashed, pseudo-anonymous account ID,
User-Agent string, service identifier for what service the user interacted with,
the user’s IP address, and fine-grained microsecond timestamp of the event. The
logs contain hundreds of millions de-identified users from the a 14 day window
ending on April 21, 2015. We use this data solely to estimate a lower bound on
the aggregate number of users and User-Agents per IP; gauge the stability of
〈IP, PUID〉 pairs over time; and estimate the volume of legitimate traffic that
a service would erroneously block with IP blacklists. For ethical and privacy
reasons, all user data was handled by exclusively by Google, covered by their
Terms of Service, and approved by their internal privacy review board.

3.4 Limitations

Our study suffers from a number of limitations that we lay out herein. First,
our coverage of abuse is limited to IPv4 addresses. Based on inbound HTTP
requests to Google, we estimate this covers 94 % of signed-in traffic; the remain-
ing 6 % originates from IPv6 clients. This is higher than previous findings by
Czyz et al. which reported IPv6 adoption at less than 1 % of Internet traffic [6]
or 4.8 % adoption reported by Kreibich et al. for a sample of clients operating
Netalyzer [13]. We make no claims our study of IPv4 abuse translates to IPv6.

Second, we caution that each service reporting malicious IP addresses relies
on a specialized definition of abuse that is likely biased towards threats facing

150 K. Thomas et al.

Google. We take such reports at face value—we cannot validate the precision
or recall of the logic involved. This is identical to how participants in threat
exchanges are blind to the accuracy of anti-abuse pipelines deployed by other
members. As such, when we investigate the scale of abuse in Sect. 4 or examine
the overlap of abusive IP addresses between services in Sect. 6 our results are
biased towards the quality of abuse reports and their respective coverage.

4 Comparing Abuse Perspectives

Miscreants control a vast apparatus of hosts that, as a collective, encompasses
45 million IP addresses. We explore the scale of individual threats and the geo-
graphic specialization of attacks. We tie these into a broader understanding of
bias introduced into threat exchanges due to participants with skewed abuse
perspectives.

4.1 Scale of Abusive Networks

In aggregate, we estimate that miscreants control over eight million unique daily
IP addresses as detailed in Fig. 1. The strata between abuse verticals provides a
lens into the allocation of compromised hosts on the Internet. Our email spam
dataset contains the largest volume of abuse totaling nearly five million daily
IP addresses. This is an order of magnitude larger than the number of hosts
involved in account-based abuse affecting Google such as fake engagement, com-
ment spam, or fraudulent account creation. Even more, email spam represents a
200x increase over hosts serving drive-by downloads and malware. While we avoid
characterizing the volume of IP addresses as a reflection of the most pressing
abuse challenges (or the criminal profit involved), we argue (infected) hosts tar-
geting Google during our collection period heavily skew towards email spam—a
timeless staple of the underground monetization [15,17].

Fig. 1. Daily volume of IP addresses reported by various Google services for abuse.
We observe an order of magnitude more spam bots than all other threats.

The Abuse Sharing Economy 151

Fig. 2. Cumulative percentage of all abusive traffic relayed via unique IP addresses
(ranked by contribution). The top 1% of abusive IP addresses contribute 48–82% of
abusive activity.

Despite drastically different counts of abusive IP addresses between verticals,
we find that the distribution of abusive traffic across IP addresses all follow a
Zipf-like distribution as detailed in Fig. 2. At the most concentrated extreme
we find the top 1 % of abusive email IP addresses relay 82 % of inbound Gmail
spam. While email is biased towards large SMTP relays active for all 14 days
of our collection, we nevertheless observe a similar pattern with IP addresses
linked also to failed CAPTCHAs that appear more transiently throughout our
collection (median of five days). At the most distributed end of the spectrum,
we find 48 % of fake YouTube engagement originates from the top 1 % of abusive
IP addresses. We find similar patterns for other signed-in fraud. We suspect
that miscreants favor this more decentralized approach to avoid services that
cluster abusive accounts based on IP addresses. Nevertheless, our results present
an opportunity to systematically block a significant volume of abuse from only
a few hundred thousand hosts—assuming the IP addresses do not also relay
legitimate traffic due to either re-allocation or over subscription as we explore
in Sect. 5.

4.2 Network Locality and Specialization

While we observe abuse from networks around the globe, six countries in partic-
ular host the largest volume of abusive IP addresses: the United States (12.5 %),
Brazil (5.9 %), Germany (4.6 %), Russia (3.7 %), India (3.6 %), and China (3 %).
Combined, these regions cover 27–64 % of all abusive IP addresses per service.
We find some attacks are niche to specific localities as illustrated in Fig. 3. For
instance, networks in the United States serve the majority of malware and drive-
bys (41 %), followed by China (10 %). With respect to bulk account, Indian net-
works create the most fake accounts (10 %). This suggests that while miscreants
rely on access to any compromised host possible, we find hints of bias poten-
tially introduced by regional specialization within the underground or greater

152 K. Thomas et al.

Fig. 3. Geolocation of abusive IP addresses for the top 6 offending regions. We observe
a geographic bias in threats: malicious hosting in the United States; fake engagement
from Russia; and bulk account creation in India.

geo-political threats. This observation is consistent with prior work that shows
regional biases in other attack vectors [36]. One potential root cause is under-
ground market dynamics: hosts outside of Europe and the United States are less
expensive on the pay-per-install market and may be favored by miscreants for
abuse with minimal bandwidth requirements [4].

5 Characterizing Abusive IP Addresses

We characterize the network-level behaviors of abusive IP addresses including
the impact of DHCP churn and NAT on reconciling abuse reports. Given the
diverse infrastructure and geographic distribution in each abuse vertical, we
also examine whether any particular threat is more amenable to outright IP
blacklisting.

5.1 Stability of IP-Device Pairs

One of the primary challenges of IP reputation is the stability of IP addresses as
identifiers for abusive clients. While we observe a roughly constant daily volume
of abusive hosts as previously discussed in Sect. 4, we, somewhat surprisingly,
find 66 % of the hosts in our dataset actively relay abuse for only a single day over
a two week period. One potential culprit for these observations is IP dynamism.
We provide a more detailed breakdown of the duration of abuse per service
in Fig. 4. Absent emails spam and malicious hosting, 75–80 % of abusive IP
addresses persist for a single day. We find 14 % of spam SMTP relays persist for
7 days as well as 49 % of servers hosting malware, allowing for more stable IP
reputation.

If we restrict our analysis to the top 1 % of abusive IP addresses, a different
picture emerges as shown in Fig. 5. We find 52 % of the top abusive SMTP relays

The Abuse Sharing Economy 153

Fig. 4. CDF of the total number of days in the last two weeks a service reported an
IP for abuse. We find 66% of abusive hosts persist for only a single day and preclude
long term reputation tracking.

Fig. 5. CDF of the total number of days in the last two weeks a service reported an
IP for abuse, restricted to the top 1 % most abusive IP addresses. The most abusive IP
addresses remain stable for longer periods, enabling longer term reputation tracking.

actively send spam every day. Bulk account creation appears the least amenable
to long-term IP reputation: 75 % of IP addresses appear for fewer than seven
days and 50 % fewer than four days. We observe a similar pattern for the other
top IP addresses involved in signed-in abuse.

The unsuitability of IP addresses as long-term stable identifiers is well doc-
umented. For example, Maier et al. observed that ISPs would re-assign 50 %
of IP addresses to at least 2 different customers in the course of 24 h [16]. We
re-visit this issue and estimate the duration that device, IP pairs remain stable.
Using our HTTP request logs, we first approximate a unique device identifier as
a 〈PUID, User-Agent〉 pair and then calculate the number of IP addresses per
device for 24 h and one week.2 Given the possibility that mobility rather than

2 While clients may report spoofed User-Agents, we assume that the majority of non-
abusive users accurately report their device information.

154 K. Thomas et al.

Fig. 6. Unique IP addresses per device for successively larger periods of time, broken
down by device class. IP-device pairings rarely survive beyond 24 h.

reallocation explains short IP leases, we segment devices by class (e.g., mobile,
tablet, personal computer) as gleaned from the OS family of a User-Agent.

We present our findings in Fig. 6. We observe that 74 % of PCs maintain
the same IP over a 24 h period compared to 68 % of mobile phones and 82 %
of tablets. After one week, only 10 % of mobile devices retain their original IP
compared to 34 % of PCs and 38 % of tablets—clients likely behind static IP
addresses. This is a strict underestimate as we may not observe clients during
every DHCP lease window.

On average, we find devices that send at least one request for every day in our
two week collection period cycle through 20 distinct IP addresses. Furthermore,
we find that 50 % of all IP addresses remain active for the entirety of our collec-
tion period. As such, even though we observe short DHCP leases, ISPs quickly
allocate the IP to a new set of devices. Our results differ drastically from previ-
ous measurements by Casado et al. who found that only 8 % of clients (identified
by cookies) used more than three IP addresses over 2–4 weeks [5]. In summary,
we argue that IP intelligence carries value for only a limited time frame, after
which ISPs may re-allocate a previously abusive IP to a benign set of clients.
For our own work, we restrict all subsequent IP analysis to 24 h windows.

5.2 Diverse Device Traffic

A second challenge of IP reputation is the coarse granularity of addresses com-
pared to the diverse user populations they potentially service. Based on our
HTTP request logs, we find 67 % of IP addresses service at least two unique
〈PUID, User-Agent〉 devices in a 24 h window and 21 % of IP addresses service
at least 5 devices. We caution this is limited to signed-in users and thus likely
underestimates the number of devices per IP. Our findings are higher than a prior
report in 2011 by Ihm et al. who observed only a single User-Agent for 83–94 % of
IP addresses depending on geographic region [11]. One explanation—matching
the observations of Ihm et al.—is that networks have densified over time. The

The Abuse Sharing Economy 155

Fig. 7. CDF of the ratio of traffic from each IP flagged as abusive. Most IP addresses
exhibit a mixture of legitimate and abusive activity.

consequence for IP reputation is that NATs are becoming increasingly coarse
approximations of the devices served.

In the presence of large NATs or SMTP relays, exclusively abusive IP
addresses will be a rarity. Indeed, most IP addresses in our dataset are unsuitable
for outright blacklisting: only 38 % exclusively relay abusive content. However,
in aggregate these exclusively abusive IP addresses carry 16–49 % of all mali-
cious activity per service. We provide a more detailed breakdown of the fraction
of traffic per IP flagged as abusive in a 24 h window in Fig. 7. Surprisingly, we
find the top 1 % of abusive IP addresses exhibit a lower likelihood of exclusive
abuse compared to all abusive IP addresses as shown in Fig. 8. This precludes
the possibility of outright blacklisting many of the top offending IP addresses.

Malicious hosting represents one extreme where website content on 87 % of
all abusive IP addresses is more likely to be innocuous than harmful. Only 5 %
of malicious hosting IP addresses exclusively serve harmful content. This mirrors
previous findings by Provos et al. who found drive-by downloads predominantly
relied on compromised websites that otherwise serve legitimate content [24]. Bulk
account registration presents an opposite extreme where 69 % of all IP addresses
exclusively create fake accounts. Intuitively, account creation should be a rare
event per IP with limited exceptions for mobile gateways. Other abuse verticals
fall between these extremes and provide a less pristine signal for filtering, rein-
forcing our observation that the complex interplay between NATs and devices
obstructs any path towards daily blacklist deployment.

5.3 Reputation Across IP Re-assignment

While DHCP churn impedes long-term reputation tracking, a significant question
remains whether the same device continuously abuses services across days. In the
absence of device-level identifiers, we instead examine a microcosm of the same
problem: the number of days static IP addresses that remain abusive. We isolate
static (or at least minimally churning) IP addresses by examining rare instances

156 K. Thomas et al.

Fig. 8. CDF of the ratio of activity from each IP flagged as abusive for the top 1 %
of harmful IP addresses. Even the worst offending hosts relay significant legitimate
activity and cannot be blacklisted.

where we see at least one (legitimate) PUID make a HTTP request from the same
IP for a minimum of seven days. This approach is aided in part by NATing: so
long as one user behind the NAT remains active, we can approximate that ISPs
never re-assigned the IP. We note this is a strict subset of static IP addresses as
(1) not all static IP addresses will have user-traffic (e.g., web servers) and (2)
not all users on static IP addresses will exhibit constant activity. In total, we
identify between 26,000—530,000 static IP samples per abuse vertical with the
exception of Safe Browsing where only 485 malicious hosts also carried consistent
user traffic.

Even without DHCP churn we find that multi-day abusive IP addresses are
in fact rare as shown in Fig. 9. With the exception of email spam and malicious
hosting, miscreants use 72–80 % of static IP addresses for only a single day in the
last 14 compared to 75–80 % of all IP addresses. Our results indicate that even
were we able to track IP re-assignments, the likelihood of abuse in the next 24 h is
only loosely predicted by previous abuse (20–28 % of IP addresses outside email
and hosting). This leaves anti-abuse pipelines only a short window in which to
detect abuse before miscreants migrate to entirely different devices and networks.
However, we cannot rule out the possibility that miscreants continuously abuse
dynamic IP addresses with full knowledge that churn provides greater anonymity
to anti-abuse detection compared to static IP addresses. Furthermore, the rare
exceptions matter: as we pointed out in previously in Fig. 5 the top 1 % of abusive
IP addresses tend to be active for multiple days.

5.4 Subnet Abuse Affinity

We find that spatial qualities of networks provide a weak predictor of abusive IP
addresses. For each /24 and /16 subnet containing at least one abusive IP, we
calculate the likelihood miscreants abuse other IP addresses in the same subnet.
Mechanistically, we calculate the ratio of observed IP addresses in HTTP request

The Abuse Sharing Economy 157

Fig. 9. CDF of the number of days exclusively static IP addresses remain abusive.
Even without DHCP churn, attacks appear transient (potentially to avoid detection.)

logs versus IP addresses reported by any service for abuse over 2 weeks. We find
a median of 15 % of observed IP addresses per /24 relay abuse. This increases
to 24 % at the /16 subnet level. If we restrict ourselves to the top 1 % abusive
IP addresses, this actually falls to 0.7 % for /24 networks and 0.08 % for /16
networks due to omitting more dynamic, short lived IP addresses and subnets.

The limited effectiveness of network topology in identifying abuse stems in
part from devices migrating across subnet boundaries upon DHCP lease expira-
tion. Using our HTTP request logs, if we compare a 〈PUID, User-Agent〉 device
tuples’ original and subsequent IP, we find 90 % of devices cross a /24 boundary
and 70 % cross a /16 boundary. Only 6 % of clients cross an ASN boundary and
0.6 % appear in an entirely different geolocation after switching IP addresses.3

Translated into an abuse context, we observe 78–96 % of /24 subnets con-
tain only a single abusive IP per service in a 14 day window and 91–100 % at
most two abusive IP addresses. If we restrict our analysis to the top 1 % of
abusive IP addresses, we still find 76–92 % of /24 subnets contain a single abu-
sive IP. We note we cannot precisely identify where abusive clients migrate upon
DHCP lease expiration as not all abuse verticals require account credentials and,
more problematic, miscreants may access the same abusive account via multiple
compromised devices and networks while reporting a spoofed User-Agent. Our
findings illustrate that spatial properties of networks have little bearing on how
ISPs re-assign devices to IP addresses. As a result, we advocate the most effective
reputation system must operate on a per-IP rather than subnet granularity.

3 ASN transitions may also occur due to a single network operator controlling multiple
AS numbers, or alternatively, users may log in from duplicate devices (in terms of
User-Agents) in different networks. Geolocation variations are within the predicted
error of geolocation services.

158 K. Thomas et al.

6 Cross-Vertical Abuse

We now turn our attention to investigating the impact of sharing intelligence
across heterogeneous web services. In terms of the absolute number of abusive
IP addresses, we find that cross-vertical abuse is a rare event: miscreants use
only 6 % IP addresses to attack at least two services in a 24 h window. However,
in aggregate these IP addresses relay 5–43 % of all abuse per service. We examine
which services benefit the most from sharing abuse intelligence due to miscreants
re-using underground infrastructure as well as limitations of global IP reputation
tracking.

6.1 Overlapping Abuse Verticals

To gauge the value of threat exchanges, we estimate the percentage of all abusive
traffic per service S1 that overlaps with malicious IP addresses reported by a
second service S2. We rely on an asymmetric calculation for the total volume of
abuse caught:

|S1 ∩ S2|
|S1|

We present our results in Fig. 10a. As many abusive IP addresses relay a
significant volume of legitimate traffic, we present a thresholded calculation
restricted to IP addresses in S2 with an abuse likelihood greater than 90 % in
Fig. 10b. Even absent thresholding, we find the majority of abusive IP addresses
exclusively target individual services. These findings are consistent with high-
level observations in related work that identified little cross-abuse IP intersec-
tions between spam, phishing, and network scanning IP reputation lists [36].
However, those few IPs that do overlap generate a significant volume of abusive
traffic. We discuss a few salient instances where abuse intelligence sharing has
the strongest impact.

Fig. 10. Fraction of abusive traffic from a service (y-axis) overlapping with a list of
abusive IP addresses from a second service (x-axis) with an abuse likelihood greater
than τ .

The Abuse Sharing Economy 159

Email Spam: Of all threats, IP addresses flagged for email spam provide the
strongest predictor of abuse affecting other services. Coverage varies between
4–13 % of all abusive traffic, dropping to 2–10 % if we examine only SMTP relays
where 90 % of all email sent is spam. Nevertheless, even with Gmail reporting
five million daily IP addresses for spam, we find a significant fraction of abusive
hosts engage solely in spam-based monetization rather than other forms of abuse.

Account-Based Abuse: We find that miscreants registering fake accounts
nominally re-use the same infrastructure for comment spam (15 %) and YouTube
fake engagement (13 %). This falls to 0–1 % if we examine thresholded abusive
IP addresses. The weak correlation suggests that miscreants either stockpile
accounts for more than 24 h prior to abuse, or that vertically integrated account
creation and monetization may in fact be rare due to specialized account mer-
chants [33]. Furthermore, even though comments and fake engagement both
require Google accounts, we find infrastructure involved in either vertical rarely
overlaps in a 24 h period: only 10–14 % of spam comments and fake likes and
subscribes originate from the same IP address. Consequently, once a fake account
evades initial detection upon registration, each service contending with account-
based fraud must detect specialized threats even though other verticals may have
more mature abuse prevention systems.

CAPTCHAs: The wide-spread adoption of CAPTCHAs across services includ-
ing account creation and commenting creates a strong tendency where IP
addresses that fail CAPTCHAs also tend to abuse other services. In particular,
43 % of all bulk registered accounts overlap with an IP that failed a CAPTCHA.
However, as CAPTCHA failure is only a weak signal of abuse, if we restrict our
analysis to IP addresses that fail over 90 % of CAPTCHA attempts (e.g., poten-
tially automated solving), IP reputation catches only 10 % of abusive accounts.

Hosting Exclusivity: We observe a negligible overlap between web servers
that miscreants compromise for malicious hosting and other forms of abuse. As
a small exception, we find 7 % of malicious webpages overlap with IP addresses
also serving as spam SMTP relays. Consequently, it appears that miscreants
rarely re-use compromised web servers to proxy traffic for other abuse verticals.
Our findings indicate that web security scanners for malware hosting cannot
expedite their search coverage by scanning hosts also involved in email spam or
other abuse.

6.2 Limitations of Intelligence Sharing

The coarse granularity of IP addresses as identifiers of abuse comes at a cost
of false positives in the event of outright blacklisting. We estimate the volume
of legitimate traffic in our signed-in HTTP request logs to a service S1 that
erroneously overlaps with abusive IP addresses reported by a service S2. Given
abuse appears in our request logs, we first optimistically filter all requests origi-
nating from IP addresses reported as abusive by S1. Furthermore, as our request
logs are limited to signed-in activity, we restrict our false positive estimates to

160 K. Thomas et al.

Fig. 11. Fraction of benign IP addresses from a service (y-axis) that erroneously overlap
with abusive IP addresses reported by a secondary service (x-axis) with an abuse
likelihood greater than τ .

YouTube engagement, account registration, outbound email, and CAPTCHAs
solved by signed-in users.

We present our results for all abusive IP addresses in Fig. 11a and the same
calculation restricted to IP addresses with an abuse likelihood greater than 90 %
in Fig. 11b. Without any threshold, IP blacklists would block 6–16 % of all newly
created, legitimate users and 0–5 % of YouTube engagement. Even with thresh-
olding, we find IP blacklists negatively impact account growth. We note our
estimates are upper bounds on the volume of false positives as some erroneously
blocked traffic may in fact reflect abuse currently unreported by an affected ser-
vice. Similar trade-offs between blacklist false positives and false negatives with
respect to the ratio of benign (so called ham) to spam traffic for email spam
blacklists were demonstrated by Sinha et al. [29]. A key observation here is that
individual organizations may have differing sensitivities to false positives, and
that this sensitivity may even vary by abuse type.

Our findings indicate that while per-service, per-IP reputation captures a
significant volume of abuse (as reported in Sect. 5), translating that abuse intel-
ligence across services remains a challenge. This stems from the diverse user bases
and devices served by a single IP address; while only a fraction of those devices
may connect to one service, other services experience an entirely distinct user
distribution. The end result is a limited utility for outright blacklisting based on
cross-service intelligence.

7 Related Work

7.1 Characterizing IP Addresses

Research has spent a significant amount of effort to understand the network-
level behaviors of (abusive) clients. This includes estimating the number of clients
behind NATed IP addresses based on usage patterns [18], measuring the duration
of DHCP leases and traffic patterns [16], examining the densification of networks
over time [11], and understanding the behaviors of edge networks [5,13]. Within
an abuse context, Xie et al. examined how to automatically detect dynamic IP
addresses and the prevalence of abuse among such hosts [34], with an extension to
automatically classify large NATed IP addresses as exclusively spam relays [10].

The Abuse Sharing Economy 161

Ramachandran et al. examined the network behavior of spam bots and the con-
finement of abusive hosts to a subset of networks and autonomous systems [26].
We compared these prior estimates to our own findings and examined the impact
of NAT and DHCP churn on the effectiveness of IP reputation tracking.

7.2 Blacklist Efficacy

IP blacklists enable web services to identify and penalize abusive hosts in the
absence of overt user identifiers (e.g., authenticated session cookies). A number of
studies previously examined the efficacy and global applicability of spam-based
blacklists. The closest themes to our own work include estimating the coverage of
various blacklists with respect to spamvertised abuse and affiliate programs [22],
the performance of email spam blacklists when applied to alternative domains
such as social network spam [8,31], the lack of overlap of abusive domains and
IP addresses for blacklists targeting spam, phishing, and malware [36], instances
where popular blacklists identify the same threats [12], and the efficacy of pub-
lic versus commercial malware blacklists when applied to major malware fami-
lies [14]. We provided a Google-centric view of abuse exclusivity across products
which mirror these previous findings: abuse is an incredibly large and diverse
space where miscreants are highly specialized. However, examining only the over-
lap of abusive IP addresses fails to capture skewed traffic emanating from rare
co-occurrences.

8 Summary

In this work, we measured the effectiveness of centralized reputation tracking as
a tool for identifying miscreants who leverage the same machine for spam, denial
of service, malicious hosting, and other forms of automated abuse. We focused
initially on the scale of these individuals threats and found they differ by two
orders of magnitude, with email spam reigning as our top source of abusive
hosts. Despite 8 million IP addresses reported every day by one of six Google
services for abuse, blocking only 1 % of these sources can prevent 48–82 % of all
harmful traffic. We found some of these threats exhibit a local specialization:
malicious hosting in the United States; fake engagement in Russia; and bulk
account registration in India.

Transforming this intelligence into actionable reputation data proved chal-
lenging: 66 % of abusive IP addresses remained active for only a single day, in
part driven by dynamic reallocation where the average (compromised) device
cycled through 20 IP addresses over the course of two weeks. Equally prob-
lematic, NATs representing large user populations polluted IP reputation to the
point where only 38 % of abusive IP addresses exclusively relayed harmful traffic,
while the rest shared some overlap with benign devices. Nevertheless, we found
this minority of hosts delivered 16–49 % of all abuse per service. Ultimately,
we found that hosts involved in cross-service abuse were in fact rare: only 6 %
of abusive IP addresses negatively affected at least two services within a 24 h

162 K. Thomas et al.

window. However, combined, these hosts generated 5–43 % of all abuse per ser-
vice. In the end, we argued less mature anti-abuse pipelines for new products or
Internet services could tap into such an intelligence feed to benefit from threat
exchanges of seemingly unrelated attacks. However, these benefits must come
from machine learning pipelines—outright blacklisting remains out of reach due
to collateral damage to legitimate users.

Acknowledgments. This work was supported in part by the National Science Foun-
dation under contracts CNS 1409758, CNS 1111699, and CNS 1518741. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the sponsors.

References

1. Anderson, R., Barton, C., Böhme, R., Clayton, R., van Eeten, M.J.G., Levi, M.,
Moore, T., Savage, S.: Measuring the cost of cybercrime. In: Proceedings of the
Workshop on Economics of Information Security (WEIS) (2012)

2. Asghari, H., Ciere, M., Van Eeten, M.J.: Post-mortem of a Zombie: conficker
cleanup after six years. In: Proceedings of the USENIX Security Symposium (2015)

3. Taylor, B.: It’s not about the spam (2007). http://goo.gl/zzAL4N
4. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the

commoditization of malware distribution. In: USENIX Security Symposium (2011)
5. Casado, M., Freedman, M.J.: Peering through the shroud: the effect of edge opacity

on IP-based client identification. In: Proceedings of the Symposium on Networked
Systems Design and Implementation (2007)

6. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 adoption. In: Proceedings of the ACM Conference on SIGCOMM
(2014)

7. DShield.: DShield (2015). https://www.dshield.org/
8. Grier, C., Thomas, K., Paxson, V., Zhang, M.: @spam: the underground on 140

characters or less. In: Proceedings of the ACM Conference on Computer and Com-
munications Security (2010)

9. Hammell, M.: ThreatExchange: sharing for a safer internet (2015). http://on.fb.
me/1zvuPdS

10. Hong, C.-Y., Fang, Y., Xie, Y.: Populated IP addresses: classification and applica-
tions. In: Proceedings of the Conference on Computer and Communications Secu-
rity (2012)

11. Ihm, S., Pai, V.S.: Towards understanding modern web traffic. In: Proceedings of
the ACM SIGCOMM Internet Measurement Conference (2011)

12. Jung, J., Sit, E.: An empirical study of spam traffic and the use of DNS black lists.
In: Proceedings of the ACM SIGCOMM Internet Measurement Conference (2004)

13. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: illuminating the edge
network. In: Proceedings of the ACM SIGCOMM Internet Measurement Confer-
ence (2010)

14. Kührer, M., Rossow, C., Holz, T.: Paint it black: evaluating the effectiveness of
malware blacklists. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 1–21. Springer, Heidelberg (2014)

http://goo.gl/zzAL4N
https://www.dshield.org/
http://on.fb.me/1zvuPdS
http://on.fb.me/1zvuPdS

The Abuse Sharing Economy 163

15. Levchenko, K., Pitsillidis, A., Chachra, N., Enright, B., Félegyházi, M., Grier,
C., Halvorson, T., Kanich, C., et al.: Click trajectories: end-to-end analysis of the
spam value chain. In: Proceedings of the IEEE Symposium on Security and Privacy
(2011)

16. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On dominant characteristics
of residential broadband internet traffic. In: Proceedings of the ACM SIGCOMM
Internet Measurement Conference (2009)

17. McCoy, D., Pitsillidis, A., Jordan, G., Weaver, N., Kreibich, C., Krebs, B., Voelker,
G.M., Savage, S., Levchenko, K.: Pharmaleaks: understanding the business of
online pharmaceutical affiliate programs. In: Proceedings of the 21st USENIX Con-
ference on Security Symposium (2012)

18. Metwally, A., Paduano, M.: Estimating the number of users behind IP addresses for
combating abusive traffic. In: Proceedings of the SIGKDD International Conference
on Knowledge Discovery and Data Mining (2011)

19. Miller, R.: AlienVault announces more social threat exchange (2015). http://tcrn.
ch/1FL7E8A

20. Neville, A., Gibb, R.: ZeroAccess indepth (2013). http://goo.gl/j0eMHr
21. Pearce, P., Dave, V., Grier, C., Levchenko, K., Guha, S., McCoy, D., Paxson, V.,

Savage, S., Voelker, G.M.: Characterizing large-scale click fraud in zeroaccess. In:
Proceedings of the Conference on Computer and Communications Security (2014)

22. Pitsillidis, A., Kanich, C., Voelker, G.M., Levchenko, K., Savage, S.: Taster’s choice:
a comparative analysis of spam feeds. In: Proceedings of the ACM SIGCOMM
Internet Measurement Conference (2012)

23. Provos, N.: Safe browsing - protecting web users for 5 years and counting (2012).
http://goo.gl/psdXkP

24. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iFRAMEs point
to us. In: Proceedings of the USENIX Security Symposium (2008)

25. Rains, T.: Microsoft interflow: a new security and threat information exchange
platform (2015). http://bit.ly/1SKpcs2

26. Ramachandran, A., Feamster, N.: Understanding the network-level behavior of
spammers. In: Proceedings of the ACM Conference on SIGCOMM (2006)

27. Rowinski, M.: More than 1,000 organizations join IBM to battle cybercrime (2015).
https://www-03.ibm.com/press/us/en/pressrelease/46856.wss

28. Sinha, P., Boukhtouta, A., Belarde, V.H., Debbabi, M.: Insights from the analysis
of the Mariposa botnet. In: Proceedings of the International Conference on Risks
and Security of Internet and Systems (CRiSIS) (2010)

29. Sinha, S., Bailey, M., Jahanian, F.: Improving spam blacklisting through dynamic
thresholding and speculative aggregation. In: Proceedings of the Network & Dis-
tributed System Security Symposium (2010)

30. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,
R., Kruegel, C., Vigna, G.: Your botnet is my botnet: analysis of a botnet takeover.
In: Proceedings of the ACM Conference on Computer and Communications Secu-
rity (2009)

31. Thomas, K., Grier, C., Song, D., Paxson, V.: Suspended accounts in retrospect: an
analysis of Twitter spam. In: Proceedings of the Internet Measurement Conference
(2011)

32. Thomas, K., Huang, D.Y., Wang, D., Bursztein, E., Grier, C., Holt, T.J., et al.:
Framing dependencies introduced by underground commoditization. In: Proceed-
ings of the Workshop on the Economics of Information Security (2015)

http://tcrn.ch/1FL7E8A
http://tcrn.ch/1FL7E8A
http://goo.gl/j0eMHr
http://goo.gl/psdXkP
http://bit.ly/1SKpcs2
https://www-03.ibm.com/press/us/en/pressrelease/46856.wss

164 K. Thomas et al.

33. Thomas, K., McCoy, D., Grier, C., Kolcz, A., Paxson, V.: Trafficking fraudulent
accounts: the role of the underground market in Twitter spam and abuse. In:
Proceedings of the USENIX Security Symposium (2013)

34. Xie, Y., Fang, Y., Achan, K., Gillum, E., Goldszmidt, M., Wobber, T.: How
dynamic are IP addresses? In: Proceedings of the ACM Conference on SIGCOMM
(2007)

35. Fang, Y., Xie, Y., Ke, Q.: Sbotminer: large scale search bot detection. In: Pro-
ceedings of the ACM International Conference on Web Search and Data Mining
(2010)

36. Zhang, J., Chivukula, A., Bailey, M., Karir, M., Liu, M.: Characterization of black-
lists and tainted network traffic. In: Roughan, M., Chang, R. (eds.) PAM 2013.
LNCS, vol. 7799, pp. 218–228. Springer, Heidelberg (2013)

SandPrint: Fingerprinting Malware Sandboxes
to Provide Intelligence for Sandbox Evasion

Akira Yokoyama1, Kou Ishii1, Rui Tanabe1, Yinmin Papa1,
Katsunari Yoshioka1, Tsutomu Matsumoto1, Takahiro Kasama2,

Daisuke Inoue2, Michael Brengel3, Michael Backes3,
and Christian Rossow1,3(B)

1 Yokohama National University, Yokohama, Japan
{yokoyama-akira-bs,ishii-kou-yf,tanabe-rui-nv}@ynu.jp,

yinminpapa@gmail.com, yoshioka@ynu.ac.jp,

tsutomu@mlab.jks.ynu.ac.jp
2 National Institute of Information and Communications Technology,

Koganei, Japan
{kasama,dai}@nict.go.jp

3 Center for IT-Security, Privacy, and Accountability, CISPA,
Saarland University, Saarbrücken, Germany

{mbrengel,crossow}@mmci.uni-saarland.de,
backes@cs.uni-saarland.de

Abstract. To cope with the ever-increasing volume of malware sam-
ples, automated program analysis techniques are inevitable. Malware
sandboxes in particular have become the de facto standard to extract
a program’s behavior. However, the strong need to automate program
analysis also bears the risk that anyone that can submit programs to
learn and leak the characteristics of a particular sandbox.

We introduce SandPrint, a program that measures and leaks char-
acteristics of Windows-targeted sandboxes. We submit our tool to 20
malware analysis services and collect 2666 analysis reports that cluster
to 76 sandboxes. We then systemically assess whether an attacker can
possibly find a subset of characteristics that are inherent to all sandboxes,
and not just characteristic of a single sandbox. In fact, using supervised
learning techniques, we show that adversaries can automatically gener-
ate a classifier that can reliably tell a sandbox and a real system apart.
Finally, we show that we can use similar techniques to stealthily detect
commercial malware security appliances of three popular vendors.

1 Introduction

Malicious software poses one of the major security challenges nowadays. In its
various forms, malware is equally a threat to consumers (e.g., banking trojans,
ransomware), businesses (e.g., targeted attacks, denial-of-service bots), and soci-
ety in general (e.g., spambots). In 2014, Symantec faced 65 million previously-
unseen malicious files targeting Windows [51]. Similarly, PandaLabs reports on
a daily flood of over 200,000 new unknown, potentially malicious programs [49].
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 165–187, 2016.
DOI: 10.1007/978-3-319-45719-2 8

166 A. Yokoyama et al.

This trend of increasing malware samples is a consequence of polymorphism, but
is also caused by new threats that are discovered almost on a daily basis.

To cope with the volume of malware, defenders started to improve technol-
ogy and their organization within the community. On the technological side,
researchers introduced several complementary approaches to analyze unknown
programs in an automated way. Windows-based malware sandboxes in particular
have become the de facto standard for automated malware analysis [24], equally
for academia and industry. Sandboxes are excessively leveraged to obtain threat
information, such as previously-unseen malware, inputs for supervised detection
mechanisms, malware C&C servers, targets of banking trojans, intelligence on
spreading campaigns, or simply to assist in the manual process of reverse engi-
neering. Finally, sandboxes are also used as part of commercial malware security
appliances that aim to protect organizations by dynamic malware analysis.

The requirement to automate the analysis of unknown programs (“samples”)
also bears the risk that the analysis is unattended. That is, oftentimes the entire
process from receiving a sample, scheduling it for analysis, executing it, and
possibly even returning an analysis result to the sample submitter is embedded in
a fully-automated processing chain. Anyone that can submit samples to the input
feed of a sandbox can possibly learn and leak the characteristics of a particular
sandbox. While it may seem non-trivial to send programs to any sandbox, as
we will show, it is typically sufficient to submit a sample to automated malware
analysis services, which then redistribute the samples for other sandboxes, easily
generating a massive source of insights about the internals of global sandboxes.

In this paper, we follow this general idea and introduce SandPrint, a
Windows-based program that measures and leaks characteristics of the sandbox,
such as precise OS information, network configuration or installed (or emulated)
hardware. Over a period of 2 weeks, we continuously submit our tool to 20 mal-
ware analysis services [1–3,5–8,11–14,20,25,28,35,38,48,50,52,55] and collect
2666 analysis reports from eleven of these services. In an attempt to fingerprint
sandboxes, we use unsupervised learning mechanisms to cluster the SandPrint
reports and their various features into groups to identify sandboxes. This process
exposes 76 sandboxes, many of which presumably obtain their samples via auto-
mated sample exchanges with malware analysis services.

We then turn to our next research question: Is it possible to detect a sandbox
from the perspective of a (potentially malicious) program? By now, many mal-
ware families already follow ad-hoc procedures to identify individual sandbox
artefacts, such as detecting virtualization or avoiding specific sandbox config-
urations. Instead, we assess a more systematic approach and explore whether
an attacker can possibly find characteristics (e.g., using a tool like SandPrint)
that are inherent to all sandboxes, and not just characteristic of a single sand-
box. We leverage supervised learning based on the collected features to train an
automated classifier that can reliably tell sandboxes apart from normal systems.

Finally, we turn our attention to the possibility of detecting malware appli-
ances of popular vendors. We follow the intuition that these appliances internally
also use sandboxing technology and are thus likely susceptible to similar evasion

SandPrint: Fingerprinting Malware Sandboxes 167

attacks. In fact, by training a classifier just on the aforementioned sandboxes,
we show that adversaries can even evade appliances—undermining the entire
security concept of such installations.

Summarizing, the contributions of this paper are:

– We present SandPrint, a tool to exfiltrate characteristics of malware sand-
boxes. We submit it to 20 public malware analysis services and use unsuper-
vised learning techniques to identify the characteristics of 76 sandboxes.

– We leverage the resulting SandPrint reports to train an automated classifier
that can reliably distinguish between a sandbox and a user system.

– We show that we can use characteristics that we learned from public sandboxes
to detect malware security appliances, even without a priori insights on the
internals of the appliance’s sandbox.

2 Background

We first describe the terminology that we use throughout the paper. We use the
term sandbox to refer to a dynamic analysis environment that executes unknown
programs (called samples). Sandboxes are widely used to gain insights on mali-
cious software (malware), such as its current campaigns [19], recent C&C servers
and traffic patterns [36,44,46] or attack targets [26]. Similarly, sandboxes can be
used to group behavior into malware families [16,45], or to identify suspicious
behavioral patterns [32]. Egele et al. give a comprehensive overview of known
sandbox implementations [24].

By now, malware sandboxes are not used only by academics. In contrast to
manual analysis, sandboxes are highly automatized. As a consequence, the anti-
virus industry and security companies that offer anti-malware appliances heavily
rely on sandboxes as part of their daily business. In fact, sandboxes have become
the industry standard to cope with the daily feed of hundreds of thousands of
previously-unseen malware samples. In times where manually analyzing each
malware does not scale anymore, sandboxes are a vital component in the fight
against malware.

Virtualization: To scale the analysis, most sandboxes rely on some form of vir-
tualization (with the notable exception of bare-metal sandboxes [30,31]). To this
end, sandboxes rely on various virtualization techniques such as VMWare [15]
and VirtualBox [10] or CPU emulators [4,17]. Cuckoo Sandbox [8] is a popular
open-source sandbox. However, as we will see, many security organizations oper-
ate other sandboxes, either choosing from commercial sandboxes or designing
their own solution. Virtualization offers the benefit that many virtual machines
(VMs) can run in parallel on a single system, each analyzing one sample. In
addition, virtualization software makes it possible to take so called snapshots
of VMs, which freeze the state of a VM and allow reversion back to this state.
Snapshots help to reset the system state once a piece of malware was executed,
so that future executions do not suffer from side effects.

168 A. Yokoyama et al.

Operating System: Regardless of precise sandbox implementations, the most
common and popular sandboxes execute samples on commodity operating sys-
tems, such as MS Windows. Due to the prevalence of Windows-based malware,
we focus on Windows-based sandboxes, although our results likely also apply to
Android-based [37] or Linux-based [39] sandboxes.

Malware Analysis Services: In contrast to a sandbox, a malware analysis
service (or simply “service” hereafter) receives submissions of samples (e.g., via
a web interface), analyzes the submitted samples in various ways, and normally
provides analysis results to the users. As we will show, these services typically
use one or more sandboxes to analyze the sample. In addition, services such as
VirusTotal [14] and Jotti’s malware scan [28] provide anti-virus scans. Also, it
is quite common that services share samples with other sandbox operators. In
fact, some services offer to search for submissions of other users with various
key words, such as the hash value of the sample or anti-virus labels, and parties
can use paid APIs to automate searches and downloads. Table 2 summarizes the
analysis results provided by each service. There are nine services that accept
the submission of samples but do not provide any analysis results to the users.
Following the feedback by the vendors, the submitted samples were manually
analyzed in an isolated environment without Internet access.

Malware Security Appliances: Sandboxes have become an integral part of
commercial malware security appliances (or simply “appliances” hereafter). Such
appliances protect endpoints by dynamically analyzing an unknown program and
inspecting its behavior for suspicious actions. Appliances are frequently deployed
at the network layer and are used orthogonally to anti-virus scanners, e.g., to
protect endpoints from opening malicious email attachments or malicious file
downloads. Internally, appliances also use sandbox technologies to analyze the
program behavior.

3 Sandbox Fingerprinting

Sandboxes are a vital tool for malware analysis, which highlights the importance
of having a thorough understanding of their live deployment and characteristics.
In this section, we will fingerprint sandboxes to investigate the landscape of
Internet-connected sandboxes. In our context, a fingerprint reveals artifacts that
are specific to individual sandboxes. In Sect. 3.1, we will describe 24 features,
i.e., attributes that reveal certain characteristics of a sandbox. We will then
present SandPrint, a tool that exfiltrates characteristics from any sandbox. In
Sect. 3.2, we will use the tool to collect fingerprints by submitting it to 20 public
malware analysis services, and describe the dataset obtained.

3.1 Sandbox Fingerprinting Features

We first introduce fingerprinting features that we use to discriminate sandboxes
from each other, or put differently, to describe characteristics of individual sand-
boxes. We propose a (non-exhaustive) list of 24 features, as shown in Table 1.
We group these characteristics into the following five categories:

SandPrint: Fingerprinting Malware Sandboxes 169

Table 1. Sandbox fingerprinting features (Clustering distance metrics: ED = Edit
Distance, EU = Euclidean Distance, EQ = Equality Distance, JD = Jaccard Distance)

Category Feature Clustering Category Feature Clustering

System installation Host name � ED Network config Default gateway � EQ

Installation date � EQ External IP address � EQ

OS information ARP list

Organization name � EQ MAC address

Owner name � EQ DNS servers � EQ

Windows product ID � EQ Activity Clipboard

System manufacturer Desktop icons

Hardware Disk space � EU Event log

Display resolution Recent files � JD

Mouse devices Execution start Sample name � EQ

RAM � EQ Sample path � EQ

Processor Time from boot to start

1. System Installation: Sandboxes require an operating system (OS) to run
samples. Typically, to minimize manual effort, sandbox operators install and
configure the OS only once, and then take a snapshot of the system. Assuming
that all parallel instances of the sandbox (e.g., VMs) use the same system
snapshot, this results in many features that are persistent across executions.

2. Hardware: The underlying hardware, whether emulated or physical, can
also reveal unique characteristics of a sandbox. All features are agnostic to
whether the hardware is emulated or actually physically present.

3. Network Configuration: Sandboxes are typically configured such that the
sample can communicate with the Internet, e.g., with C&C servers. We thus
collect network features and also local configurations.

4. Activity: The system snapshot reveals certain events that have taken place in
the past (i.e., during installation time). In general, these features can measure
whether the system is close to default settings.

5. Execution Start: Once the fresh, non-infected sandbox has been started,
it needs to obtain a sample that the analyst wants to analyze. There are
multiple different ways to automate this process.

This list can easily be extended with further features. We favor features that
potentially show a high entropy and are specific to a certain sandbox—the more
a feature can differentiate a sandbox from others, the better. In addition, most
of the selected features are deterministic and their values discrete and reliable.
Note that a stealthy sandbox could try to diversify the feature values.

3.2 Extracting Sandbox Fingerprints with SandPrint

We implemented SandPrint, a tool to exfiltrate all above-mentioned features
from a system. SandPrint is a Windows 32-bit PE binary written in C, which
uses the Windows API and custom functions to reveal the features. Once Sand-
Print is executed, it uses HTTP to communicate with the SandPrint server.
A unique identifier is assigned to each SandPrint sample and after the HTTP
session is established, this ID, embedded in an HTTP POST request, is sent

170 A. Yokoyama et al.

Table 2. Malware analysis services and summary of SandPrint submissions

Malware analysis service Dyn. Stat. AV Scan Report/submission Reports Sandboxes

Service #1 � � 0/20 0 0

Service #2 � 14/20 14 1

Service #3 � 0/20 0 0

Service #4 � 0/20 0 0

Service #5 � 0/20 0 0

Service #6 6/20 85 25

Service #7 � � 2/20 8 6

Service #8 � 20/20 21 1

Service #9 � 0/20 0 0

Service #10 � 20/20 378 36

Service #11 � � � 20/20 134 28

Service #12 19/20 25 1

Service #13 � � 20/20 427 36

Service #13 (win7 64 bit) � � 20/20 399 49

Service #13 (win7 32 bit stealthy) � � 20/20 424 35

Service #14 � 0/20 0 0

Service #15 0/20 0 0

Service #16 � � � 20/20 268 26

Service #17 � 0/20 0 0

Service #18 � 20/20 162 20

Service #19 � 0/20 0 0

Service #20 � � � 20/20 321 31

to the server. In this way we can track which sample is executed in which sys-
tem. After the ID is sent, a challenge-response authentication is done in order
to detect replayed requests.

After this initial handshake, SandPrint starts collecting features of the sys-
tem. For the implementation of feature collection, we avoided using commands
like systeminfo, netstat, and ipconfig, as they are often used by adversaries
to collect system features, and indeed we have confirmed that some sandboxes
restrict them. Moreover, to avoid potential deadlocks caused by collecting indi-
vidual features (due to e.g., slow disk I/O), we balanced all feature collection
functions across multiple threads. In addition, to estimate the overall execution
time, a heartbeat thread periodically notifies the server that SandPrint is still
executing. Each thread sends features to the server after the feature collection
process is completed. Note that all SandPrint traffic imitates HTTP protocol
and so it seems as if it is communicating with a Web server.

We submitted SandPrint to 20 malware analysis services to collect finger-
prints. Table 2 summarizes the public services and includes both popular aca-
demic and non-academic services. We periodically submitted SandPrint from
January 5, 2016 to January 18, 2016.

For each service, we created a unique SandPrint instance so that we could
map which file was uploaded where. That is, while the semantic functionality
is unaltered, the resulting file hashes are distinct. In addition, we use a unique
identifier that is computed during runtime, report this identifier to our server,

SandPrint: Fingerprinting Malware Sandboxes 171

and aim to expose it in the public analysis report that the service generates.
This way, we can later match the identifier in a report with the corresponding
identifier of the analysis report, revealing that a report was generated by a
particular service. In total, we collected 2666 SandPrint reports from 221 of
our 440 submissions. Thus, on average, we received 6 reports per submission.
The reports came from 395 IP address including 33 countries. As we will discuss
later, this already indicates that there is a strong tendency to (i) re-execute the
same sample multiple times (on the same or a slightly different sandbox) and
(ii) share samples across sandboxes/services. We will now study this observation
in more detail and group similar SandPrint reports for further analyses.

4 Clustering Sandboxes

The fingerprint collection revealed over 2500 reports. But are there really that
many sandboxes, or are some sandboxes responsible for multiple reports? To
answer this question, in this section, we introduce a clustering technique to group
similar reports and identify which reports were sent to us by which sandboxes.

4.1 Clustering

Initial observations have shown that subsets of the entire list of reports actually
share similar characteristics. As soon as a sandbox sends multiple reports, this is
intuitive, as there are likely features that remain unchanged across two sample
executions. Näıvely, one could even check which reports contain equal features.
However, we found that sandboxes indeed (intentionally or not) diversify parts
of the features. Instead, we thus propose to use unsupervised learning techniques
to group similar reports together. Lacking any labels and ground truth for sand-
boxes, we face a classical unsupervised problem here. We chose to use agglom-
erative hierarchical clustering to group reports. Hierarchical clustering has the
advantage that it allows specifying a custom distance function and does not
require determining the number of expected clusters in beforehand. The distance
function determines how different two reports are. We define a distance function
that spans all “clustering” features in Table 1 (see checkmark). That is, for a pair
of reports R1 and R2, we sum the distances of all pairwise features and divide
by the number of features to achieve the average distance. More formally, the
distance function between R1 and R2 is: dist(R1, R2) = 1

N ∗∑N
k=0 distk(R1, R2)

where distk is the distance between the values of a particular feature k. When
comparing a feature between two reports, we expect equality (EQ), and other-
wise assume maximum dissimilarity. That is, distk(R1, R2) is zero if the feature
k is equal in both reports, or 1 otherwise. For selected features which we observed
to vary in individual sandboxes, we do not expect equality. That is, we compare
the host name using a normalized edit distance (ED), deploy the Euclidean dis-
tance (EU) to compare the disk space and length of the sample name, and use
the Jaccard distance (JD) to compare the recently opened files. Table 1 cate-
gorizes the features accordingly. All distance functions have been normalized in
the range [0, 1] so that a single feature does not introduce bias.

172 A. Yokoyama et al.

In some cases, features are not present in one of the reports to compare.
SandPrint may have failed to collect some features, e.g., if the sandbox analysis
time was too short to complete all measurements (e.g., tracking all files in the
Programs directory may take a long time). To tackle sparse features, we focus on
those features that are included in the majority of the reports, as indicated by
the checkmark in Table 1. If a report does not have characteristics for a remaining
feature, we still cannot judge if two features are similar. To tackle this problem,
we ignore features that are not present in both reports and decrement N (the
number of features) accordingly to avoid biases in the average.

We then compute the distance between all reports and group the most similar
ones together, using agglomerative single linkage clustering. This process results
in a dendrogram, a tree-like structure that represents how the reports are clus-
tered together. After the clustering, we consider groups that have a distance less
than 0.5 as clusters. The intuition for this threshold is that we expect that at
least half of the features are similar for reports of a single sandbox.

4.2 Clustering Results and Validation

Clustering helped to reduce the 2666 reports down to 76 clusters. Of these, 16
are singleton clusters, i.e., sandboxes that only contributed one report to our
dataset. The largest cluster spans 233 reports, while the average cluster consists
of 35 reports, or 44 reports if we exclude the singleton clusters.

To verify the clustering output, we divided our research team in two dis-
joint groups. While one group independently designed and performed the auto-
mated clustering, the other group validated the clustering output. To this end,
we manually grouped similar sandboxes based on unique characteristics that
we identified for a particular sandbox, explicitly also those that slightly varied
information across different executions. For each such outstanding feature, we
defined a regular expression that matches all reports of the sandbox. We only
selected features whose entropy was large enough to avoid coincidental collisions
and define at least two characteristic features per sandbox.

We then compared the clustering result with the outcome of the manual
“clustering” done by the validation group. The outcome of the manual assign-
ments was equal to the clustering result, except in one case where our clustering
merged two sandboxes that we did not group manually. In this case, while the
user name, working group name, and host name were similar, the OS installa-
tion date was more than three years apart. Other than that, we did not find
any further inconsistencies, which shows that our clustering methodology can
accurately map SandPrint reports (and their features) to a smaller number of
sandboxes.

4.3 Sandbox vs. Service

Table 2 summarizes the results of SandPrint submissions to the 20 malware
analysis services. At a glance, the number of SandPrint reports received from
these services varies widely. We did not receive any reports from nine services,

SandPrint: Fingerprinting Malware Sandboxes 173

which implies that sandboxes deployed by these services do not have Internet
connectivity, or the services simply did not conduct any dynamic analysis on
the submitted samples. Note that SandPrint is implemented such that it first
reports back to our server before collecting any features. As we also did not see
the initial connection for the nine services, we argue that the lack of reports is
not caused by sandboxes that are trying to avoid being fingerprinted. Due to
the lack of data, we exclude these nine services and will focus on the remaining
eleven services in the following.

4.4 Mapping Malware Analysis Services to Sandboxes

Next, we aim to map the SandPrint reports to malware analysis services. In
other words, did our fingerprinting help to expose internals of the sandbox(es)
used by a service? To map sandboxes to services, we followed a two-fold approach.

First, we studied the analysis reports (i.e., those provided by the services, and
not by SandPrint) that were returned by a service. These reports include the
behavior of the submitted samples. Recall that we encoded a unique identifier in
each SandPrint submission, which became visible in the analysis reports. We
found this identifier in the analysis reports of services #2, #11, #13, and #20.

Second, to map the remaining services, we analyzed whether some sandboxes
were exclusively used when submitting a sample to a particular service. That is,
we identify sandboxes that are seemingly attached to a certain service. Figure 3
(see Appendix) depicts the mapping between all samples submitted to eleven
malware analysis services (y-axis) and 76 sandboxes according to the report
clustering (x-axis). Some mappings could be confirmed by the analysis reports.
Next to these confirmed mappings, we find that some sandboxes are frequently
and exclusively used by the same service. For example, Sandbox 69 is constantly
used by Service #11 and no other services. In such a case, we can with some
likelihood conclude that the sandbox is exclusively used by the service. In total,
we revealed the dedicated sandboxes for four of the eleven services in this way.

After we mapped services to sandboxes, we were left with 71 sandboxes that
do not directly belong to one of the services. This is also shown in Fig. 3, which
lists many sandboxes that are commonly used to analyze samples from various
services. The degree of activity per sandboxes is an indicator for the coverage, i.e.,
how many samples a sandbox receives and executes. But foremost, it highlights
that samples are actively shared among the services.

4.5 Empirical Sandbox Analysis

After determining the sandboxes, we will highlight some insights obtained from
the collected features. First, we inspected the system installation features. We
found that the most popular OS for these sandboxes is still Windows XP, count-
ing 37 out of 71 sandboxes for which we could identify the OS. 29 sandboxes
were Windows 7. The other 5 sandboxes run Windows 8. The installation date
can approximate the age of a sandbox. Assuming the other installation dates are
not faked, we can see that all of the obtained OS installation dates are between

174 A. Yokoyama et al.

the years 2008 and 2016. We also see that more than half of the sandboxes are
at least three years old. As of 2014, 10 sandboxes were installed and already 18
sandboxes in 2015 or 2016. It is notable that the Windows product ID of 41
sandboxes is static, while 18 sandboxes vary the value. We presume this serves
for diversification purposes, as malware has been observed to use the Windows
product ID as a feature for sandbox identification.

The distribution of sandbox host names and owner names falls into two
extreme cases, namely, they are either highly diversified or completely static.
We deduce that some sandbox developers take countermeasures against being
fingerprinted, while many others do not. Among the sandboxes that diversify
host and owner names, the randomized names of most sandboxes still exhibit
common patterns, such as common prefixes and/or fixed length of the strings.

In some cases, we can infer sandbox implementations. Namely, Cuckoo Sand-
box includes a particular file named agent.py, which must be running upon the
analysis of a sample. We can infer that Cuckoo Sandbox is installed and running
by checking if the recent files list includes agent.py. We infer that five sandboxes
are implemented with Cuckoo Sandbox. Note that the sandboxes are not clus-
tered together, although they use the same technology. This is mainly due to the
fact that sandbox operators have to set up their own VM image, regardless of
whether they use common frameworks like Cuckoo. Although some sandboxes
use the same virtualization technology, these sandboxes can still be distinguished
based on their installation features (such as OS installation date or product ID).

Next, we inspected the Internet uplinks used by the sandboxes. 64 sandboxes
use external IP addresses of a single country according to GeoIP. Among them,
the US comes first with 22 sandboxes, Germany ranks second with six sandboxes,
China ranks third with five sandboxes, and Ireland ranks fourth with four sand-
boxes. Three sandboxes each are in Sweden, Russia, and Korea, and Romania,
Japan, and Britain host two sandboxes. We note that there are two sandboxes
that we cannot geolocate due to their high diversity of external IP addresses.
These sandboxes use Tor to diversify the IP address. We also note that 29 sand-
boxes use a single fixed IP address, which makes them trivially detectable from
the server side. For instance, if a malware sample sends a command to a C&C
server, the IP address could be checked against a black list on that server, which
then tells the client to stop executing.

The MAC addresses show the highest diversity in all features we collected.
Only 12 sandboxes use a single fixed MAC address, as confirmed by multiple
SandPrint reports. The majority of MAC addresses are at least partly diversi-
fied (e.g., the first three octets, namely the vendor ID, are often fixed but the rest
are diversified). We speculate this is due to the fact that the sandboxes actually
consist of multiple VMs running in parallel, sharing the same VM image, but all
having unique MAC addresses to avoid collisions on the Ethernet layer. Of those
sandboxes that did not hide the vendor prefix, we could reveal 6 VMware-based
(prefix: 00-50-56) and 21 VirtualBox-based (prefix: 08-00-27) sandboxes.

SandPrint: Fingerprinting Malware Sandboxes 175

Table 3. Sandbox classifier features.

Feature Observation Transf.

Hardware Display resolution Uncommon id

Display width Small id

RAM size Small/Uncommon id

PS/2 mouse Uncommon {0,1}
#Cores Small id

Disk size Small id

History System uptime small id

Last login Long ago id

Last file access Long ago id

Execution Image name Uncommon {0,1}
Clipboard Empty len

System manufacturer Uncommon len

5 Sandbox Classification

We have shown that the fingerprints can be used to discover that certain reports
belong to the same sandboxes. We now explore whether we can leverage the
extracted features to judge if a system is a sandbox. Intuitively, we explore fea-
tures that are inherent to sandboxes due to hardware constraints, their snapshot-
based operations, or lack of user interactions. We will show how we can use those
inherent features to detect sandboxes using supervised machine learning tech-
niques. We will first describe the feature selection for this task and then outline
how we design and evaluate a classifier for sandboxes with those features using
Support Vector Machines (SVMs) [21].

5.1 Feature Selection

The key idea behind the feature selection is to find patterns which are charac-
teristic for a sandbox operation but unlikely for a machine under human control.
Instead of identifying specific fingerprints for particular sandboxes, we strive to
find sandbox-inherent features that are common to all sandboxes.

Feature Selection Process. To establish a ground truth for user PCs, we
execute SandPrint on 50 commodity Windows workstations which are not used
as sandboxes and are under the control of human operators. We then manually
examined the reports to identify inherent and meaningful patterns which we
observed in the sandbox reports but which were not as characteristic for the
user reports. Table 3 summarizes the selected features, which we divide in the
three categories hardware, history and execution. The second column contains
the feature name, the third one describes our observations from the sandbox

176 A. Yokoyama et al.

reports, and the last column shows how we transform the feature value to an
integer before we pass it to the SVM (as we will discuss in Sect. 5.2).

The observations mentioned in Table 3 are a vague description of the feature
characteristic. A näıve approach would be to derive sandbox signatures for con-
crete values, such as searching for reports with a display resolution of 4:3. This
observation was made for the vast majority of sandboxes, but was uncommon
for a real user. However, there are several problems when choosing such concrete
values. First, the feature value is not necessarily so precise that such a solution
would make sense. The screen resolution, for example, was not 4:3 for all sand-
box reports, but 5:4 or some other suspicious value which we did not observe
in the user reports. Thus, instead of figuring out concrete values and checks for
each feature, we leave this task to the training process of our SVM classifier.

Similarly, we also refrain from detecting virtualization techniques, and rather
focus on inherent sandbox techniques. Technically, we could check for artifacts
that indicate the presence of a virtualization solution such as VMWare or Vir-
tual Box, which is frequently used by sandboxes. However, we would bias our
classifier towards detecting virtual machines, which is not the objective. While
virtualization is definitely a hint toward the presence of a sandbox, it is also def-
initely not a guarantee. For instance, we found one user report which indicated
that the execution was taking place in a VMWare virtual machine. Our classifier
should be able to classify this machine as a user machine and not as a sandbox.
Conversely, a sandbox does not necessarily use virtualization as, for example, in
the case of bare-metal sandboxes. Our classifier should be able to classify those
systems as sandboxes despite the absence of virtualization, as our features are
based on the observation that sandboxes use snapshots, have restricted resources,
and uncommon user interaction.

Feature Description. We now describe the features in more detail. The hard-
ware features are motivated by the fact that sandbox operators restrict resources
in order to leverage parallel computation. Therefore, it is quite common that
sandboxes are single core, use little RAM, and have small disk sizes, whereas
these quantities are much larger on the average user PCs. Second, since sand-
boxes are usually not interactively used by a human, the operators often do
not customize the hardware configurations. We argue that a small display size
and uncommon display resolution as well as a PS/2 mouse are all indicators
for a sandbox. It is worth mentioning that this is not equivalent to virtualiza-
tion detection, where these configurations are usually the default as well. A user
interactively using her VM likely customizes its screen resolution and increases
its computation power by using more cores and more RAM. The history features
mainly originate from the observation that sandboxes leverage snapshot technol-
ogy. Prior to a malware sample being analyzed, the sandbox usually restores the
system state to a previously captured clean state, which is called a snapshot. A
snapshot is typically taken once when the sandbox is set up and is then used for
the rest of the operation time of the sandbox (unless it is occasionally updated).
As a consequence, it is likely to show history artifacts. For example, if a snap-
shot was taken months ago, every time the snapshot is restored, the login history

SandPrint: Fingerprinting Malware Sandboxes 177

would reveal that the last login was at that time. Similarly, the file access history
would reveal that the last file access happened suspiciously long ago. In addi-
tion, we observed that many sandboxes had just been started, whereas user PCs
usually have a longer uptime. Sandbox reports frequently show system uptimes
on the order of seconds, whereas a vulnerable system that is about to be infected
(e.g., via a drive-by download) likely has a significantly higher uptime.

The execution features stem from the sandbox showing uncommon execution
patterns. We noticed, for example, that sandboxes tend to change the image
executable name to something which is easier to handle in terms of automa-
tion. It is quite common that sandboxes uses MD5 hashes or generic names
such as virus.exe, whereas the user reports indicate that such renaming is
unlikely. We also found that the clipboard of the sandboxes was empty or con-
tained seemingly-random strings, whereas users’ clipboards tended to contain
more meaningful values such as links, text, or file objects. Finally, we observed
that sandboxes returned suspicious values for the system manufacturer, such as
empty or random strings, possibly to hide real names—which we did not observe
in the user reports.

5.2 Classification

We use the previously-described features to train a classifier that can automat-
ically learn a model to predict if an unknown feature report was taken on a
sandbox or a user PC. To this end, we build up a training data set that consists
of all 50 user reports and up to three random samples from each sandbox cluster.
In total this gives us a training set of 202 reports, 50 of which are user reports
and 152 of which are sandbox reports.

For building the classifier, we use an SVM with a radial basis function kernel.
To normalize the feature vector that we pass to the SVM, we need to transform
the feature values into numerical values. This is done according to the last column
in Table 3. Here, id means that we simply take the number as is, len means that
we consider the length of the string feature, and {0,1} is a boolean value (in
our case, to show if the report indicates a PS/2 mouse or not). Similarly, for the
image name feature we check if the file image name has been altered. Since not
every feature is available for every report, for reasons explained in Sect. 4, we
decided to use mean imputation to estimate missing values. Finally, we normalize
values to the [0, 1] range using Min-Max Scaling.

To build a classifier, we need to specify an effective combination of the SVM
regularization constant C and the kernel parameter γ. For this purpose, we use
hyperparameter tuning with grid search and 10-fold cross validation to compute
the accuracy of our classifier. We use 10-fold cross validation on top of this
methodology to ensure that we get unbiased results. In an initial step, to evaluate
the strength of each individual feature, we built a classifier for each single feature.
The results of this experiment are depicted in Fig. 1. As we can see, even a single
feature can be used to detect sandboxes with high accuracy, with the RAM
feature being the best, at an accuracy of 98.06%. However, a single feature is
easier to fix for a sandbox operator than multiple features. We thus also created

178 A. Yokoyama et al.

a classifier that trains on all features. The rightmost bar in Fig. 1 shows that
this classifier has a perfect accuracy of 100% (i.e. 0 false positives and 0 false
negatives), illustrating the strength of combining multiple detection features.

5.3 Comparison to Existing Solutions

In order to evaluate how well our classifier performs, we decided to compare our
methodology to existing work. For this purpose, we use Paranoid Fish (Pafish),
a popular framework consisting of a collection of several well-known sandbox
detection techniques used by malware in the wild. We encoded 45 detection
techniques used by Pafish in SandPrint and performed them during each run.
Using those 45 detection results, we then built a classifier in the same fashion as
before. We consider each detection a feature for which we build a single classifier,
and we also build a classifier for the combination of all 45 features. The accuracy
results for these classifiers are depicted in Fig. 2. Again, each light colored bar
shows the accuracy for a single feature, and the black bar shows the accuracy
for the classifier which combines all the features. As we can see, the majority of
the single-feature classifiers are not much better than guessing. Two features are
above 80% accuracy, with the best individual feature (rdtsc time measurements
to detect virtualization [18]) having 93% accuracy. The combined version has
an accuracy of 97.8%.

Besides having a better accuracy, we argue that our methodology is superior
to Pafish for two additional reasons. First, Pafish mainly checks for virtual-
ization artifacts, from which we refrain for reasons explained before. Second, the
majority of the checks performed by Pafish are not stealthy by any means, since
it heavily queries information from the registry, network adapters, and other
sources which are likely to be monitored by the sandbox. By doing so, Pafish

Fig. 1. Classifier accuracy (larger is
better).

Fig. 2. Pafish classifier accuracy.

SandPrint: Fingerprinting Malware Sandboxes 179

risks being detected as an environment-sensitive malware. In contrast, we argue
our method’s information extraction is stealthier. In fact, as we will see in Sect. 6
our approach is not even detected by state-of-the-art security appliances, which
highlights the stealthiness of our approach.

5.4 Summary

As we have shown, we can reliably distinguish between a sandbox and a user
machine based on sandbox-inherent features. Although the number of features
seems quite small, we argue that hiding those features takes a lot of effort for
the sandbox operator. While changing the screen size and switching to a USB
emulated mouse is configurable, removing the parallel computation artifacts is
not as simple. Increasing the number of cores and the amount of memory is
likely not to be an option for the operator, as this would decrease the produc-
tivity of the sandbox. This could be solved through a solution which gives the
running programs the impression of more resources. Similarly, avoiding history
artifacts introduced by snapshots also requires engineering effort. For example,
the sandbox operator could make sure that all the relevant history information
on the system appears to be normal. A solution could be to customize sandbox
snapshots and keep them up-to-date like non-sandbox systems. Unfortunately,
such customization it is high effort, might be prone to errors, and likely needs
to be reimplemented for every operating system under analysis. For other coun-
termeasures which could be applied by sandbox operators, we refer to Sect. 7.1,
where we combine this aspect with an ethical discussion of our work.

6 Malware Appliance Detection

Seeing that one can detect publicly-exposed sandboxes, we wondered if we could
use the classifier trained on public knowledge to evade closed malware analysis
appliances. Appliances are different from sandboxes in that their main objective
is not to analyze the complete behavior of malware, but rather to detect malware
in order to protect a sensitive infrastructure against cyber attacks. An advanced
attacker may thus have strong incentives to detect an appliance in order to fly
under the radar. That is, if an attacker can detect an appliance, she could hide
her program’s malicious behavior to avoid triggering any alert in the appliance.

Looking at the feature selection in Sect. 5, we realized that we can possibly
assume that appliances could share the same feature characteristics as sandboxes.
To verify this, we run SandPrint on three popular appliances from well-known
vendors1. For this purpose, we gained access to various instances (Windows 7,
Windows XP, 32/64 bit, different service packs, etc.) of the appliances. We ran
SandPrint four times on each instance and collected 40 reports. Obtaining the
features was not as trivial as in the case of publicly available sandboxes, since
the appliances did not allow for network communication. To overcome this issue,

1 We omit the vendor names not to pinpoint to weaknesses of individual appliances.

180 A. Yokoyama et al.

we encoded the extracted features in the analysis report which was produced by
the appliance after executing SandPrint.

When manually inspecting the feature reports, we found out that our assump-
tion about the feature characteristics was correct. Similar to sandboxes, appli-
ances also exhibit hardware, history and execution characteristics that indicate
non-human and non-interactive usage. To our surprise, some features were even
stronger than in the sandbox case. For example, all 40 reports contained a small
screen width and a 4:3 screen resolution.

For each appliance, we then measure how accurately the classifier that we
trained on the sandboxes and user report performs on the appliance reports.
With an accuracy of 100%, the classifier detected all appliances as non-user
machines. However, the main priority in this setting is not evasion per se, but
rather stealth evasion. That is, while an attacker aims to detect an appliance,
she does not want her detection method to be unveiled. We thus had a look at
the reports produced by the appliances and found out that SandPrint created
many security alerts by reading information such as motherboard information,
BIOS information, or serial numbers. We then checked if the features used for
the classifier were also on the list of alerts, which would essentially negate the
stealthiness of the detection. For example, many Pafish checks were detected
by the appliances. Although the majority of the sandbox-inherent features did
not trigger an alert by any appliance, we discovered that one appliance considers
reading the disk information as suspicious behavior. To counter this, we removed
the disk feature from the feature vector and evaluated the classifier again on the
appliance reports, resulting again in 100% accuracy—even for stealth evasion.

To summarize, an attacker can reveal characteristics of publicly available
sandboxes and use the gathered information to build a classifier that can per-
fectly distinguish between a user PC and an appliance. With insider knowledge
on security appliances, an advanced attacker could tweak her classifier such that
the evasion is stealthy and remains undetected by the appliance.

7 Discussion and Limitations

This section discusses ethical aspects and potential limitations of our work. As
part of the ethical discussion, we also describe a responsible disclosure process
in which we informed the sandbox and appliance operators about our findings.

7.1 Ethical Considerations

Our research may seem offensive in the sense that we reveal fingerprints of mal-
ware sandboxes that adversaries can use to evade them. Note, however, that the
information we presented can be gathered by any other person reproducing our
(conceptually simple) fingerprinting method. We thus consider the information
shown in this paper as public knowledge. Still, we present data only in aggregated
form and refrain from revealing any internals of particular sandboxes.

SandPrint: Fingerprinting Malware Sandboxes 181

Using our insights, sandbox operators can aim to implement stealthier analy-
sis systems. For example, we have shown that one should periodically update
features that are inherent to the snapshot of a sandbox. While it will always
be possible to find artifacts that can identify an individual sandbox, it is sig-
nificantly harder to build a classifier that works for all sandboxes, especially if
more people randomize characteristics. We have shown which features are par-
ticularly characteristic of sandboxes, giving sandbox operators hints on where
to significantly improve the stealthiness of their systems.

7.2 Responsible Disclosure

Organizations developing sandboxes and/or appliances are immediately affected
by our research results and we thus considered them as the main target of
our responsible disclosure process. To notify these organizations, we contacted
them 90 days prior to the publishing date of this paper, detailing the proposed
attack and including hints on how to protect against potential adversaries in the
future. We used direct contacts whenever possible and available. Alternatively,
we resorted to contact details stated on the organization’s websites, notably
including Web-based contact forms. If we did not receive a response after 2 weeks,
we retried to contact the organization, if possible using alternative communica-
tion channels (e.g., using generic email addresses like info@organization.com
or email addresses found in the WHOIS database for the organization’s web-
site domain). If we did not hear back from the organization after 4 weeks, we
contacted the national CERT(s) that are in the same country as the affected
organization in order to notify the party via the CERT as trusted intermediary.

We handed to each organization an executive summary of our research results
as well as a full description of our research methodology (i.e., a copy of this
paper in the pre-print version). We made sure to highlight the implications of
our work with respect to future operations of the sandbox and/or appliance.
We also specified our contact details of both research institutions, including
physical address, phone number, and the email address of a representative for the
research activities. We allowed the organizations to download the latest version of
SandPrint and its source code. Such auxiliary data is helpful to build protection
mechanisms against sandbox-evasive programs similar to SandPrint. We also
remove all organizations’ names when referring to individual sandboxes/services.

7.3 Isolated Sandboxes

Most sandboxes allowed the program under analysis to communicate over the
Internet, whereas nine services and all three appliances did not do so. To some
extent we could also extract features of isolated sandboxes (the appliances) by
encoding the features into events of the analysis report. However, this requires
access to the isolated sandboxes, which may be hard to obtain for an attacker.
Note that our sandbox classification did not use features that depend on the
network configuration. In principle, our classification results should also gener-
alize to non-connected sandboxes. Although we cannot rule out the possibility

182 A. Yokoyama et al.

that there are non-connected sandboxes for which our classifier would perform
poorly, we argue that the successful detection of appliances supports this claim.

Due to our assumption of Internet-connected sandboxes, the number of in-
the-wild sandboxes is likely higher than our findings in the clustering results
suggest. We argue, though, that our analyses are based on a statistically signif-
icant set of sandboxes, including those of the most popular analysis services.

8 Related Work

Evasion Techniques: Seeing the increasing popularity of sandboxes, malware
authors try to find a way to evade sandbox analysis. Egele et al. give an overview
of sandbox implementations [24]. Most sandboxes use virtual machine (VM)
technology or CPU emulators. Such virtualization eases the process of ana-
lyzing multiple samples in parallel. Accordingly, studies show how to distin-
guish between a real machine and virtual environment. RedPill [47] determines
whether it is executed on VMware using the sidt instruction. Many other detec-
tion methods have also been developed for not only VMware [29,43], but also
for famous system emulators such as QEMU [22,29,40,43] and BOCHS [34,40].
There are also some detection methods for emulation-based Android sand-
boxes [27,42,54]. The fundamental difference between our approach and the
above techniques is that we do not aim to detect virtualization or emulation, as
VMs and sandboxes are not equivalent. In addition, as shown with Pafish, most
of these checks are not stealthy, whereas our approach even managed to detect
security appliances without triggering alerts. It is also likely that our approach
could work for bare metal sandboxes. We argue that bare metal sandboxes con-
ceptually share many sandbox-inherent features with traditional sandboxes as
the major difference is only the absence of virtualization and emulation—not
the snapshot mechanism.

The work closest to our approach has been done by Maier et al. [33]. They
gathered several features about Android sandboxes and showed that Android
malware can bypass the existing sandboxes by using the fingerprints. However,
they do neither perform automated clustering and classification of sandbox-
inherent features, nor do they test their approach against security appliances.
Furthermore, the feature selection of Maier et al. is very specific to smartphones.
Features such as “the device needs at least n saved WiFi-networks” or “the device
must have a paired Bluetooth device” cannot be used in our (non-mobile) con-
text in a meaningful way. However, we also use some similar features like special
hardware artifacts or system uptime. Regarding sandboxes for Windows mal-
ware, Yoshioka et al. [56] clustered and detected sandboxes by their external IP
addresses. We were inspired by these works and performed a study in greater
detail, collecting 25 features and identifying 76 sandboxes with an unsupervised
machine learning technique.

SandPrint: Fingerprinting Malware Sandboxes 183

Transparent Sandboxes: Seeing the threat of VM evasion, researchers
started to explore transparent sandboxes that are stealthy against detection.
Vasudevan et al. proposed Cobra [53], which was the first analysis system coun-
tering anti-analysis techniques. Dinaburg et al. proposed Ether [23], a transpar-
ent sandbox using hardware virtualization extensions such as Intel VT. Those
systems focus on how to conceal the existence of analysis mechanisms from
malware. Pek et al. introduced a timing-based detection mechanism to detect
Ether [41]. In addition, as we have shown, the majority of sandboxes, includ-
ing VT-based sandboxes, are susceptible to evasion due to sandbox-inherent
features.

Kirat et al. proposed to use actual hardware to analyze malware [9,31]. The
proposed system, called BareBox, is based on a fast and rebootless system restore
technique. Since the system executes malware on real hardware, it is not vul-
nerable to any type of VM/emulation-based detection attacks. Still, as it is
snapshot-based, it falls for the methods described in Sect. 5.

9 Conclusion

Our real-world malware sandbox investigations have shown it is quite straightfor-
ward to fingerprint malware sandboxes. We identified 76 sandboxes by uploading
a measurement binary to 20 services, all of which can be rather trivially detected
and evaded just based on sandbox-inherent characteristics. Our findings also sug-
gest detecting and evading malware appliances is similarly possible. This calls
into question how we can protect against the threat of sandbox evasion in the
future, and should serve as a heads-up for sandbox operators to inform them
about threats that may actually be already silently misused by malware.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments. Special thanks goes to our shepherd Michael Bailey, who supported
us during the process of finalizing the paper. This work was supported by the MEXT
Program for Promoting Reform of National Universities and by the German Federal
Ministry of Education and Research (BMBF) through funding for the Center for IT-
Security, Privacy and Accountability (CISPA) and for the BMBF project 13N13250.

Appendix

See Fig. 3.

184 A. Yokoyama et al.

Fig. 3. Mapping between submitted SandPrint instances and sandboxes. The non-
circle shapes indicate constant and exclusive use of a sandbox by a particular service
and thus are inferred as being a sandbox attached to the service. A cross indicates that
the mapping is confirmed by mapping the SandPrint report to the dynamic analysis
report provided by the service.

SandPrint: Fingerprinting Malware Sandboxes 185

References

1. Amnpardaz Sandbox - File Analyzer. http://jevereg.amnpardaz.com/
2. Anubis: Malware Analysis for Unknown Binaries. https://anubis.iseclab.org/
3. Bkav - Scan virus online. http://quetvirus.vn/default.aspx?lang=en
4. bochs: The Open Source IA-32 Emulation Project. http://bochs.sourceforge.net
5. Dr. Web Online Check. http://online.drweb.com/?lng=en
6. FortiGuard Center. Online Virus Scanner. http://www.fortiguard.com/

virusscanner
7. Gary‘s Hood. Online Virus Scanner. http://www.garyshood.com/virus/
8. Malwr - Malware Analysis by Cuckoo Sandbox. https://malwr.com/
9. NVMTrace: Proof-of-concept Automated Baremetal Malware Analysis Framework.

https://code.google.com/p/nvmtrace/
10. Oracle VM VirtualBox. https://www.virtualbox.org
11. #totalhash. https://totalhash.cymru.com/upload/
12. http://www.Vicheck.ca
13. Virusblokada. http://anti-virus.by/en/index.shtml
14. VirusTotal - Free Online Virus, Malware and URL Scanner. https://www.

virustotal.com/en/
15. VMware. http://www.vmware.com/
16. Bayer, U., Milani Comparetti, P., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,

behavior-based malware clustering. In: Network and Distributed System Security
Symposium (NDSS) (2009)

17. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC 2005 (2005)

18. Brengel, M., Backes, M., Rossow, C.: Detecting hardware-assisted virtualization.
In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016. LNCS, vol.
9721, pp. 207–227. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40667-1 11

19. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the
commoditization of malware distribution. In: USENIX Security (2011)

20. Comodo. Comodo Instant Malware Analysis. http://camas.comodo.com/
21. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods. Cambridge University Press, Cambridge
(2000)

22. DEXLabs. Detecting Android Sandboxes (2012). http://www.dexlabs.org/blog/
btdetect

23. Dinaburg, A., Royal, P., Sharif, M., Ether, L.W.: Malware analysis via hardware
virtualization extensions. In: Proceedings of the 15th ACM Conference on Com-
puter and Communications Security, CCS 2008 (2008)

24. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44, 2 (2008)

25. F-Secure. Sample Analysis System. https://analysis.f-secure.com/portal/login.
html

26. Freiling, F.C., Holz, T., Wicherski, G.: Botnet tracking: exploring a root-cause
methodology to prevent distributed denial-of-service attacks. In: di Vimercati, S.C.,
Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 319–335.
Springer, Heidelberg (2005)

27. Jing, Y., Zhao, Z., Ahn, G.-J., Hu, H.: Morpheus: automatically generating heuris-
tics to detect android emulators. In: Proceedings of the 30th Annual Computer
Security Applications Conference, ACSAC 2014 (2014)

http://jevereg.amnpardaz.com/
https://anubis.iseclab.org/
http://quetvirus.vn/default.aspx?lang=en
http://bochs.sourceforge.net
http://online.drweb.com/?lng=en
http://www.fortiguard.com/virusscanner
http://www.fortiguard.com/virusscanner
http://www.garyshood.com/virus/
https://malwr.com/
https://code.google.com/p/nvmtrace/
https://www.virtualbox.org
https://totalhash.cymru.com/upload/
http://www.Vicheck.ca
http://anti-virus.by/en/index.shtml
https://www.virustotal.com/en/
https://www.virustotal.com/en/
http://www.vmware.com/
http://dx.doi.org/10.1007/978-3-319-40667-1_11
http://camas.comodo.com/
http://www.dexlabs.org/blog/btdetect
http://www.dexlabs.org/blog/btdetect
https://analysis.f-secure.com/portal/login.html
https://analysis.f-secure.com/portal/login.html

186 A. Yokoyama et al.

28. Jotti. Jotti’s Malware Scan. http://virusscan.jotti.org/en
29. Jung, P.: Bypassing Sandboxes for Fun. https://www.botconf.eu/wp-content/

uploads/2014/12/2014-2.7-Bypassing-Sandboxes-for-Fun.pdf
30. Kirat, D., Vigna, G., Kruegel, C.: Barecloud: bare-metal analysis-based evasive

malware detection. In: Proceedings of the 23rd USENIX Conference on Security
Symposium, SEC 2014 (2014)

31. Kirati, D., Vigna, G., Kruegel, C.: BareBox: efficient malware analysis on bare-
metal. In: Proceedings of the 27th Annual Computer Security Applications Con-
ference, ACSAC 2011 (2011)

32. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: AccessMiner:
using system-centric models for malware protection. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS 2010 (2010)

33. Maier, D., Müller, T., Protsenko, M.: Divide-and-Conquer: why android malware
cannot be stopped. In: Proceedings of the 2014 Ninth International Conference on
Availability, Reliability and Security, ARES 2014 (2014)

34. Martignoni, L., Paleari, R., Roglia, G.F., Bruschi, D.: Testing CPU emulators. In:
Proceedings of the Eighteenth International Symposium on Software Testing and
Analysis, ISSTA 2009 (2009)

35. Microsoft. Submit a sample - Microsoft Malware Protection Center. https://www.
microsoft.com/security/portal/submission/submit.aspx

36. Neugschwandtner, M., Comparetti, P. M., Platzer, C.: Detecting malware’s failover
C&C strategies with squeeze. In: Proceedings of the 27th Annual Computer Secu-
rity Applications Conference, ACSAC 2011 (2011)

37. Neuner, S., van der Veen, V., Lindorfer, M., Huber, M., Merzdovnik, G., Mulazzani,
M., Weippl, E.: Enter Sandbox: Android Sandbox Comparison (2015). http://
arxiv.org/ftp/arxiv/papers/1410/1410.7749.pdf

38. OPSWAT. Metascan Online: Free File Scanning with Multiple Antivirus Engines.
https://www.metascan-online.com/#!/scan-file

39. Pa, Y.M.P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., Rossow, C.: IoT-
POT: analysing the rise of IoT compromises. In: Proceedings of the 9th USENIX
Workshop on Offensive Technologies, WOOT (2015)

40. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.A.: Fistful of red-pills: how
to automatically generate procedures to detect CPU emulators. In: Proceedings of
the 3rd USENIX Conference on Offensive Technologies, WOOT 2009 (2009)

41. Pék, G., Bencsáth, B., Buttyán, L.: nEther: in-guest detection of out-of-the-guest
malware analyzers. In: Proceedings of the Fourth European Workshop on System
Security, EUROSEC 2011 (2011)

42. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of android malware. In:
Proceedings of the Seventh European Workshop on System Security, EuroSec 2014
(2014)

43. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
1–18. Springer, Heidelberg (2007)

44. Rieck, K., Schwenk, G., Limmer, T., Holz, T., Laskov, P.: Botzilla: detecting the
phoning home of malicious software. In: Proceedings of the 2010 ACM Symposium
on Applied Computing (ACSAC 2010) (2010)

45. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. J. Comput. Secur. 19(4), 639–668 (2009)

http://virusscan.jotti.org/en
https://www.botconf.eu/wp-content/uploads/2014/12/2014-2.7-Bypassing-Sandboxes-for-Fun.pdf
https://www.botconf.eu/wp-content/uploads/2014/12/2014-2.7-Bypassing-Sandboxes-for-Fun.pdf
https://www.microsoft.com/security/portal/submission/submit.aspx
https://www.microsoft.com/security/portal/submission/submit.aspx
http://arxiv.org/ftp/arxiv/papers/1410/1410.7749.pdf
http://arxiv.org/ftp/arxiv/papers/1410/1410.7749.pdf
https://www.metascan-online.com/#!/scan-file

SandPrint: Fingerprinting Malware Sandboxes 187

46. Rossow, C., Dietrich, C., Bos, H.: Large-scale analysis of malware downloaders. In:
Flegel, U., Markatos, E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp.
42–61. Springer, Heidelberg (2013)

47. Rutkowska, J.: Red Pill... Or How To Detect VMM Using (Almost) One CPU
Instruction (2004). http://www.securiteam.com/securityreviews/6Z00H20BQS.
html

48. Payload Security: Free Automated Malware Analysis Service. https://www.
hyblid-analysis.com/

49. Payload Security: Blog article (2015). http://www.pandasecurity.com/
mediacenter/press-releases/pandalabs-neutralized-75-million-new-malware-samp
les-2014-twice-many-2013/

50. ThreatTrack Security. Free Online Malware Analysis. http://www.
threattracksecurity.com/resources/sandbox-malware-analysis.aspx

51. Symantec. Internet Security Threat Report 04/2015 (2015). http://www.symantec.
com/de/de/security response/publications/threatreport.jsp

52. ThreatExpert. http://www.threatexpert.com/submit.aspx
53. Vasudevan, A., Yerraballi, R.: Cobra: fine-grained malware analysis using stealth

localized-executions. In: Proceedings of the 2006 IEEE Symposium on Security and
Privacy, S&P 2006 (2006)

54. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection.
In: Proceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security, ASIA CCS 2014 (2014)

55. VirSCAN.org. Free Multi-Engine Online Virus Scanner. http://www.virscan.org/
56. Yoshioka, K., Hosobuchi, Y., Orii, T., Matsumoto, T.: Your sandbox is blinded:

impact of decoy injection to public malware analysis systems. J. Inf. Process. 52,
3 (2011)

http://www.securiteam.com/securityreviews/6Z00H20BQS.html
http://www.securiteam.com/securityreviews/6Z00H20BQS.html
https://www.hyblid-analysis.com/
https://www.hyblid-analysis.com/
http://www.pandasecurity.com/mediacenter/press-releases/pandalabs-neutralized-75-million-new-malware-samples-2014-twice-many-2013/
http://www.pandasecurity.com/mediacenter/press-releases/pandalabs-neutralized-75-million-new-malware-samples-2014-twice-many-2013/
http://www.pandasecurity.com/mediacenter/press-releases/pandalabs-neutralized-75-million-new-malware-samples-2014-twice-many-2013/
http://www.threattracksecurity.com/resources/sandbox-malware-analysis.aspx
http://www.threattracksecurity.com/resources/sandbox-malware-analysis.aspx
http://www.symantec.com/de/de/security_response/publications/threatreport.jsp
http://www.symantec.com/de/de/security_response/publications/threatreport.jsp
http://www.threatexpert.com/submit.aspx
http://www.virscan.org/

Enabling Network Security Through
Active DNS Datasets

Athanasios Kountouras1(B), Panagiotis Kintis2, Chaz Lever2, Yizheng Chen2,
Yacin Nadji2, David Dagon1, Manos Antonakakis1, and Rodney Joffe3

1 School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, USA

{kountouras,manos}@gatech.edu, dagon@sudo.sh
2 School of Computer Science, Georgia Institute of Technology, Atlanta, USA

{kintis,chazlever,yzchen,yacin}@gatech.edu
3 Neustar, Sterling, USA
rjoffe@centergate.com

Abstract. Most modern cyber crime leverages the Domain Name Sys-
tem (DNS) to attain high levels of network agility and make detection
of Internet abuse challenging. The majority of malware, which represent
a key component of illicit Internet operations, are programmed to locate
the IP address of their command-and-control (C&C) server through DNS
lookups. To make the malicious infrastructure both agile and resilient,
malware authors often use sophisticated communication methods that
utilize DNS (i.e., domain generation algorithms) for their campaigns. In
general, Internet miscreants make extensive use of short-lived disposable
domains to promote a large variety of threats and support their criminal
network operations.

To effectively combat Internet abuse, the security community needs
access to freely available and open datasets. Such datasets will enable
the development of new algorithms that can enable the early detection,
tracking, and overall lifetime of modern Internet threats. To that end, we
have created a system, Thales, that actively queries and collects records
for massive amounts of domain names from various seeds. These seeds
are collected from multiple public sources and, therefore, free of privacy
concerns. The results of this effort will be opened and made freely avail-
able to the research community. With three case studies we demonstrate
the detection merit that the collected active DNS datasets contain. We
show that (i) more than 75 % of the domain names in public black lists
(PBLs) appear in our datasets several weeks (and some cases months)
in advance, (ii) existing DNS research can be implemented using only
active DNS, and (iii) malicious campaigns can be identified with the
signal provided by active DNS.

1 Introduction

The Domain Name System (DNS) is a fundamental component of the Internet.
Most network communication on the Internet starts with a DNS lookup that
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 188–208, 2016.
DOI: 10.1007/978-3-319-45719-2 9

Enabling Network Security Through Active DNS Datasets 189

maps a domain name to a corresponding set of IP addresses. Cyber criminals
frequently leverage DNS to provide high levels of network agility for their illicit
operations. For example, most malware relies on DNS to locate its command-
and-control (C&C) servers. Such servers are used to send commands from the
attacker, exfiltrate secret information, and send malware updates.

DNS abuse is an enduring, if not permanent, feature of the Internet, which
might at best be managed through various policies, remediation technologies
and defenses. Traditionally, network operators have relied on static blacklists to
detect and block DNS queries to malware domains. Unfortunately, static black-
lists, which are often manually compiled, cannot keep pace with the quantity of
network agility of modern threats. This results in blacklists that are incomplete
and become outdated quickly.

To overcome the limitations of static blacklists, new analytical systems have
been proposed [12–15,26,29] to shorten the response time necessary to react to
new threats and secure networks. Those systems rely on the efficient collection
and presentation of passive DNS datasets. However, such datasets are difficult
to find, challenging to collect, and often require restrictive legal agreements.
These obstacles make further innovation difficult and are an impediment to
repeatability of research.

The lack of open and freely available DNS datasets puts the security commu-
nity at a disadvantage because they lack access to datasets describing a critical
component used by adversaries on the Internet. Clearly, the security community
is in need of open, freely available DNS datasets than can help increase the sit-
uational awareness around modern threats. This is illustrated by the fact that
most modern threats rely on DNS for their illicit activities.

This paper provides a solution aimed at filling this gap. We introduce the
concept of active DNS and discuss a new large scale system, Thales, which
is able to systematically query and collect large volumes of active DNS data.
The output of this system is a distilled dataset that can be easily used by the
security community. Thales has been reliably active for more than six months
and collected many terabytes of DNS data, while causing only a handful of abuse
complaints. Access to this dataset is currently available to the community from
the following project website: http://www.activednsproject.org/1.

In summary, our paper makes the following contributions:

1. We present a system, Thales, that can reliably query, collect, and distill
active DNS datasets. Due to the public nature of our seed data, our active
DNS datasets do not contain any potentially sensitive information that pre-
clude their use by the security community. Thales has been collecting active
DNS data for more than six months with almost zero down time (only three
days). During this time, the system has generated more than a terabyte of
unprocessed DNS PCAPs along with tens of gigabytes of de-duplicated DNS
records per day. Thus, the active DNS datasets represent a significant portion
of the world’s daily DNS delegation hierarchy.

1 In order to not violate the double blind nature of the submission, we kept the web
site in the simplest possible format.

http://www.activednsproject.org/

190 A. Kountouras et al.

2. We provide in-depth comparison between the newly collected active DNS
datasets and passive DNS collected from a large university network. We show
that the active DNS datasets provide greater breadth (i.e., reaches out to a
larger portion of the IPv4, IPv6, and DNS space). Conversely, passive DNS
yields a denser graph between the queried domain names and the remaining
IP and DNS infrastructure.

3. We practically explore how active DNS can be used to improve the security
of modern networks through several case studies. We show that the active
DNS datasets can be use for early detection of financial and other Internet
threats. Our analysis shows that more than 75 % of malicious domain names
appear in the active DNS datasets months before they get listed in a public
blacklist. We demonstrate how active DNS can be used to implement and
extend existing DNS related research, specifically, by implementing an algo-
rithm used to detected potential domain ownership changes. Finally, we show
how active DNS can be used as a signal to identify malicious campaigns on
the Internet.

2 Active DNS Data Collection

With this section we introduce Thales. We will begin by discussing the network
and system infrastructure necessary to systematically and reliably collect the
active DNS datasets. Then, we will discuss the details of the domain names that
compile the daily seed for Thales. The section will be concluded by discussing
the long term measurement behind the collected active DNS datasets.

2.1 Infrastructure

The reliable collection of DNS data is far from easy. Thales was designed to retain
high levels of availability, efficiency and scalability. The goal of Thales is clear;
the generation of active DNS datasets that will provide systematic snapshots of
the DNS infrastructure, several times per day. These datasets will enable the
security community to construct a timeline of the evolution of threats in the
broader Internet.

Our system, Thales, is composed of two main modules as seen in Fig. 1:
(a) the traffic generator and (b) the data collector. The first is responsible for
generating large numbers of DNS queries using a list of seed domain names
as an input to the system. The second module is responsible for collecting the
network traffic and guiding these raw DNS datasets for further processing (i.e.,
data deduplication).

Traffic Generation. In order to achieve high availability, redundant systems
are used to generate traffic. Linux containers (LXC) [7] are setup across several
physical systems, creating a DNS scanning cluster of 30 LXC containers. Each

Enabling Network Security Through Active DNS Datasets 191

Fig. 1. The Seed API is responsible for collecting the seed domains from various sources
and the Seed Generation reduces them to a list of unique domains. The LXC Farm
corresponds to the query generator which is connected to the internet through a Net-
work Span. That in turn is sending traffic to the Collection Point from where data is
being reduced and stored for long term on our Hadoop Cluster.

LXC contains its own local recursive software2 and is assigned a job, where a
subset of the overall daily seed domain names will have to be resolved by a
particular container. High efficiency is achieved by increasing the rate of DNS
resolution requests (a.k.a. queries per second) that can be handled by the recur-
sive in the LXC container. However, just increasing the resources of the LXC
container will not suffice for the container to handle a large enough number of
DNS requests. This is because the local recursive in the LXC is bounded by
the maximum number of ports that can be used for UDP sockets. This means
that the number of requests that can be sent by a host have to be limited to
the number of available concurrent ports that the local recursive (in the LXC
container) can handle.

At any given point in time, a container could theoretically handle up to
64,512 (215 − 1024) sockets per IP address – and therefore 64,512 UDP query
packets in transit. The LXC containers support custom network interfaces, which
support assigning a different IP address to each container. More specifically, we
use 30 contiguous IPs out of an assigned IP block of 63 available addresses (/26).
Thus, they are able to send and receive up to 30× 64, 512 ≈ 221 simultaneous
DNS resolution requests from the infrastructure. These results are achieved by
deploying the containers on two physical systems. Each of these two systems has
64 processing cores and 164 GB of RAM. It is worth pointing out that using LXC
containers allows us to scale the infrastructure horizontally by simply adding
more systems to our scanning cluster.

Data Collection. The requests submitted by Thales are collected at two van-
tage points. The first one is on the LXC container that has submitted the reso-
2 We used the Unbound (https://www.unbound.net/) recursive software in every LXC

container.

https://www.unbound.net/

192 A. Kountouras et al.

lution request for a given domain name, whereas the second one is at the SPAN
of a switch that routes traffic for all our containers. As mentioned earlier, we are
utilizing several IP addresses from several local virtual LANs (VLAN). These
VLANs have been “trunked” to a single 1Gbit interface on a host that collects
all port 53 UDP traffic. We are collecting traffic at both points for redundancy
and verification of correctness for the daily active DNS datasets.

Fig. 2. A sample record from our dataset that shows the data fields that are stored.
The authority ips field represents the authoritative nameservers that replied for this
domain name and the hours variable captures the hour of the day that this record was
seen in a 24 bit integer.

Capturing network traffic results (on average) in a massive 1.67TB of raw
data in packet capture format (pcap). This data is transferred in a local Hadoop
cluster composed of 22 data nodes. The Hadoop cluster is responsible for pars-
ing the pcap files, deduplicating the resource records (RRs) and converting the
RRs into meaningful DNS tuples of following format: (date, QNAME, QTYPE,
RDATA, TTL, authorities, count) as seen in Fig. 2. Deduplication is a critical
step, since many responses we collect remain the same throughout a day. Thus,
after removing duplicate RRs, we are left (on average) with approximately 85 GB
of data per day. Detailed measurements for both daily raw and deduplicated RRs
will be discussed in Sect. 2.3.

2.2 Domain Seed

Before Thales can begin scanning the domain name system, it has to be provided
with a list of domain names that will act as candidates for resolutions. We will
refer to these domain names as the seed for Thales. The seed is an aggregation
of publicly accessible sources of domain names and URLs that we have been
collecting for several years. These include but are not limited to Public Blacklists,
the Alexa list, the Common Crawl project, and various Top Level Domain (TLD)
zone files.

More specifically, we are using the zone files that are published daily by the
administrators of the zones for com, net, biz and org. In Fig. 3 we present the
number of domains obtained by each zone file. Because of the relative number

Enabling Network Security Through Active DNS Datasets 193

Fig. 3. Number of domains over time per seed input. The security vendor list contains
about 1.5 billion domains and from the TLDs com is obviously the largest one with
about 127 million domains.

of small daily changes, compared to the size of the zone files, the daily changes
are not that apparent in Fig. 3. We note that the number of domains obtained
by zone files changes as new domains get registered and old ones expire (and get
removed from the zone). In Thales we input these zone files that we collect daily
to our domain seed. This way our seed includes the current state of each zone
every day.

We also add the entire Alexa [3] list of popular domains to the domain seed.
This provides us with a large number of domains that would most likely be
queried in a network by users.

In order to capture domains that might not be available in one of the zone
files, we built a crawler that collects and parses domains seen in the Common-
Crawl dataset [4]. The Common-Crawl dataset is an open repository of web
crawl data that offers large volumes of crawled pages to anyone. We used com-
ponents (i.e., URLs, HTML code) from the common crawl dataset to extract
only the domains of the pages visited. Due to the size of even the Common-
Crawl “metadata section” from the common crawl, we are still using the data
published for last September 2015 and will start updating that list regularly.
Because the common crawl data is published in monthly releases, the domain
list that we extract from it and use in our seed list remains the same between
updates.

A different list of data that we utilize in our domain seed is a feed of inter-
esting domains that have been provided to us by a security company. This feed
provides us with domains that have been observed to engage in forms of poten-
tially malicious Internet activity. Because the feed provides us with new domain
names constantly, we gather all new information and append it to the already
existing list of interesting domains. We push the updated list to our collection
infrastructure daily. The feed provides us with tens of thousands of new domains
each day, making this list one of the fastest growing lists we use.

Finally we use a collection of public blacklist data in order to provide our data
with interesting hand curated domains that originate from malicious activity.

194 A. Kountouras et al.

More specifically the public blacklists we employ are: Abuse.ch [2], Malware
DL [9], Blackhole DNS [8], sagadc [10], hphosts [6], SANS [11] and itmate [1]. We
aggregate these lists daily and we input them into our domain seed by replacing
the old list.

2.3 Measurements

Thales has been collecting data for a little less than six months. For the purpose
of this paper we are focusing on analyzing all data in this section and then limit
in depth analysis to the last 12 days of March (the last full week forth) for
more specific measurements, unless a different window is explicitly stated. Over
six months, Thales identified approximately 10,714,784 unique IP addresses,
199,110,841 unique domain names and 662,319,389 unique RRs per day. Figure 4
shows the distribution of IP addresses, domain names and RRs on average per
day from October 5th to March 3rd 2016.

Fig. 4. Volumes of IPs, resource records and domains observed with Thales. March
7th was the day when we started querying for the QTYPEs: SOA, AAAA, TXT and
MX. There have been two full outages on October 25, 2015 and January 23, 2016. On
December 6, 2015 we had an outage that lasted for most of the day but we were able
to recover the system later in the day.

During these months, we experienced two outages. The first was when the
system was initially setup because of an update which was not rolled out correctly
and caused the system to go off-line. Therefore, there is no data available for
October 25, 2015, and policy has been updated to avoid future interruption since
then. On January 23, 2016, our campus data center was undergoing maintenance
for the cooling infrastructure, which caused a temporary shutdown of all our
systems. Such cases can now be mitigated by Thales. We have made the system
portable, which gives us the ability to move it to another location within a day’s
prior notice. Also on December 6, 2015 early in the day we had a hardware
failure on our system that was detected early in the morning. We were able to
recover the system and perform a check of the system by the same afternoon.

Enabling Network Security Through Active DNS Datasets 195

After the system check, we immediately restarted the collection, but there was
not enough time in the day to go through the entirety of data in our seed list.
This is depicted by the significant dip in the data. This incident was not a full
outage since we were able to collect some data for the day.

3 Comparing Active and Passive DNS Datasets

Passive DNS has been an invaluable weapon in the community’s arsenal for
research combatting malware, botnets, and malicious actors [12–14,22,28]. Pas-
sive DNS, though, is rare, difficult to obtain, and often comes with restrictive
legal clauses (i.e., Non Disclosure Agreements). At the same time, laws and reg-
ulations against personal identifiable information (PII), the significant financial
cost of the passive collection, and storage infrastructure are some of several rea-
sons that make passive DNS cumbersome. The primary goal for the active
DNS dataset is to reduce the barrier for (repeatable) security research on DNS.
In this section, we show how active DNS relates and contrasts to passive DNS.
We will see that, while not a true replacement for passive DNS, Thales is able
to create active DNS datasets that in many cases contain an order of magnitude
more domain names and IP addresses.

3.1 Datasets

We first discuss how we obtain our passive DNS datasets. Our passive DNS
dataset consists of traffic collected at our university network. The collection
point is both below and above the recursive. This means that we collect the
responses on the both paths; (1) between the (anonymized) clients and the local
recursives and (2) between the local recursives and the upper layers of the DNS
hierarchy (i.e., name servers, top level domains, etc.). For the active and passive
DNS comparison, we decided to utilize datasets collected during the entire month
of March 2016.

Figures 5 and 6 show eight detailed plots of the distribution of records in both
our active and passive DNS datasets. Note that all plots are log-scale for the
y-axis. As we can see, the active DNS dataset does not fluctuate a lot, compared
to the passive DNS one. This is primarily an artifact of the collection technique,
since the daily changes in the domain name seed we are using is minimal. On
the other hand, the passive DNS dataset, is primarily driven by the behavior of
the users on the local network, which may fluctuate on weekends, holidays, and
during certain periods such as exams. This also explains the sudden increase
in traffic for passive DNS, since our campus network experienced a reduction
in traffic from March 21st until March 25th during spring break. Therefore,
Fig. 6c shows an increase to more than double the unique resource records (RRs)
identified per day after Monday, March 28th, when the spring break ended.
Table 1 shows a breakdown of the datasets over the last 12 days of March, in
much greater detail.

196 A. Kountouras et al.

Fig. 5. The distribution of different query types (QTYPE) in the active (left) and
passive (right) DNS datasets. The active DNS dataset is almost sustaining the same
volume of records per day, whereas the passive DNS dataset is fluctuating more over
time. Note the growth after March 28, when the Spring Break was over and the Institute
was operating at full capacity again.

It is worth noting that Thales is able to generate an order of magnitude more
unique domain names, IP addresses and RDATA in the active DNS dataset (see
Fig. 6, subfigures a to e), in comparison to the passive DNS data collected in a
large university. This means that in actual DNS records, the active DNS dataset
is more than comparable to the passive DNS that someone can collect in a
large university. Now, as we can see from Fig. 6(f), active DNS is not able to
create as dense graphs of resource records, as someone would expect to find in
passive DNS data. This is somewhat to be expected, as in active DNS, Thales
is scanning all possible domain names that can be seen in our public sources.
This inevitably will include domain names that are rare, and in the context of
a graph compiled by RRs, they will form islands. While not necessarily bad, we
would advise researchers to take cautionary sanity steps when they utilize the
active DNS data for spectral processes.

The diversity of the different query record types (QTYPEs) we are able to
identify, in the two different datasets compared can been seen in Figs. 5a and b.
Although there is a big difference regarding the volume of the records available,
on average the visibility is very similar, since we are collecting the most popular
QTYPEs when querying for the active DNS datasets Table 2.

4 Case Studies

To this point, we exposed several of the data properties from the active DNS
datasets. In this section, we demonstrate the security value of these new active
DNS datasets. We should clarify that our goal is not to claim as a contribution
any of the following abuse detection processes. All of them have been discussed
by previous work in the field. Rather, our goal is to practically demonstrate,
using the actual active DNS datasets, the security merit that active DNS data
can offer to the research and operational communities.

Enabling Network Security Through Active DNS Datasets 197

Fig. 6. The distribution of different records in our active and passive DNS datasets.
The plots show that Thales is able to generate orders of magnitude more data than
the passive DNS collection engine (Figures a to e) and much more diverse (Figure f).

198 A. Kountouras et al.

Table 1. Number of data points collected over the last 12 days of March 2016. Values
are in thousands (×103).

Date Domains IPv4/IPv6 RDATA RR e2LD

Active Passive Active Passive Active Passive Active Passive Active Passive

3/20 258,702 6,759 41,360 1, 130 150,629 3,356 1,350,118 92,218 219,009 831

3/21 259,305 6,056 43,333 1, 292 162,366 3,845 1,360,660 110,379 219,009 1, 072

3/22 260,676 7,535 44,090 1, 180 164,685 4,364 1,400,427 109,896 219,985 1, 028

3/23 260,420 8,267 43,538 1, 255 147,190 4,338 1,352,019 111,247 221,466 1, 105

3/24 259,389 7,635 41,273 1, 206 137,491 4,024 1,367,554 112,513 222,464 1, 037

3/25 261,883 8,008 44,769 1, 197 155,830 4,125 1,399,724 114,518 228,119 1, 024

3/26 260,011 7,479 41,830 1, 127 152,918 3,616 1,362,978 111,646 226,030 1, 009

3/27 260,506 6,727 42,556 1, 190 148,728 3,871 1,382,096 120,624 223,313 1, 043

3/28 261,551 9,100 44,216 1, 340 144,365 4,499 1,375,399 199,023 223,345 1, 208

3/29 261,171 9,145 42,189 948 140,225 3,658 1,369,100 204,017 225,513 789

3/30 261,513 8,200 42,992 921 157,477 4,030 1,370,090 202,702 225,642 754

3/31 261,766 9,195 42,651 956 161,387 3,798 1,399,218 202,511 225,128 809

Table 2. The distribution of QTYPEs for the active and passive DNS in our datasets.

QTYPE Aggregate (×103) Mean Median

Active Passive Active Passive Active Passive

A 3, 082, 960 813, 485 256,913,375.92 67,790,485.33 257,181,439.5 54,989,441.0

AAAA 292, 278 81, 992 24,356,555.67 6,832,692.33 23,918,026.5 5,920,971.5

CNAME 174, 881 136, 901 14,573,484.5 11,408,450.0 14,582,732.0 8,495,216.5

MX 2, 222, 465 908 185,205,470.67 75,690.83 184,075,003.5 83,309.0

NS 5, 822, 874 586, 695 485,239,507 48,891,296.25 485,117,732.0 39,316,201.5

SOA 3, 498, 172 28, 162 291,514,366.5 2,346,885.75 291,172,940.5 2,022,850.0

TXT 701, 689 14, 499 58,474,102.67 1,208,253.83 58,304,209.5 1,205,094.5

Other 694, 067 28, 655 57,838,938.5 2,387,929.75 57,693,964 2,380,550

4.1 Enhancing Public Blacklists

Due to the nature of Thales we can make use of the collected data in ways
that can reveal abuse signal about domains before they are identified as actual
malicious use. Blacklisted domains, for example, are an interesting category of
candidate indicators of abuse that can be registered, set-up, and pointed to an
IP location well before they are actually used in malicious activities. Thus, active
DNS could be used as a potential source of raw datasets that can be used for
timely domain abuse detection.

As we have already discussed, alongside the active DNS data collection, we
were also able to gather a plethora of public domain name blacklists. As expected,
domain names in these blacklists also appeared in the active DNS traces we
collected using the active DNS project. For all domain names seen in both the
public blacklists and active DNS data, we identified two important dates. The
first denotes the first day the domain name was probed by Thales. This behavior
is driven by the addition of the domain in our seed list that can be caused
by a change in any of the zone files collected daily from the top level domain

Enabling Network Security Through Active DNS Datasets 199

authorities. The second important date we identified is the first day one of the
many blacklists we collect (on a daily basis) actually listed this domain name as
part of a particular abusive activity.

We compared the first seen dates of blacklisted domains and the first seen
date of a domain resolved by Thales and we plotted the results in a cumulative
distribution function (CDF) that depicts the time difference in days between a
resolution in our passive or active DNS data and the appearance of the domain
in a public blacklist. Negative values represent the number of domains that
have first appeared in our active or passive DNS data before getting eventually
blacklisted. On the other hand, positive values represent domains that had been
blacklisted before they had a resolution in our data.

It is worth pointing out that not all the public domain names blacklists were
used as a seed domain source for Thales, rather the ones that are described in
Sect. 2.2. That is, we should expect a fair amount of both positive and negative
values in these CDFs. Positive values indicate that a domain name was first seen
in a blacklist and then in either the active or passive DNS data that we present
in Fig. 7, while negative values indicate that the domain was first seen in DNS
before being blacklisted.

Thales resolves domains that came in part from zonefiles for major top-
level domains. It queries any domain registered in that zone within a day after
it was registered and added in the zonefile. This creates a temporal history
of the DNS activity capable of describing the IP infrastructure history that
supported the domain name, before blacklisting, at the time, and after it was
blacklisted. This is a new property that active DNS datasets will freely offer to
the security community, and it is a property that is rarely seen in passive DNS
data. The reason for this behaviour that active DNS exhibits compared to passive
DNS is simple; infections get remediated and hosts are mobile, thus making it
hard for the network operator to passively observe the network evolution of the
infrastructure that supports a domain. Thus, Thales should be able to offer a
strong signal augmenting existing passive DNS data to which researchers and
network operators have access.

Figure 7 shows the CDF plots for different classes of malicious domain names
(Figs. 7a to d). The values plotted include the domains in our active and passive
DNS datasets that have been blacklisted. Several instances of these domains are
found in our dataset long before they are blacklisted; for example 50 % of domain
names associated with spam were queried approximately 2.5 months before they
were blacklisted. On the other hand, we do not have the same visibility for
ephemeral types of attacks, like phishing and exploit kits. In the latter two
cases, approximately 75 % of the domain names are queried by Thales at least
one day earlier, with the 50 % mark being at around 50 days earlier.

In total 42,000 domain names have been blacklisted and also appeared in
our active DNS dataset. From this set, 30 % were queried and data have been
collected for approximately 100 days before the blacklisting instance (Fig. 7(e)).
For 75 % of the blacklisted domain names, we have collected data for more than
a week before they appeared on a PBL. Considering that PBLs have been used

200 A. Kountouras et al.

Fig. 7. Cumulative distribution of the first seen date in active and passive DNS, sub-
tracting the first seen date of the same domain in a PBL for Zeus, Spam, Phishing,
and Exploit domains.

Enabling Network Security Through Active DNS Datasets 201

as ground truth for various security systems [21,23,26,30], we are planning to
utilize this data over time to model the behavior of these domains and identify
the threats long before current systems, or even before they are utilized by the
adversaries.

On the other hand, we were able to identify 20,000 domain names in the
passive DNS dataset that also appear in blacklists. The dashed line in Fig. 7
plots represents these domain names. Approximately 50 % of the domain names
that are blacklisted appear in the passive DNS data feed, with only 25 % revealing
themselves 50 days earlier than the blacklisting event, as shown in Fig. 7e. In
this case, there are only 20,000 domain names that have been blacklisted and the
visibility that we have is approximately 15 % for the 100 days mark. About 50 %
of all the domain names were seen roughly two days before they were blacklisted.
This clearly supports our claim about the merit of active DNS datasets, and
how well they complement existing passive DNS repositories. The early linkage
between domain names and IP infrastructure witnessed by the active DNS data
will be able to enrich the signal that passive DNS data contains, potentially
making local DNS modeling efforts easier for researchers and operators.

In most cases, the active DNS dataset contains domain names far before
they appear in either the passive DNS or the blacklist dataset. Note that the
intersection between active and passive DNS records that have been blacklisted
is approximately 19,000. This is almost half of the domains in the active DNS
dataset and 95 % of the domain names in the passive DNS dataset. Passive DNS
seems to show better results in early days for the spam domain names case
(Fig. 7b), but active DNS catches up very fast (within 15 days) and then loses
the advantage again at the time of the blacklisting events (0 point in the plot).

Lastly, Fig. 7f depicts the difference between the day a blacklisted domain
name was first seen in our active DNS dataset and the day it was seen in our
passive DNS dataset. This includes only the domain names that were seen before
the PBLs included them. Approximately 17,000 domain names have been found
in both active and passive DNS before they were blacklisted. The vast majority
of them were first resolved by Thales, at least one day before it was visited by a
system in our university. Approximately 40 % of the domain names were already
being resolved by Thales for more than 100 days before they appeared in the
passive DNS dataset.

4.2 Enhancing the Detection of Domain’s Residual Trust Change

On the Internet, domain names serve as trust anchors for numerous systems and
services, and for many, ownership of a domain is enough to prove one’s identity.
Work by Lever et al. [25] discussed the problems caused by the use of domains
as trust anchors and showed that residual trust, implicitly inherited by domains
after an ownership change, is a root cause of many seemingly disparate security
problems. Therefore, identifying changes in ownership, due to expiration or some
other cause, is an important problem in protecting against the abuse of resid-
ual trust. WHOIS [19] is typically used to discover more information about the
owner of a particular domain, and thus, it would a appear to be a natural fit for

202 A. Kountouras et al.

creating a remedy to this problem. However, collecting WHOIS at scale is out-
side the grasp of most organizations due to rate limiting imposed on automated
collection of WHOIS records. To make matters worse, these limits frequently
vary by registrar, further adding to the complexity of collecting WHOIS data
at scale. To circumvent this problem, Lever et al., proposed Alembic, a light-
weight algorithm for locating potential ownership changes that relies solely on
passive DNS. This algorithm relied upon three different components: changes
in infrastructure, changes in lookup volume distribution, and change in SOA
records.

While passive DNS is much easier collect, it is also very sparse, and this
results in two limitations with respect to Alembic. Scores can only be computed
for domains observed in passive DNS and that have sufficient historical resolu-
tions. Active DNS can help improve upon these limitations. First, Fig. 6e shows
that active DNS captures many more effective second level domains than passive
DNS. Given that the passive DNS dataset used for comparison was generated
from a large university network, this result is particularly important. It demon-
strates that even large networks have difficulty matching the breadth of domains
that can be collected using active DNS querying. Next, active DNS querying can
consistently gather specified DNS record types over time. In particular, Figs. 5a
and b show that active DNS results in substantially more SOA records than
passive DNS each day. Since one of the key components of the Alembic scor-
ing is SOA records, active DNS should be able to enhance the performance of
the Alembic scoring algorithm. While active DNS provides many benefits, it
is important to note that the one component Active DNS cannot enhance is
the lookup volume distribution of domains. This component is derived by user
behavior observed in passive DNS, and therefore, there is no analog in the active
DNS dataset.

0 × 10+0

1 × 10+7

2 × 10+7

3 × 10+7

4 × 10+7

5 × 10+7

0.0 0.3 0.6 0.9
Score

D
en

si
ty

Fig. 8. Histogram showing the dis-
tribution of Alembic scores for
March 27, 2016.

To evaluate whether Alembic could work
using only active DNS, we implemented
a modified version of the algorithm that
excluded lookup volume distribution as a
component and used a fixed window size of
two weeks. Then we computed scores for
March 27, 2016 using our modified algorithm.
In total, this resulted in 63,332,836 domains
with non-zero scores, where larger scores indi-
cate a higher confidence in an ownership
change. The distribution of those scores can
be seen in Fig. 8. The majority fell in the range
between 0.4 and 0.5, and further inspection revealed that the SOA component
contributed the most to these scores. In short, most of the scores in this range
were a result of changes in the SOA record for the domains. Since we saw very
little change in hosting infrastructure, it is possible these scores could simply
be the result of minor changes within the SOA record. The next largest range
was between 0.9 and 1.0 and consisted of 5,652,910 domains. According to the

Enabling Network Security Through Active DNS Datasets 203

algorithm, domains with a score in this range are most likely to have undergone
a change in ownership. 5,625,397 (99.5%) of these domains had a score of 1.0,
indicating that both infrastructure and SOA records had undergone complete
changes. Indeed, we found 10,885 of these domains on a public service’s list [5]
of expired domains for March 27, 2016. The remainder of these domains provide
interesting cases for further study.

Our modified version of the Alembic algorithm, originally proposed by Lever
et al., provides an interesting example of how active DNS can be used to enhance
or extend existing research. Without active DNS, deploying an algorithm like
Alembic would require access to a large scale passive DNS dataset (e.g., uni-
versity, enterprise, Internet service provider). However, using openly available
active DNS data, as offered by this research, can help remove the barriers to
using or deploying existing DNS research.

4.3 Tracking Malicious Domain Names in Non-routable IP Space

Bogons are private, reserved, or otherwise unallocated network blocks [18,32,34].
Bogons should be boring since by definition they should not be hosting anything
in the context of the global Internet. But occasionally, a domain name, like
messisux.bix, resolves to a bogon like 0.0.0.0 despite the fact this IP can
not host anything. The presence of a domain name, however, indicates a ser-
vice that should be globally reachable exists. These “nonsense” resolutions are
at times caused by misconfigurations, brand protection services, and occasion-
ally, malicious actors. To investigate further, we don our threat researcher hats
and analyze domain names that resolved to bogon IP space during our analysis.
Here we focus on malicious infrastructure as it is a primary interest of the secu-
rity community. However, we also note that active DNS data that resolves to
bogons would be useful in other contexts such as identifying potential trademark
infringements.

We identified two known malicious campaigns in the subset of bogon data:
“Operation Hangover” and “CopyKittens.” The former is infrastructure of a
cyber espionage threat targeting government, military, and private sector net-
works with some ties to India [17]. Domain names seen in active DNS data for
this threat are shown on the left hand side in Table 3. The latter is infrastruc-
ture for threats targeting “high ranking diplomats at Israel’s Ministry of Foreign
Affairs and some well-known Israeli academic researchers specializing in Middle
East Studies” [33] and its active DNS domains are shown on the right column
in Table 3.

These are useful indicators despite the fact these attacks are known and
likely inactive. Neutered, yet unidentified, infections are likely still operating in
networks today, which should lead to incidence responses and damage assess-
ments. For example, knowing the specific internal machine that was infected
with targeted malware is useful even after an attack has taken place. An end-
user machine on a company’s corporate network has different implications than
a locked down server in a data center, or the CEO’s personal laptop. Interest-
ingly, some targeted threats do resolve to bogon space, while active, to reduce

204 A. Kountouras et al.

Table 3. Operation Hangover and CopyKittens attack group infrastructure and
domain names.

Operation Hangover CopyKittens

alertmymailsnotify[dot]com alhadath[dot]mobi

cloudone-opsource[dot]com big-windowss[dot]com

download-mgrwin[dot]com cacheupdate14[dot]com

necessaries-documentation[dot]com fbstatic-akamaihd[dot]com

newsfairprocessing[dot]com fbstatic-a[dot]space

onestop-shops[dot]com fbstatic-a[dot]xyz

servicesloginmail-process[dot]com gmailtagmanager[dot]com

servicesprocessing[dot]com haaretz[dot]link

websourceing[dot]com haaretz-news[dot]com

worldvoicetrip[dot]com mswordupdate15[dot]com

mswordupdate16[dot]com

mswordupdate17[dot]com

patch7-windows[dot]com

patch8-windows[dot]com

patchthiswindows[dot]com

walla[dot]link

wethearservice[dot]com

wheatherserviceapi[dot]info

windowkernel[dot]com

windows-drive20[dot]com

windowskernel14[dot]com

windows-my50[dot]com

windowsupup[dot]com

their network footprint [27]. This suggests signal for malicious detection in active
DNS’s non-routable IPs.

5 Related Work

The collection of passive DNS data has been proposed by Weimer et al. [35]
over a decade ago as a method that network operators could use to investigate
security events in their environments. Zdrnja et al. [36] was the first to dis-
cuss how passive DNS data can be used for spotting security incidents using
domain names. Notos [12] and Exposure [15] used the idea of building passive
DNS reputation by statistically modeling various properties of the successfully
resolved passive DNS traffic. Plonka et al. [29] introduced Treetop, a scalable
way to manage a growing collection of passive DNS data and at the same time

Enabling Network Security Through Active DNS Datasets 205

correlate zone and network properties. Since then, several researchers were able
to use proprietary passive DNS data to build systems that can detect abuse
in the Internet [13,14,16,24,26,31]. Clearly, passive DNS is considered to be a
very valuable tool that network operators and security researchers use in the
fight against Internet abuse. As already discussed, our active DNS project can
provide researchers open access to DNS datasets, comparable to the very useful
passive DNS, but without any concerns on personally identifiable information
(PII) or other legal barriers to repeatable DNS research.

There have been many commercial and nation efforts to create passive DNS
repositories. The costs for the commercial offerings3 often pose a barrier for
researchers and network operators. Now, some of the national efforts are hin-
dered by DNS policy, and thus have yet to be widely adapted by the commu-
nity. Perhaps the most successful has been passiveDNS.cn, which was quickly
dismissed as an unreliable source of DNS information. The reason behind this
development is very simple. The Chinese operators4 passively collected DNS
records that have been already censored by their egress sensors. In our project,
we do not censor the views of the recursive DNS servers that Thales uses to
resolve the seed domain names on a daily basis.

With the respect of active scanning efforts, most of the efforts have been con-
ducted from the side of the industry. In the last year, however, new work surfaced
from the academic community [20] that provides the ability to researchers to scan
the entire IPv4 space and use the results for open security research. This is the
work that is closest to the proposed system. The key difference, however, is that
Censys was not designed to scan the domain name space, rather, IPv4. Thus,
while researchers could find some DNS logs into this great public project, our
work both complements Censys and also is designed to deal with DNS scanning.

6 Conclusion

DNS is vital to the operation of the Internet. Users, systems, and services rely on
its operation for most network communication—often without even realizing it.
Malware is no different. It makes use of DNS to locate C&C servers and provide
network agility. Despite all its uses, it is incredibly difficult to gain access to
large, open, and freely available DNS datasets, and even when possible, such
data is often encumbered with privacy regulations or access restrictions. This
severely limits the pool of security researchers than can leverage DNS in their
work. Furthermore, it limits the repeatability of existing DNS based research.
Clearly, there is a need in the research community for access to large, open, and
freely available DNS data. To that end, this work built a new system, Thales, to
query and collect massive quantities of DNS data starting from publicly available
lists of domains (e.g., zone files, Alexa, Common Crawl, etc.). We are releasing
the resulting active DNS data from this system to the public, and since this
data is derived from public sources, it can be easily incorporated into new or
3 For example, https://www.farsightsecurity.com/.
4 http://www1.cnnic.cn/ScientificResearch/LeadingEdge/fymly1/.

https://www.farsightsecurity.com/
http://www1.cnnic.cn/ScientificResearch/LeadingEdge/fymly1/

206 A. Kountouras et al.

existing research without having to worry about privacy regulations or access
restrictions.

To prove its merit, we provide an in-depth comparison between active DNS
and a passive DNS dataset collected on a large university network. This analysis
showed that active DNS data provides a greater breadth of coverage (i.e., greater
quantity and greater variety of records), but passive DNS data provides a denser,
more tightly connected graph. Due to these differences, we provided case studies
demonstrating how active DNS can be used to facilitate new research or even re-
implement existing DNS related research. It is our sincere hope that by opening
up active DNS to the security community we can spur more and better research
around DNS.

Acknowledgment. This material is based upon work supported in part by the US
Department of Commerce grant no. 2106DEK, National Science Foundation (NSF)
grant no. 2106DGX and Sandia National Laboratories grant no. 2106DMU. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the US Department of Com-
merce, National Science Foundation, nor Sandia National Laboratories.

References

1. I.T. Mate List (2016). http://vurldissect.co.uk/daily.asp/
2. Abuse.ch domain blacklist (2016). http://www.abuse.ch/
3. Actionable analytics (2016). https://www.alexa.com
4. Common Crawl (2016). https://commoncrawl.org/
5. Domain Graveyard (2016). http://domaingraveyard.com/
6. Hphosts feed (2016). http://hosts-file.net/?s=Download
7. LinuxContainers.org (2016). http://hosts-file.net/?s=Download
8. Malc0de Database (2016). http://malc0de.com/bl/BOOT
9. Malware Domain List (2016). https://www.malwaredomainlist.com/

10. Sagadc.org list (2016). http://dns-bh.sagadc.org/
11. SANS ISC Feeds (2016). https://isc.sans.edu/feeds/
12. Antonakakis, M., Dagon, D., Luo, X., Perdisci, R., Lee, W., Bellmor, J.: A central-

ized monitoring infrastructure for improving DNS security. In: Jha, S., Sommer, R.,
Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 18–37. Springer, Heidelberg
(2010)

13. Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou, N., Dagon, D.: Detecting mal-
ware domains in the upper DNS hierarchy. In: Proceedings of the 20th USENIX
Conference on Security (USENIX Security), August 2011

14. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W.,
Dagon, D.: From throw-away traffic to bots: detecting the rise of DGA-based mal-
ware. In: Proceedings of the 21st USENIX Conference on Security Symposium,
Security 2012, Berkeley, CA, USA, pp. 24–24. USENIX Association (2012)

15. Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: EXPOSURE: finding malicious
domains using passive DNS analysis. In: Proceedings of NDSS (2011)

16. Chen, Y., Antonakakis, M., Perdisci, R., Nadji, Y., Dagon, D., Lee, W.: DNS
noise: measuring the pervasiveness of disposable domains in modern DNS traffic.
In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 598–609, June 2014

http://vurldissect.co.uk/daily.asp/
http://www.abuse.ch/
https://www.alexa.com
https://commoncrawl.org/
http://domaingraveyard.com/
http://hosts-file.net/?s=Download
http://hosts-file.net/?s=Download
http://malc0de.com/bl/BOOT
https://www.malwaredomainlist.com/
http://dns-bh.sagadc.org/
https://isc.sans.edu/feeds/

Enabling Network Security Through Active DNS Datasets 207

17. Coat, B.: Snake in the grass: Python-based malware used for tar-
geted attacks (2014). https://www2.bluecoat.com/security-blog/2014-06-10/
snake-grass-python-based-malware-used-targeted-attacks

18. Cotton, M., Vegoda, L.: Special Use IPv4 Addresses. RFC 5735 (Best Current
Practice), Obsoleted by RFC 6890, updated by RFC 6598, January 2010

19. Daigle, L.: WHOIS Protocol Specification. RFC 3912 (Draft Standard), September
2004

20. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A search
engine backed by Internet-wide scanning. In: Proceedings of the 22nd ACM Con-
ference on Computer and Communications Security, October 2015

21. Felegyhazi, M., Kreibich, C., Paxson, V.: On the potential of proactive domain
blacklisting. In: Proceedings of the 3rd USENIX Conference on Large-Scale
Exploits, Emergent Threats (2011). Observation of strains. Infect Dis Ther. 3(1),
35–43: Botnets, Spyware, Worms, and More (LEET), April 2010

22. Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and detecting fast-flux
service networks. In: NDSS (2008)

23. Ishibashi, K., Toyono, T., Hasegawa, H., Yoshino, H.: Extending black domain
name list by using co-occurrence relation between DNS queries. IEICE Trans.
Commun. 95(3), 794–802 (2012)

24. Krishnan, S., Monrose, F.: An empirical study of the performance, security and
privacy implications of domain name prefetching. In: 2011 IEEE/IFIP 41st Inter-
national Conference on Dependable Systems Networks (DSN), pp. 61–72, June
2011

25. Lever, C., Walls, R., Nadji, Y., Dagon, D., McDaniel, P., Antonakakis, M.: Domain-
Z: 28 registrations later measuring the exploitation of residual trust in domains.
In: 37th IEEE International Symposium on Security and Privacy, May 2016

26. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious URLs. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), June 2009

27. Mandiant. APT1. Technical report (2013). http://intelreport.mandiant.com/
Mandiant APT1 Report.pdf

28. Nadji, Y., Antonakakis, M., Perdisci, R., Lee, W.: Connected colors: unveiling the
structure of criminal networks. In: Stolfo, S.J., Stavrou, A., Wright, C.V. (eds.)
RAID 2013. LNCS, vol. 8145, pp. 390–410. Springer, Heidelberg (2013)

29. Plonka, D., Barford, P.: Context-aware clustering of DNS query traffic. In: Pro-
ceedings of the 8th ACM SIGCOMM Conference on Internet Measurement, IMC
2008, pp. 217–230. ACM, New York (2008)

30. Prakash, P., Kumar, M., Kompella, R.R., Gupta, M.: Phishnet: predictive black-
listing to detect phishing attacks. In: Proceedings of IEEE INFOCOM, 2010, pp.
1–5. IEEE (2010)

31. Rahbarinia, B., Perdisci, R., Antonakakis, M.: Segugio: efficient behavior-based
tracking of malware-control domains in large ISP networks. In: 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 403–414, June 2015

32. Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.J., Lear, E.: Address
Allocation for Private Internets. RFC 1918 (Best Current Practice), Updated by
RFC 6761, February 1996

33. Minerva Labs & ClearSky Cyber Security: CopyKittens Attack Group (2015).
https://eforensicsmag.com/copykittens/

https://www2.bluecoat.com/security-blog/2014-06-10/snake-grass-python-based-malware-used-targeted-attacks
https://www2.bluecoat.com/security-blog/2014-06-10/snake-grass-python-based-malware-used-targeted-attacks
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
https://eforensicsmag.com/copykittens/

208 A. Kountouras et al.

34. Weil, J., Kuarsingh, V., Donley, C., Liljenstolpe, C., Azinger, M.: IANA-Reserved
IPv4 Prefix for Shared Address Space. RFC 6598 (Best Current Practice), April
2012

35. Weimer, F.: Passive DNS replication. In: Proceedings of the 17th First Conference
on Computer Security Incident Handling, June 2005

36. Zdrnja, B., Brownlee, N., Wessels, D.: Passive monitoring of DNS anomalies. In:
Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 129–139.
Springer, Heidelberg (2007)

Malware Analysis

A Formal Framework for Environmentally
Sensitive Malware

Jeremy Blackthorne(B), Benjamin Kaiser, and Bülent Yener

Rensselaer Polytechnic Institute, Troy, USA
{whitej12,byener}@rpi.edu, benjamin.h.kaiser@gmail.com

Abstract. Theoretical investigations of obfuscation have been built
around a model of a single Turing machine which interacts with a user.
A drawback of this model is that it cannot account for the most com-
mon approach to obfuscation used by malware: the observer effect. The
observer effect describes the situation in which the act of observing some-
thing changes it. Malware implements the observer effect by detecting
and acting on changes in its environment caused by user observation.
Malware that leverages the observer effect is considered to be environ-
mentally sensitive.

To account for environmental sensitivity, we initiate a theoretical
study of obfuscation with regards to programs that interact with a user
and an environment. We define the System-Interaction model to for-
mally represent this additional dimension of interaction. We also define
a semantically obfuscated program within our model as one that hides
all semantic predicates from a computationally bounded adversary. This
is possible while still remaining useful because semantically obfuscated
programs can interact with an environment while showing nothing to the
user. In this paper, we analyze the necessary and sufficient conditions of
achieving this standard of obfuscation and show how these conditions
relate to real-world programs.

Keywords: Malware · Tamper-resistance · Obfuscation · Formaliza-
tion · Framework · Environmental sensitivity · Environmental keying

1 Introduction

Program obfuscation is defined as the transformation of code with the intent
of making it “hard” to understand while maintaining functionality. Authors of
commercial software obfuscate their products to protect their intellectual prop-
erty, criminals obfuscate their malware to protect against detection by anti-virus
software, and nations obfuscate cyber-weapons to prevent repurposing. But no
obfuscation technique thus far has been able to guarantee any provable security
for everyday programs. This is partly due to the large divide in the theoretical
and systems approaches. Each approach has its strengths and weaknesses. It is
the goal of this work to combine the strengths of both theoretical and systems
approaches in order to shed additional light on the subject of obfuscation.
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 211–229, 2016.
DOI: 10.1007/978-3-319-45719-2 10

212 J. Blackthorne et al.

Theorectical Approach. Theoretical work in obfuscation focuses on simplified
models, well-defined properties, and provable results. The most famous of these
properties is the virtual black-box (VBB) property, defined by Barak et al. [4].
Informally, the property states that an adversary should gain no more informa-
tion from the obfuscated source code than they would gain through black-box
access to the original program. This is seen as the ultimate goal of formalized
obfuscation because no more information could possibly be hidden without also
hindering functionality. Recently, VBB obfuscation schemes have actually been
constructed [3,12].

Another standard of obfuscation is defined by the indistinguishability prop-
erty, also first established by Barak et al. [4]. It concerns functionally equiva-
lent programs that have multiple distinct circuit implementations. The property
states that such a program could be run without the adversary knowing which of
the possible circuits was actually used. Garg et al. provided a construction that
was proven secure under a very restricted model which only allows adversaries
to perform computations on matrices in a specific order [20].

There are many other well-defined obfuscation types, such as extractability
[10], virtual grey-box [9], tau [7], and best-possible [21]. All of these obfuscation
types are weaker than VBB, so all comparisons to our own definitions will be
with VBB.

Limitations. A common theme among theoretical obfuscation is the use of a
single Turing machine (TM) as a model. The representation of the complex
interactions between users, software, and hardware as a single TM that interacts
with a user leads to limitations on what can be achieved by obfuscation. For
instance, if the program is to be useful in any way, it must allow access to
its input and output. This limits the goal of obfuscation to protect only the
transformation from input to output. Consider the case of malware, in which
a program needs to interact with a system and simultaneously not show any
information to the user. The single TM model does not account for interactions
other than with the user, and hence cannot properly represent this case.

Another limitation implicit in the single TM model is the lack of security pos-
sible for learnable functions. A function is learnable if an adversary can determine
the definition of the function through only its inputs and outputs. Consider a
program that implements the function f(x) = x2. Even without access to the
program itself, an adversary can guess the definition by querying the function
at a few locations. Because programs obfuscated in the single TM model must
allow access to inputs and outputs to be useful, the obfuscated program cannot
be both learnable and meaningfully obfuscated.

Systems Approach. The systems approach relies on the concept that observation
requires modification. This modification can be either of the program itself or
the environment. Because observation requires modification, and modification
can be detected, observation can be detected. Authors can design programs
that detect observation and create deviations in execution, which ultimately

A Formal Framework for Environmentally Sensitive Malware 213

impedes observation. This allows obfuscated software to behave in different ways
depending on whether or not it is being observed.

The practical set of techniques that leverage the observer effect are known
most commonly by their anti-X names, where X is the observation environment.
Examples are anti-debugging [14,18,30], anti-virtual machine (VM) [17,30], and
anti-emulator [22,26]. There are even special-purpose commercial and malicious
programs called packers or protectors which combine many of these techniques
with obfuscation in an easy to use package [23]. Packers allow users to protect
their binaries without needing to modify the source code.

The anti-X techniques look for artifacts of observation during execution and
change the behavior of the program when found. Obviously, one of goals of
these analysis environments is to not create artifacts. The result is an arms race
between detecting new artifacts and building environments that do not have
them. This is in contrast to the large body of research regarding theoretical
obfuscation, in which the adversary is allowed to observe without cost. In the
theoretical approach, there are no artifacts and there is no effect on the running
program when it is being observed. After all, Turing machines are mathematical
objects that can be described at any time-step without actually affecting them.

Limitations. Many obfuscation schemes have been proposed and implemented
using the methods in the systems approach, but they are ultimately heuristic in
nature with no provable security [11,15,28]. Security standards cannot be proven
because the concepts are not sufficiently formalized.

1.1 Results

System-Interaction Model. We introduce a model that accounts for the hardware,
operating system (OS), program, and user. We define a new type of obfuscation
within this model called semantic obfuscation. This obfuscation hides all seman-
tic predicates about a program from a user while allowing the program to remain
useful. This is possible within the System-Interaction model because a program
can still give output to the OS while showing nothing to the user.

Existing Sensors. Two common ways a program can measure itself and its envi-
ronment are memory hashing and timing checks. Memory hashing describes the
process of a program running a hash over sections of memory. Timing checks
are the recording of the time it takes to execute batches of instructions. Both
techniques can be used to check the integrity of a program or its environment.
We formalize these sensors and strengthen them by allowing them access to a
random oracle based on the hardware of the computer. We show the impossibil-
ity of achieving semantic obfuscation with either of these sensors – individually
or combined.

Ideal Sensor. The ideal sensor approximates a random oracle by returning a
random number based on the state of the OS and program. In this way, no bit
can be changed in either without it registering with the sensor. We show that

214 J. Blackthorne et al.

with access to an ideal sensor, there exists a semantically obfuscated program
that runs in polynomial time and which guarantees exponential time to deob-
fuscate. The catch is that it also takes exponential time to construct. We show
that a semantically obfuscated program which uses an ideal sensor actually can
take no less than exponential time to construct. This obfuscator must create
the obfuscated program using the hardware on which the obfuscated program
is intended to run because each hardware has its own unique randomness. This
naturally places the obfuscator at a practical disadvantage because the adversary
can try to deobfuscate the program with the hardware of their choice, includ-
ing much faster hardware than what was intended (or many separate hardware
configurations running in parallel).

Piece-Wise Sensor. We propose a sensor constructed from a piece-wise function.
This function has asymmetric properties which allow environmentally sensitive
software to achieve semantic obfuscation within the System-Interaction model.
We believe this sensor can be practically implemented.

1.2 Related Work

In addition to the field of obfuscation, our work relates to tamper-resistance.
Canetti and Varia formally define nonmalleable obfuscation, another term for
tamper-resistance, and show how existing point functions can achieve their secu-
rity standard in the random oracle and common reference string models [13].
Another formalization of tamper-resistance is provided by Basile et al. [6], for
which they define tamper protection techniques in terms of attacker goals, capa-
bilities, and limitations.

A hardware approach to tamper-resistance is physically unclonable functions
(PUFs). These are hardware devices that are unique, hard to replicate, and
produce random output. The concept of program sensors within the System-
Interaction model is closely related to work done in PUFs. Recent work in PUFs
has explored the idea of using intrinsic properties of commercial off-the-shelf sys-
tems [24,25]. Plaga and Koob [27] formally describe PUFs and their limitations.

There have been a few cases of formalization for transparent analysis, i.e.
analysis that does not induce an observer effect, but nothing yet reaching a
rigorous treatment of the subject. Dinaburg et al. present a formalization of
transparent malware analysis and describe its requirements [16]. Their require-
ments are higher privilege, the absence of side-channels, transparent exception
handling, and identical timings. Kang et al. also briefly formulate the problem of
transparent malware analysis within emulators [22], but do not offer any further
investigation.

2 Preliminaries

2.1 Notation

TM is short for Turing machine. UTM is short for universal Turing machine.
PPT is short for probabilistic polynomial-time Turing machine. A TM can also

A Formal Framework for Environmentally Sensitive Malware 215

be encoded as a bitstring b ∈ {0, 1}n, for some natural number n, and used
as input to other TM’s. Oracle access is input–output only access. A TM A
running on input string x with oracle access to a TM B is represented as AB(x).
A function α : N → N is called negligible if it grows slower than any other
polynomial.

2.2 Properties of Turing Machines

A property of a TM can be expressed as a yes-no question, sometimes called a
predicate. An individual predicate of a TM is denoted by π(M), where M is any
TM. There are two types of TM properties, semantic and syntactic [2]. Semantic
properties are those that are dependent on the input–output relationship of the
function the TM implements. In other words, a semantic property of a TM is
also a property of the language which the TM recognizes. Syntactic properties
are not necessarily dependent on the language which a TM recognizes, but rather
the encoding of that TM.

Obfuscation is the syntactic transformation of a program while maintaining
its semantic properties. In other words, the obfuscated program and original
program should be input–output equivalent, yet appear different. It is the rela-
tionship between the syntax and semantics that is being obfuscated.

2.3 Definitions

Definition 1. (Instantaneous Description). The instantaneous description (ID)
of a TM is defined as

ID : TM → Γ ∗

M �→ γ,

where

1. Γ is the tape alphabet,
2. M ∈ TM ,
3. and γ ∈ Γ ∗, which is the specific string of characters which represent the total

contents of the tape at the time-step in which the ID function is called. The
contents of the tape include M and any input to M . This string is the state
vector of the entire machine.

Definition 2. Learnable Function [29]
A function f , computed by a TM M , is learnable if there exists a PPT L such
that

Pr[X ← LM (1|M |) : X = M] > α(|M |)
Informally, a function is learnable if an adversary can query that function at a
finite number of locations and with high probability, correctly guess the definition
of that function.

216 J. Blackthorne et al.

Definition 3 (Virtual Black-Box Obfuscation) [5]. A PPT O is a virtual black-
box obfuscator if the following conditions hold:

1. Functionality: O(M) and M are input–output equivalent.
2. Polynomial Slowdown: O(M) is at most polynomial longer in running time

and polynomially larger in description length than M . Specifically there exist
a polynomial p such that for every TM M , |O(M)| ≤ p(|M |) and if M halts
in t steps on input x, then O(M) halts in at most p(t) steps on x.

3. Virtual Black-Box Property: For all semantic predicates π:

|Pr[A(O(M)) = π(M)] − Pr[SM (1|M |) = π(M)]| ≤ α(|M |)

3 System-Interaction Model

The model we outline in this chapter is conceptually simple, but allows us to
explore an obfuscation that is regularly used in practice but has yet to be for-
malized. We begin by explaining the fundamental assumptions of our model.

To decide properties of a TM M , we must first observe M . We know that in
real software, program states are mostly hidden. For every line of text or single
animation shown, a program may be executing thousands of instructions with
many variables. To gain information about these hidden program states, we have
two options. First, we can try to infer the internal state of M based on its visible
output. Second, we can directly observe the internal state of M by simulating
M in an analysis environment such as a debugger, virtual machine, or emulator.
We state this assumption formally as follows:

Assumption 1 (Observation). Given any two TMs M1 and M2, the only ways
for M1 to view M2’s current configuration are by simulating M2 and viewing
M2’s configuration directly, or by viewing M2’s output and inferring M2’s con-
figuration.

Although directly viewing a program’s configuration through simulation is
tempting, it comes at a cost. Simulation changes the program’s environment.
These changes can be detected by a program and reacted to.

The second method of observation in Assumption 1 is to infer the program’s
configuration through the program input and output. To increase observation
through this method, an observer can modify the program itself, as opposed to
the program’s environment. An example of modifying the program to increase
observation is inserting print statements into the program. This will leak internal
configuration data about the program, but as mentioned before, these changes
can be detected by the program.

This idea, that increased observation requires modification, is central to our
model and accurately reflects real programs. We highlight this concept in our
assumption below:

Assumption 2 (Modification). The only ways to change a TM’s output is by
modifying the UTM simulating it or by modifying the TM itself.

A Formal Framework for Environmentally Sensitive Malware 217

When a real program is running on a computer, we know that the program
can take its environment as input. An example of this is a program checking for
how many other programs are currently running in the same environment. We
use the term sensor to refer to any mechanism that allows a program to read in
its environment.

Assumption 3 (Sensation). A TM M1 has the ability to read information about
a TM M2 when M2 is simulating M1.

We combine these simple ideas into a single model called the System-
Interaction model.

3.1 Definitions

Definition 4 (System-Interaction Model). The hardware H is a unique physi-
cally implemented two-tape UTM with access to a unique random oracle R based
on physical phenomena. H is a black-box that takes input from the user which we
represent by a PPT A. The user gives input in the form of an operating system
U , program M , and any input x1 to M . U is an encoding of a UTM and M is
an encoding of a TM. H then simulates U(M(x1)) and produces two outputs:
(y1, y2). The first output y1, will be returned to the user via being written to
the user-tape. The second output y2, is the output to the operating system U via
the system-tape. The user can only see the output that is returned to it via the
user-tape. In addition to user-input, H can give an input to M , labeled x2. H
would then simulate U(M(x1, x2)) (Fig. 1).

Definition 5 (Program). A program M is a two-tape TM that implements the
following function:

M : Σ∗ × Σ∗ → Γ ∗ × Γ ∗

x1, x2 �→ y1, y2

where

1. x1 is the user input string to M ,
2. x2 is the system input string to M ,
3. y1 is output from M written to the user-tape,
4. and y2 is the output from M written to the system-tape.

3.2 Adversaries

To more accurately represent the obfuscation of real programs, we have expanded
the single TM model into the System-Interaction model. But in order to gain any
insights from our work, we must limit the scope. We have chosen to not consider
the hardware-based adversary that can perform circuit-level instrumentation.

218 J. Blackthorne et al.

Fig. 1. This illustrates basic interaction between user, program, OS, and hardware.

We have also chosen not to address the problem of information leakage through
permanent changes to the system. An example of this would be the adversary
that inspects the state of the system after the program runs. For this work, we
assume that after the program has completed execution, the system U resets
back to the state it held upon being loaded onto the hardware. A practical
example of this would be a program that removes all traces of itself after it has
completed computation. We do allow the adversary to make any changes to U
and then load it onto the hardware. This is akin to loading a custom operating
system or hypervisor onto the hardware.

Given the limitations above, there are three natural approaches to deter-
mining a property of a program M : statically extracting information from M
alone, emulating the hardware H, and changing U or M to leak information. We
consider each in turn.

Static Analysis. Static analysis is the technique of analyzing a program with-
out running it. This means that a system is not needed to simulate it. VBB
obfuscation prevents any information leaking other than through the inputs and
outputs of a program. This is half of the solution to the problem of M leaking
information; the other half involves protecting M ’s inputs and outputs. Through-
out this paper, we will utilize VBB obfuscation to address the static adversary.
As of this writing, no efficient implementation of a VBB obfuscator exists. There
has been an attempt at implementation, with source code released, by Apon et
al. [1]. They even provided a obfuscated challenge binary to the community
which was quickly broken by Berstein et al. [8]. It is clear there is a long way to
go on practical implementations.

Emulation. We consider the possibility of the hardware H being simulated
by another software or hardware UTM H ′. This would be akin to placing an
operating system in a hypervisor or hardware emulator. Empirical results show
that any H ′ could simulate H, but not with exact similarity to that of the
original hardware H [19].

A Formal Framework for Environmentally Sensitive Malware 219

Assumption 4. The hardware H can be simulated on any UTM H ′ �= H, but
it is infeasible to do so with perfect accuracy.

Modification. The third approach is the modification of the operating system
U and is the one on which we focus in this paper. When we discuss modifying the
operating system, we are referring to techniques such as attaching a debugger to
the program under analysis. Although a debugger is not part of the OS proper, as
thought of in the software community, it is how we choose to model changes made
to the environment of the program. A much more detailed model would account
for the differences between the OS proper, debuggers, programs, and hardware.
We have chosen to simplify the system into a simple delineation between the
program, OS, and hardware in order to better highlight the relationships between
observation of programs and their functionality. We think that the relationships
highlighted within our simplified model are representative of those seen in real
computer systems.

3.3 Semantic Obfuscation

This new model of obfuscation calls for an exploration of obfuscation ideals.
In the single TM model, virtual black-box obfuscation was the absolute ideal
because no more information could be hidden without also hindering function-
ality. In our model with multiple observers, namely the user and the system, a
program can hide all semantic information from the user while still remaining
useful through interaction with the system.

Definition 6 (Semantic Obfuscation). A TM O is a semantic obfuscator if the
following conditions hold for the obfuscated program Mo = O(M):

1. Functionality: Mo and M are input–output equivalent.
2. Polynomial Slowdown: Mo is at most polynomial longer in running time and

polynomially larger in description length than M . Specifically there exist a
polynomial p such that for every TM M , |Mo| ≤ p(|M |) and if M halts in t
steps on input x, then Mo halts in at most p(t) steps on x.

3. Semantic Security: Mo hides all semantic properties from an adversary
bounded polynomially in time and space.

The property of semantic security is so strong that a program cannot allow
for any input–output access to the adversary. In the traditional single TM model,
this would cause the obfuscated program to be non-functional.

The idea of semantic security existing simultaneously with functionality is
predicated on two concepts: the distinction between user tape and system tape
and the ability to distinguish between a normal system and an adversarial one.

The first requirement is that a program model must have a user tape and sys-
tem tape. Any input–output relationship exposed to the adversary via either tape
would violate the property of semantic security. Within the System-Interaction
model, the adversary has access to the user tape by default, so this restricts

220 J. Blackthorne et al.

our discussion of semantically obfuscated programs to those with no user input–
output. This leaves us with programs which only have system input–output.
This corresponds neatly with our chosen practical reference: malware, which
often does not accept user input or produce user output.

In addition to eschewing user interaction, a program must distinguish
between a normal system and an adversary. It is easy to see that any program
that cannot distinguish a system H from an adversary A can be simulated by
A, allowing the adversary to watch all of the program’s system input and out-
put. Even just poorly approximating the system would allow the adversary to
see some system inputs and outputs. Semantic security is violated if any input–
output relationships are learned by the adversary. To prevent an adversary from
any input–output access to an obfuscated program, we can wrap the obfuscated
program in another program. This wrapper program will only run the obfuscated
program if the system has not been changed by the adversary. This requires the
wrapper program to be able to measure the system; this is achieved through a
type of function called a sensor, which we explore in the following sections.

4 Sensors

Programs can distinguish normal systems from adversaries by measuring prop-
erties of themselves and the system on which they run. We call these types of
measurement functions sensors. Using sensors to distinguish between the system
and the adversary is necessary for any program to achieve semantic obfuscation.

All of our constructions follow a similar pattern. We construct a program Mk

which distinguishes a normal system from an adversarial one. This program calls
another program Mo as a subroutine. We only make claims about the security
properties of Mo and not the distinguisher program Mk. The ability for Mk to
measure the system is what allows the subroutine Mo to fulfill the properties of
semantic obfuscation.

Recall that the system input is labeled x2 = H(). When that value is depen-
dent on the environment, we refer to the machine as a sensor. An example of this
is x2 = sensor(U,M). This would return different values based on the values of
U and M . In the following sections, we explore sensors with varying properties
to show what is necessary and sufficient to achieve semantic obfuscation.

4.1 Learnable Sensor

It is trivial to show that semantic obfuscation cannot be achieved in the System-
Interaction model when the sensor is a learnable function. A polynomial number
of queries by the adversary is enough to forge the sensor, making the hardware
unnecessary to run the program correctly.

Theorem 1. A semantically obfuscated program cannot exist within the System-
Interaction model when the sensor is learnable.

A Formal Framework for Environmentally Sensitive Malware 221

Proof. Let Mo be any semantically obfuscated program wrapped by Mk, such
that Mk(x) calls Mo on the input x = k and halts otherwise. Let k =
sensor(U,Mk), where sensor : U × M → N and sensor is learnable.

To defeat the obfuscation, the adversary first creates an instrumented envi-
ronment U ′ = A(U). In U ′, any system output from an executed program is
copied to the user tape. The adversary then repeats this process n times, where
n is polynomial with respect to the size of Mo, creating the set (U ′

1 . . . U ′
n). Now

the adversary executes Mk on each instrumented environment U ′
i , computing n

different sensor readings k′
i = sensor(U ′

i ,Mk). Since sensor() is learnable via a
polynomial number of input-output pairs, the adversary can determine the defin-
ition of sensor based on the information it has computed. The adversary can now
simulate sensor() on any input, including the original k = sensor(U,Mk), even
without access to the intended hardware H. Given this capability, the adversary
can now execute Mk(k), which calls Mo. Now that the adversary has full input-
output access to Mo, they can compute semantic properties of M , thus violating
the property of semantic security guaranteed by semantic obfuscation.

4.2 Random Oracle Sensor

The opposite of a learnable function is an unlearnable function, in which the
definition of the function cannot be determined through inputs and outputs
alone. An example of an unlearnable function is a random oracle: a function
which returns a unique, perfectly random value for every input. Given the same
input, a random oracle will return the same random value. A random oracle can
be thought of as the most unlearnable function because an infinite number of
inputs and outputs will not give any information about any other input–output
pairs.

We now model a sensor that is a random oracle. This sensor allows a program
to detect any differences made in the program or its environment. With access
to this ideal sensor, we can now achieve semantic obfuscation.

Theorem 2. There exists a semantic obfuscator within the System-Interaction
model when the sensor is a random oracle.

Proof. We will construct an obfuscator O in the System-Interaction model with
a sensor that acts as a random oracle such that Mo = O(U,M) with wrapper
Mk such that Mk(k) calls Mo when k = sensor(U,M). We assume M has no
user input or output and that Mk is VBB obfuscated. The program Mk has no
user output when receiving an input of k, otherwise Mk outputs a 0 to the user
tape and halts. We will now provide a construction of Mk and Mo such that Mo

is semantically obfuscated.
We design Mk such that Mk will call Mo when x = k and at all other points

Mk just outputs 0 to the user tape and halts. For i = 0 to i = n, we construct Mi,
with the goal of i = sensor(U,Mi) mod 2n, where n is our security parameter.
This gives us the ability to increase or decrease the codomain of the random
oracle. We construct 2n different VBB obfuscated Mi’s, and submit them to

222 J. Blackthorne et al.

H. The single Mi that returns no user output will be the program for which
i = sensor(U,Mi). Now that we have constructed Mk which calls Mo as a
subroutine, we will show that Mo is semantically secure. To do so we employ a
semantic security game.

We allow a PPT adversary A to pick any two programs of equal size M1,M2,
such that neither have user input or output, and send them to the challenger. The
challenger will flip a fair coin to choose a bit b. The challenger then computes
Mo = O(U,Mb) with wrapper Mk and sends back Mk to the adversary. The
adversary must determine whether Mo is the obfuscated version of M1 or M2.

The adversary has three sources from which to extract information about
the subroutine Mo: the user output, source code, and the system output. By
definition there is no user output from the program. Our obfuscator is a VBB
obfuscator, so the source code does not leak any information. This leaves the sys-
tem output as the only source of information. In the System-Interaction model,
the user cannot see the system output without modifying U . If the adversary
runs Mk with a modified U ′, the reading from sensor(U ′,Mk) returns some x not
equal to and independent of k, which is needed by Mk to call Mo. The program
Mk is a point function with a domain of 2n, which means it is computationally
infeasible for a PPT adversary to guess k.

Discussion. We have shown that we can create a semantically obfuscated pro-
gram Mo with a wrapper Mk, but the obvious drawback is that it was done in
exponential time. In the world of cryptography, exponential time is intended for
the adversary, not the legitimate user. In the case of obfuscation, it could still
be considered useful. This is because even though the creation time is exponen-
tial, the deobfuscation time would be exponential, while the running time of the
obfuscated program would remain polynomial.

Theorem 3. No polynomial time semantic obfuscator O exists within the
System-Interaction model when the sensor is a random oracle.

Proof. Assume by way of contradiction that O is a polynomial time obfuscator
in the System-Interaction model using a random oracle sensor such that Mo =
O(U,M) with wrapper Mk, where k = sensor(U,Mk). The program Mk is VBB
obfuscated and only calls Mo when receiving an input of k, otherwise Mk outputs
a 0 to the user and halts.

If PPT O can construct Mo with wrapper Mk, then there exists a dependent
relationship between M and Mk by way of the algorithm O, which implies a
dependent relationship between x = sensor(U,M) and k = sensor(U,Mk).
This is a contradiction because sensor() is a random oracle, guaranteeing total
independence of outputs given any two different inputs.

Discussion. We have highlighted the essential limitation of using the observer
effect. The strongest observer effect possible, formalized here in the random ora-
cle sensor dependent on the system and program, necessarily limits the creation
of the program as much as the deobfuscation.

A Formal Framework for Environmentally Sensitive Malware 223

Theorem 4. A semantic obfuscator O cannot obfuscate a program M in less
time than an adversary can deobfuscate O(M) within the System-Interaction
model when the sensor is a random oracle.

Proof. As proven in Theorem 3, any semantically obfuscated program Mo in the
System-Interaction model wrapped by Mk with a random oracle sensor can at
best be created in exponential time. This computational effort is restricted by the
speed at which H runs. This is because the System-Interaction model assumes
that H is unique and independent for all H ′ �= H. This forces the author to
generate 2n programs and test each on H and only H.

By default, the adversary will not see any output from Mk when running on
H with U . Thus, the adversary must change U to U ′ to see the system input
and output. This necessarily changes the value of sensor(U ′,Mk) and forces
the adversary to brute-force all possible U ′ �= U such that sensor(U ′,Mk) mod
2n = sensor(U,Mk) mod 2n, where n is the security parameter. The adversary
can parallelize these brute-force attempts over any number of H ′s, thus not being
subject to the bottleneck of running on H and H alone, as the author does. This
gives the adversary a large computational time advantage.

Discussion. Theorem 3 showed that the observer effect guarantees a compu-
tational symmetry between obfuscation and deobfuscation within the System-
Interaction model. But Theorem 4 highlights an additional consideration in the
real world: hardware speed and parallel computing. The obfuscator extracts
secret information from H and embeds it in the program. But this new repre-
sentation of the secret knowledge has an innate vulnerability: it allows itself to
be computed on by the adversary with hardware superior to what the original
obfuscator could use to perform the obfuscation. This demonstrates that not
only can the observer effect not be used to any advantage by the obfuscator, but
it is actually to the obfuscator’s disadvantage.

4.3 Piecewise Learnable Sensor

We established in Theorem 1 that a learnable sensor cannot be used to build a
semantically obfuscated program. We proved in Theorem 3 that a sensor that
functions as a random oracle cannot be used to create a semantically obfuscated
program in polynomial time. We are now left with unlearnable functions which
are not random oracles as possible candidates for a semantic obfuscator that
runs in polynomial time.

We now model a sensor as an unlearnable function which is a hybrid of both
learnable functions and a random oracle. The sensor is piecewise learnable. This
means the sensor function as a whole is not learnable, but each sub-function by
itself is learnable.

The total state space of the system is S = U × M , with the system being in
any given state St ∈ S at time t. The state of the system St is a binary encoding
of a TM and so can be sectioned off by Si, where Si+1 is some arbitrary number,

224 J. Blackthorne et al.

and i ∈ {0, 1, . . . , n − 1, n}. There are n = 2λ number of different learnable sub-
functions, where λ is a security parameter. The assignment of each sub-function
to a subset of the state space is unknown a priori, but is itself measurable. We
model this by assigning each sub-function to a subset of the state space by a
random oracle R.

Sensor(St) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fR(0)(St) : S0 ≤St < S1

fR(1)(St) : S1 + 1 ≤St < S2

. . .

fR(n)(St) : Sn−1 ≤St ≤ Sn

With this sensor, it is not clear how it can be used to create a semantically
obfuscated program. We need to be able to make changes to the program to
embed the correct k such that k = sensor(U,Mk). Simultaneously, we need the
adversary to not be able to make changes to the system U and still generate
the correct k. These two conditions can be summarized with the following two
properties of our piece-wise learnable sensor:

1. S′
t = (U,Mk′) and St = (U,Mk) fall under the same sub-function. And

because each sub-function is learnable, there exists a PPT A such that given
x2 = sensor(U,M ′

k), A can derive x2 = sensor(U,Mk).
2. S′

t = (U ′,Mk) and St = (U,Mk) do NOT fall under the same sub-function.
This means there does NOT exist a PPT A such that given access to x2 =
sensor(U ′,Mk′) can derive x2 = sensor(U,Mk).

If the sensor is learnable then condition 1 is true and 2 is false. If the sensor is a
random oracle then 1 is false and 2 is true. It clear we need both 1 and 2 to be
true. Let us now prove that having both conditions true is sufficient to create a
semantic obfuscator in the System-Interaction model.

Theorem 5. Given a sensor which can be represented by a piecewise learnable
function, there exists a PPT O that transforms a TM M into a semantically
obfuscated program by wrapping it in Mk, within the System-Interaction model.

Proof. Let M be a program with no user input or output. We construct a pro-
gram Mo wrapped by Mk such that Mo is semantically obfuscated. The program
Mk calls Mo as a subroutine when x = k and k = sensor(U,Mk). We do this
construction in constant time through public-key encryption. This is achieved by
creating Mi from i = 0 to i = p, where p is polynomial with regards to the size
of Mo. Each Mi writes out x2 = sensor(U,Mi) to the user tape encrypted with
the author’s public key. Only the author can decrypt these readings with the pri-
vate key. Given access to p sensor readings, all from the same sub-function, the
author learns the sub-function and constructs Mk such that k = sensor(U,Mk).

The adversary is required to modify U to determine the input–output of the
program because they do not possess the private key. And due to property two of
our piece-wise learnable sensor, changing U to U ′ will cause the sensor to jump
sub-functions. The new sub-function and its sensor values will be independent

A Formal Framework for Environmentally Sensitive Malware 225

of the original sub-function the program was in when it was being run with U ,
thus giving the adversary no information.

Discussion. Given the hefty assumptions we made, it does not come as a surprise
that we can achieve semantic obfuscation. It does help illustrate a point though:
there must exist an asymmetry in the observer effect for it to be useful. Quite like
in cryptography, we need a one-way function. One-way functions in cryptography
are typically over the domains of integers or lattices. Our one-way function is
over the domain of TMs in the System-Interaction model. This comes in the form
of the assumptions that changing keys in our point function does not change the
sub-function, but changing the environment does change the sub-function. This
is much like a noise threshold within an error correction scheme.

5 Existing Sensors

So far we have considered properties of functions that act as sensors. We have
shown that it is necessary that a function be unlearnable but not a random
oracle in order to achieve semantic obfuscation. Then we showed that a piece-
wise learnable function is sufficient to achieve semantic obfuscation within the
System-Interaction model.

In this section we will consider existing sensors within real programs and show
what relation they have to the sensors we have discussed within our model.

5.1 Static Sensor

One of the simplest types of sensors in real programs is the self-memory check.
A program can compute a hash of its own memory and compare it against a
stored value in order to determine if anything has been changed. We represent
this capability in our model with the following definition:

Definition 7 (Static Sensor). Any program M has oracle access to a Sensor(S),
where Sensor(S) = R(S), R is the random oracle from the hardware H, and
S ⊆ ID(U(M)).

We show why this simple type of sensor cannot be used to ensure integrity
for obfuscation.

Lemma 1. An adversary can leak the return value of Sensor(S) in the System-
Interaction model.

Proof. We begin by changing U to write out the entire contents of the system
tape to the user-tape just before any call to Sensor(S). The tape contents D
are then modified to remove the changes made to U . The modified version of D
will be denoted D′. Then a new program M ′ is constructed with the old tape
contents appended as data D′. The new program M ′ contains D′, and makes
a call to Sensor(S′), where S′ is now equal to subset of the tape that contains
D′. The call to this sensor will return the same value as the sensor call in the
original program M . This shows that the return value of the static sensor, even
when measuring any subset of the system, will not remain hidden.

226 J. Blackthorne et al.

5.2 Dynamic Sensor

Programs can also measure properties that change over time. A practical example
is the use of the RDTSC x86 assembly instruction which measures an internal
hardware clock. Pairs of these instructions can be used to measure the time it
takes for code to execute between them. We formalize the idea of measurement
over time by first introducing the notion of a trace.

Definition 8 (Trace). The trace (Tr) of a TM M is defined as the ordered set
of IDs of M from timestep= 0 . . . t − 1, where t is the current timestep.

To represent simple dynamic sensor like RDTSC, we formalize a sensor which
sums all the values in a trace.

Definition 9 (Dynamic Sensor). Any program M has oracle access to Sen-

sor(Tr), defined as Sensor(Tr) =
t−1∑

i=0

R(IDi)) | IDi ∈ Tr(U(M)), and t is the

current time-step.

This sensor is also inadequate for use in ensuring integrity for obfuscation
purposes.

Lemma 2. An adversary can leak the return value of any call to Sensor(Tr) in
a program M in the System-Interaction model.

Proof. Leaking the value of Sensor(Tr) in a program M is trivial, simply because
Sensor(Tr) does not measure any instructions that occur after the call to the
sensor. To leak the value, modify the part of U that occurs after the call to
Sensor(Tr) to write the result of the sensor call to the user-tape. Multiple calls
to the sensor could be leaked in turn. For each call to Sensor(Tr), generate a
new program which writes the return value of that call to Sensor(Tr) to the
user-tape.

5.3 Static and Dynamic Sensors

Real programs often combine static and dynamic sensors. A practical example
is a program that both computes hashes over its memory and checks the time it
takes to compute those hashes. Even this combination of sensors cannot ensure
integrity for obfuscation.

Theorem 6. Semantic obfuscation is not possible with combined static and
dynamic sensors when the dynamic sensor is learnable.

Proof. The following is a simple algorithm to extract all of the sensor readings:
First apply Lemma 1 to all calls to Sensor(S). Next we must extract the calls to
Sensor(Tr). There are two possible cases.

Case 1: We can modify U to write the result of Sensor(Tr) to the user-tape
without any call to Sensor(S) being affected. If this is true, we can apply Lemma 2
and are finished.

A Formal Framework for Environmentally Sensitive Malware 227

Case 2: There exists a call to Sensor(S) that will measure any modification
of U needed to write the value of Sensor(Tr) to the user-tape. In this case,
Sensor(Tr) will be affected by the modified return value of Sensor(S). But because
Sensor(Tr) is linear and thus learnable, we can determine what the return value
of Sensor(Tr) should be through summing a series of calls to Sensor(S), where S
is set to areas of the tape that contain the intended ID(U(M)) for that timestep.

Discussion. The underlying reason of this impossibility is the same as why a
learnable sensor in general cannot be used. It is easy to see that this same
impossibility applies when the dynamic sensor is a random oracle. Both cases
reduce to the cases discussed in Sect. 4.

Now we will consider a construction of combined static and dynamic sensors,
but this time we will assume the dynamic sensor is the piece-wise learnable
sensor described in Sect. 4.

Theorem 7. Given a static sensor and piece-wise learnable dynamic sensor,
there exists a semantic obfuscator within the System-Interaction model.

Proof. Let M be a program with no user input or output in the System-
Interaction model. Let M have access to Sensor(S), which is a random oracle.
Let M have access to Sensor(Tr) which is piece-wise learnable. We construct
the program Mo = O(M,U) wrapped by Mk, such that Mk is VBB obfuscated
and calls Mo on input k. We construct Mk in the same method as Theorem 5,
but this time so that it first calls Sensor(S) where S = U(Mk) and then calls
x2 = Sensor(Tr). The program Mk then checks to see if x2 is equal to k.

The program Mk, upon receiving k, calls Mo. This Mo and original M are
input–output equivalent. The wrapper Mk calls Mo in constant time, so we may
say that there is at most polynomial slowdown. Finally, we must establish the
semantic security property.

The adversary can extract a semantic predicate from the source of Mk –
which includes Mo – or modify U to print out additional information about Mk

or Mo. We know that Mk is VBB obfuscated so no information can be attained
from the source that can not also be attained from running Mk. The adversary
can modify U to print out the value of x2 by copying it to the user tape. If
any modifications are made to U , then the value x2 will change and become
independent of the original value, thus leaking no information. The program Mk

will halt upon running Mk(x′
2), thus not allowing the adversary to determine

any semantic predicates about M .

6 Conclusion

We have provided a formal framework for which to describe environmental sensi-
tivity in programs. We constructed a well-defined standard of obfuscation within
that framework, and we have shown the necessary and sufficient conditions of
achieving that standard. We believe our research has formed a basis for which to
construct practical, semantically obfuscated programs. The clear next step, is to
now construct prototypes that fulfill the requirements of semantic obfuscation.

228 J. Blackthorne et al.

References

1. Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryptographic
program obfuscation (2014)

2. Arora, S., Barak, B.: Randomized computation. In: Computational Complexity:
A Modern Approach, pp. 121–122. Cambridge University Press, New York (2012).
Chap. 7, Sect. 7.5.3

3. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. Cryptology ePrint Archive, Report 2013/631 (2013).
http://eprint.iacr.org/2013/631.pdf. Accessed 6 Apr 2015

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. Cryptology ePrint Archive,
Report 2001/069 (2001). http://eprint.iacr.org/

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 1. Springer, Heidelberg (2001)

6. Basile, C., et al.: Towards a formal model for software tamper resistance. COSIC,
University of Leuven, Flanders, Belgium (2009). https://www.cosic.esat.kuleuven.
be/publications/article-1280.pdf. Accessed 6 Apr 2015

7. Beaucamps, P., Filiol, E.: On the possibility of practically obfuscating programs
towards a unified perspective of code protection. J. Comput. Virol. 3(1), 3–21
(2007)

8. Bernstein, D.J., Hülsing, A., Lange, T., Niederhagen, R.: Bad directions in cryp-
tographic hash functions. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol.
9144, pp. 488–508. Springer, Heidelberg (2015)

9. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010)

10. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014)

11. Borello, J.M., Mé, L.: Code obfuscation techniques for metamorphic viruses. J.
Comput. Virol. 4(3), 211–220 (2008)

12. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. Cryptology ePrint Archive, Report 2013/563
(2013). http://eprint.iacr.org/2013-563.pdf, http://eprint.iacr.org/2013-563.pdf.
Accessed 6 Apr 2015

13. Canetti, R., Varia, M.: Non-malleable obfuscation. In: Reingold, O. (ed.) TCC
2009. LNCS, vol. 5444, pp. 73–90. Springer, Heidelberg (2009)

14. Chen, X., Andersen, J., Mao, Z., Bailey, M., Nazario, J.: Towards an understanding
of anti-virtualization and anti-debugging behavior in modern malware. In: IEEE
International Conference on Dependable Systems and Networks with FTCS and
DCC, DSN 2008, pp. 177–186, June 2008

15. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical report 148. Department of Computer Science University of Auck-
land, 36 p., July 1997. http://scholar.google.com/scholar?hl=en&btnG=Search&
q=intitle:A+Taxonomy+of+Obfuscating+Transformations#0

16. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hardware
virtualization extensions. In: Proceedings of the 15th ACM Conference on Com-
puter and Communications Security, CCS 2008, pp. 51–62 (2008). http://dl.acm.
org/citation.cfm?id=1455779

http://eprint.iacr.org/2013/631.pdf
http://eprint.iacr.org/
https://www.cosic.esat.kuleuven.be/publications/article-1280.pdf
https://www.cosic.esat.kuleuven.be/publications/article-1280.pdf
http://eprint.iacr.org/2013-563.pdf
http://eprint.iacr.org/2013-563.pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+Taxonomy+of+Obfuscating+Transformations#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+Taxonomy+of+Obfuscating+Transformations#0
http://dl.acm.org/citation.cfm?id=1455779
http://dl.acm.org/citation.cfm?id=1455779

A Formal Framework for Environmentally Sensitive Malware 229

17. Ferrie, P.: Attacks on more virtual machine emulators. Technical report. Symantec
Advanced Threat Research (2007)

18. Ferrie, P.: The Ultimate Anti-Debugging Reference, May 2011. http://pferrie.
host22.com/papers/antidebug.pdf. Accessed 6 Apr 2015

19. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility is not trans-
parency: VMM detection myths and realities. In: Proceedings of 11th USENIX
Workshop on Hot Topics in Operating Systems, pp. 6:1–6:6 (2007). http://dl.acm.
org/citation.cfm?id=1361397.1361403

20. Garg, S., et al.: Candidate indistinguishability obfuscation and functional encryp-
tion for all circuits. In: FOCS 2013, pp. 40–49 (2013)

21. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Proceedings of
4th Theory Cryptography Conference, pp. 194–213 (2007)

22. Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating emulation-
resistant malware. In: Proceedings of the 1st ACM Workshop on Virtual Machine
Security, VMSec 2009, pp. 11–22. ACM, New York (2009). http://doi.acm.org/10.
1145/1655148.1655151

23. Moon, P.: The use of packers, obfuscators and encryptors in modern malware the
use of packers, obfuscators and encryptors in modern malware. Technical report,
Royal Holloway University of London, March 2015

24. Nithyanand, R., Solis, J.: A theoretical analysis: physical unclonable functions
and the software protection problem. In: Proceedings of 2012 IEEE Symposium
Security and Privacy Workshop, pp. 1–11 (2012)

25. Nithyanand, R., Sion, R., Solis, J.: Solving the software protection problem with
intrinsic personal physical unclonable functions. Sandia National Laboratories, Liv-
ermore, CA, USA. Report SAND2011-6603 (2011)

26. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: how to
automatically generate procedures to detect CPU emulators. In: Proceedings of the
3rd USENIX Conference on Offensive Technologies, WOOT 2009, p. 2. USENIX
Association, Berkeley (2009). http://dl.acm.org/citation.cfm?id=1855876.1855878

27. Plaga, R., Koob, F.: A formal definition and a new security mechanism of phys-
ical unclonable functions. In: Proceedings 16th International GI/ITG Conference
Measurement, Modeling, and Evaluation of Computing Systems and Dependability
and Fault Tolerance, pp. 228–301 (2012). http://arxiv.org/abs/1204.0987

28. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In:
Proceedings of 16th USENIX Security Symposium on USENIX Security Sympo-
sium, SS 2007, pp. 19:1–19:16. USENIX Association, Berkeley (2007). http://dl.
acm.org/citation.cfm?id=1362903.1362922

29. Saxena, A., Wyseur, B., Preneel, B.: Towards security notions for white-box cryp-
tography. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC
2009. LNCS, vol. 5735, pp. 49–58. Springer, Heidelberg (2009)

30. Sikorski, M., Honig, A.: Practical Malware Analysis: The Hands-On Guide to Dis-
secting Malicious Software, 1st edn. No Starch Press, San Francisco (2012)

http://pferrie.host22.com/papers/antidebug.pdf
http://pferrie.host22.com/papers/antidebug.pdf
http://dl.acm.org/citation.cfm?id=1361397.1361403
http://dl.acm.org/citation.cfm?id=1361397.1361403
http://doi.acm.org/10.1145/1655148.1655151
http://doi.acm.org/10.1145/1655148.1655151
http://dl.acm.org/citation.cfm?id=1855876.1855878
http://arxiv.org/abs/1204.0987
http://dl.acm.org/citation.cfm?id=1362903.1362922
http://dl.acm.org/citation.cfm?id=1362903.1362922

AVclass: A Tool for Massive Malware Labeling

Marcos Sebastián1, Richard Rivera1,2(B), Platon Kotzias1,2,
and Juan Caballero1

1 IMDEA Software Institute, Madrid, Spain
richard.rivera@imdea.org

2 Universidad Politécnica de Madrid, Madrid, Spain

Abstract. Labeling a malicious executable as a variant of a known fam-
ily is important for security applications such as triage, lineage, and for
building reference datasets in turn used for evaluating malware clustering
and training malware classification approaches. Oftentimes, such label-
ing is based on labels output by antivirus engines. While AV labels are
well-known to be inconsistent, there is often no other information avail-
able for labeling, thus security analysts keep relying on them. However,
current approaches for extracting family information from AV labels are
manual and inaccurate. In this work, we describe AVclass, an auto-
matic labeling tool that given the AV labels for a, potentially massive,
number of samples outputs the most likely family names for each sample.
AVclass implements novel automatic techniques to address 3 key chal-
lenges: normalization, removal of generic tokens, and alias detection. We
have evaluated AVclass on 10 datasets comprising 8.9 M samples, larger
than any dataset used by malware clustering and classification works.
AVclass leverages labels from any AV engine, e.g., all 99 AV engines
seen in VirusTotal, the largest engine set in the literature. AVclass’s
clustering achieves F1 measures up to 93.9 on labeled datasets and clus-
ters are labeled with fine-grained family names commonly used by the
AV vendors. We release AVclass to the community.

Keywords: Malware labeling · AV labels · Classification · Clustering

1 Introduction

Labeling a malicious executable as a variant of a known family is important for
multiple security applications such as identifying new threats (by filtering known
ones), selecting disinfection mechanisms, attribution, and malware lineage. Such
labeling can be done manually by analysts, or automatically by malware classi-
fication approaches using supervised machine learning [8,28,29] (assuming the
sample belongs to a family in the training set), and also through malware clus-
tering approaches [2,3,24,26] followed by a manual labeling process to assign a
known family name to each cluster.

Labeling executables is also important for building reference datasets that
are used by researchers for training those malware classification supervised
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 230–253, 2016.
DOI: 10.1007/978-3-319-45719-2 11

AVclass: A Tool for Massive Malware Labeling 231

approaches and for evaluating malware clustering results. This creates a bit
of a chicken-and-egg problem, which prior work resolves by building reference
datasets using AV labels [2,3,24,28,29]. However, AV labels are well-known to
be inconsistent [2,6,18,20]. In particular, AV engines often disagree on whether
the same sample is malicious or not, and the family name that the label encodes
may differ, among others, because of lack of a standard naming convention (con-
ventions such as CARO [7] and CME [4] are not widely used), lack of interest
(the main goal of an AV is detection rather than classification [5,10]), using
heuristic or behavioral detections not specific to a family, and vendors assigning
different names (i.e., aliases) to the same family.

Still, despite their known inconsistencies, AV labels are arguably the most
common source for extracting malware labels. This likely happens because in
many occasions no other ground truth is available, and because, despite its
noisy nature, AV labels often contain the family name the analyst wants. Thus,
extracting as accurate family information as possible from AV labels is an impor-
tant problem.

Several limitations affect the process in which prior work builds family name
ground truth from AV labels. First, some approaches use the full AV labels,
which is inaccurate because the family name comprises only a fraction of the
full label. For example, an AV engine may use different labels for samples in the
same family, but still assign the same family name in those labels, e.g., when
using two different detection rules for the family. Other works extract the family
name in the labels through a manual process that is not detailed, does not handle
aliases between family names, and does not scale to hundreds of thousands, or
millions, of samples.

Second, it has been shown that no single AV engine detects all samples and
that the number of AV engines needed to achieve high correctness in the family
name is higher than for detection [20]. To address these issues, it is common
to resort to majority voting among a fixed set of selected AV vendors. But,
this requires selecting some AV vendors considered better at labeling, when
prior work shows that some AV vendors may be good at labeling one family,
but poor with others [20]. In addition, a majority cannot be reached in many
cases, which means a family name cannot be chosen for those samples and they
cannot be added into the evaluation or training data [25]. And, focusing on the
samples where the majority agrees may bias results towards the easy cases [16].
Furthermore, prior work assumes the results of this process correspond to the
ground truth, without quantitatively evaluating their quality.

In this work, we describe AVclass, an automatic labeling tool that given
the AV labels for a, potentially massive, number of samples outputs the most
likely family names for each sample, ranking each candidate family name by the
number of AV engines assigning it to the sample. Selecting the top ranked fam-
ily corresponds to a plurality vote, i.e., family with most votes wins. AVclass
implements novel automatic techniques to address 3 main challenges: normal-
ization, removal of generic tokens, and alias detection. Using those techniques

232 M. Sebastián et al.

AVclass automatically extracts as precise family information as possible from
the input AV labels.

We envision AVclass being used in two main scenarios. In the first scenario,
an analyst does not have access to a state-of-the-art malware clustering system
(e.g., [2,3,24,26]). When faced with labeling a large amount of samples, the ana-
lyst uses AVclass to efficiently obtain the most likely families for each sample.
Here, AVclass acts as an efficient replacement for both clustering and labeling
the resulting clusters.

In the second scenario, the analyst has access to an state-of-the-art malware
clustering system and can use AVclass for 3 tasks. First, it can use AVclass
to automatically label the output clusters with the most likely family name used
by AV vendors. Second, AVclass’s output can be used to implement a feature
based on AV labels (e.g., whether two samples have the same family name) that
can be added to the existing clustering. Thus, rather than assuming that the
AV labels constitute the ground truth, the analysts incorporates the AV labels
knowledge into the clustering system. Third, AVclass’s output can be used
to build a reference clustering to evaluate the clustering results. Since AVclass
tags each candidate family name with a confidence factor based on the number of
AV engines using the name, the analyst can select a threshold on the confidence
factor for building the reference dataset, e.g., replacing the default plurality vote
with a more conservative (majority or else) vote.

The salient characteristics of AVclass are:

– Automatic. AVclass removes manual analysis limitations on the size of
the input dataset. We have evaluated AVclass on 8.9 M malicious samples,
larger than any dataset previously used by malware clustering and classifica-
tion approaches.

– Vendor-agnostic. Prior work operates on the labels of a fixed subset of 1–48
AV engines. In contrast, AVclass operates on the labels of any available set of
AV engines, which can vary from sample to sample. All labels are used towards
the output family name. AVclass has been tested on all 99 AV engines we
observe in VirusTotal [31], the largest AV engine set considered so far.

– Plurality vote. AVclass performs a plurality vote on the normalized family
names used by all input engines. A plurality vote outputs a family name more
often than a majority vote, since it is rare for more than half of the AV engines
to agree.

– Cross-platform. AVclass can cluster samples for any platforms supported
by the AV engines. We evaluate AVclass on Windows and Android samples.

– Does not require executables. AV labels can be obtained from online
services like VirusTotal using a sample’s hash, even when the executable is
not available.

– Quantified accuracy. The accuracy of AVclass has been evaluated on 5
publicly available malware datasets with ground truth, showing that it can
achieve an F1 score of up to 93.9.

– Reproducible. We describe AVclass in detail and release its source code.1

1 https://github.com/malicialab/avclass.

https://github.com/malicialab/avclass

AVclass: A Tool for Massive Malware Labeling 233

2 Related Work

Table 1 summarizes relevant works that have used AV labels. For each work, it
first presents the year of publication and the goal of the work, which can be mal-
ware detection, clustering, classification, combinations of those, cluster validity
evaluation, as well as the development of metrics to evaluate AV labels. Then,
it describes the granularity of the information extracted from the AV labels,
which can be Boolean detection (i.e., existence or absence of the label), coarse-
grained classification in particular if a sample is a potentially unwanted program
(PUP) or malware, and extracting the family name. Next, it shows the number
of labeled samples used in the evaluation and the number of vendors those labels
come from. For supervised approaches, the samples column includes only mali-
cious samples in the training set. As far as we know the largest dataset used
previously for malware clustering or classification is by Huang and Stokes [11],
which comprises 6.5 M samples: 2.8 M malicious and 3.7 M benign. In contrast,
we evaluate AVclass on 8.9 M malicious samples, making it the largest so far.
The next two columns capture whether the AV labels are used to evaluate the
results and for training machine learning supervised approaches. Finally, the last
column captures if normalization is applied to the AV labels (�), or alternatively
the full label is used (✗).

Table 1. Related work that uses AV labels. The number of samples includes only those
labeled using AV results and for classification approaches only malicious samples.

Granularity

Work Year Goal Det. PUP Fam. Samples AV Eval Train Norm

Bailey et al. [2] 2007 Cluster � ✗ � 8.2K 5 � ✗ ✗

Rieck et al. [28] 2008 Classify � ✗ � 10K 1 � � ✗

McBoost [23] 2008 Detect � ✗ ✗ 5.5K 3 � � ✗

Bayer et al. [3] 2009 Cluster � ✗ � 75.7K 6 � ✗ ✗

Perdisci et al. [24] 2010 Cluster+Detection � ✗ � 25.7K 3 � ✗ �
Malheur [29] 2011 Cluster+Classify � ✗ � 3.1K 6 � � ✗

BitShred [13] 2011 Cluster � ✗ � 3.9K 40 � ✗ �
Maggi et al. [18] 2011 Metrics � ✗ � 98.8K 4 ✗ ✗ �
VAMO [25] 2012 Cluster Validity � ✗ � 1.1M 4 � ✗ �
Rajab et al. [27] 2013 Detect � ✗ ✗ 2.2K 45 � ✗ ✗

Dahl et al. [8] 2013 Detect+Classify � ✗ � 1.8M 1 � � ✗

Drebin [1] 2014 Detect � � � 5.5K 10 � � �
AV-Meter [20] 2014 Metrics � ✗ � 12K 48 ✗ ✗ ✗

Malsign [15] 2015 Cluster � � ✗ 142K 11 � ✗ ✗

Kantchelian et al. [14] 2015 Detect � ✗ ✗ 279K 34 � � ✗

Miller et al. [19] 2016 Detect � ✗ ✗ 1.1M 32 � � ✗

MtNet [11] 2016 Detect+Classify � ✗ � 2.8M 1 � � ✗

Hurier et al. [12] 2016 Metrics � � � 2.1M 66 ✗ ✗ ✗

AVclass 2016 Cluster+Label � � � 8.9M 99 � ✗ �

234 M. Sebastián et al.

Most works consider a sample malicious if at least a threshold of AV engines
detects it (i.e., returns a label) and weigh each AV engine equally in the deci-
sion. There is no agreement in the threshold value, which can be a single AV
engine [25,32], two [1], four [15,19], or twenty [13]. Some works evaluate differ-
ent thresholds [20,22] showing that small threshold increases, quickly reduce the
number of samples considered malicious. Recently, Kantchelian et al. [14] pro-
pose techniques for weighing AV engines differently. However, they assume AV
labels are independent of each other, despite prior work having found clusters of
AV engines that copy the label of a leader [20], which we also observe. In addi-
tion, an AV engine with poor overall labels may have highly accurate signatures
for some malware families. In our work we adjust the influence of AV engines
that copy labels and then weigh remaining labels equally.

Other works show that AVs may change their signatures over time, refin-
ing their labels [9,14]. Recently, Miller et al. [19] argue that detection systems
should be trained not with the labels available at evaluation time (e.g., latest
VT reports), but with the labels available at training time. Otherwise, detection
rate can be inflated by almost 20 % points. However, for evaluating clustering
results, it makes sense to use the most recent (and refined) labels.

AV Label Inconsistencies. Prior work has identified the problem of differ-
ent AV engines disagreeing on labels for the same sample [2,6,18,20]. While
such discrepancies are problematic, security analysts keep coming back to AV
labels for ground truth. Thus, we believe the key question is how to automat-
ically extract as much family information as possible from those labels and to
quantitatively evaluate the resulting reference dataset. We propose an automatic
labeling approach that addresses the most important causes for discrepancies,
namely different naming schemes, generic tokens, and aliases.

Li et al. [16] analyze the use of a reference clustering extracted from AV labels
to evaluate clustering results. They argue that using only a subset of samples, for
which the majority of AV engines agrees, biases the evaluation towards easy-to-
cluster samples. AVclass automatically extracts the most likely family names
for a sample (even if no majority agrees on it), helping to address this concern
by enlarging the reference dataset. Mohaisen and Alrawi [20] propose metrics
for evaluating AV detections and their labels. They show how multiple AVs are
complementary in their detection and also that engines with better detection
rate do not necessarily have higher correctness in their family names. Recently,
Hurier et al. [12] propose further metrics to evaluate ground truth datasets built
using AV labels. One limitation of proposed metrics is that they operate on the
full AV labels without normalization.

Most related to our work is VAMO [25], which proposes an automated app-
roach for evaluating clustering results. VAMO normalizes the labels of 4 AV
vendors to build an AV graph (introduced in [24]) that captures the fraction
of samples where labels, possibly from different engines, appear together. Our
alias detection approach is related, although VAMO does not output aliases as
AVclass does. Furthermore, VAMO finds the set of reference clusters from the

AVclass: A Tool for Massive Malware Labeling 235

AV labels that best agrees with a third-party clustering, while AVclass labels
samples without requiring third-party clustering results.

Naming Conventions. There have been attempts at reducing confusion in
malware labels through naming conventions, but they have not gained much
traction. A pioneering effort was the 1991 CARO Virus Naming Convention [7].
More recently, the Common Malware Enumeration (CME) Initiative [4] provides
unique identifiers for referencing the same malware across different names.

3 Approach

Figure 1 shows the architecture of AVclass. It comprises two phases: preparation
and labeling. During the preparation phase, an analyst runs the generic token
detection and alias detection modules on the AV labels of a large number of
samples to produce lists of generic tokens and aliases, which become inputs to
the labeling phase. In particular, the generic token detection takes as input the
AV labels of samples for which their family is known (e.g., from publicly available
labeled datasets [1,21,29,33]) and outputs a list of generic tokens, i.e., tokens
that appear in labels of samples from different families. The alias detection
module takes as input AV labels of a large number of unlabeled samples and
outputs pairs of family names that alias to each other.

Fig. 1. AVclass architecture.

The labeling phase is the core of AVclass and implements the label normal-
ization process. It takes as input the AV labels of a large number of samples to
be labeled, a list of generic tokens, a list of aliases, and optionally a list of AV
engines to use. For each sample to be labeled, it outputs a ranking of its most
likely family names. The list of generic tokens and aliases are the outputs of the
preparation phase. By default, AVclass uses all AV engines in the set of AV
labels for a sample. However, by providing an AV engine list, the analyst can
restrict the processing to labels from those engines.

236 M. Sebastián et al.

AVclass implements both the preparation and labeling phases. But, we
expect that many analysts may not have large numbers of samples used for
preparation. Thus, AVclass also includes default lists of generic tokens and
aliases obtained in this work, so that an analyst can skip the preparation phase.

The remainder of this section first details the labeling phase (Sect. 3.1), and
then the generic token detection (Sect. 3.2) and alias detection (Sect. 3.3) prepa-
ration modules. To illustrate the approach, we use the running example in Fig. 2.

3.1 Labeling

The labeling phase takes as input the AV labels of a, potentially massive, number
of samples. For each sample, it returns a ranking of its most likely family names.
This Section describes the 8 steps used in labeling each sample.

AV Selection (Optional). By default, AVclass processes the labels of all AV
engines in the input set of a sample. The labels of each sample may come from
a different set of AV engines. This design decision was taken because selecting a
fixed set of AV engines (as done in prior work) is difficult since there is no real
information about which engines are better, and some engines may be good in a
family but poor with others. Furthermore, a fixed set of AV engines throws away
information as certain AV vendors may have been analyzed only by certain AV
vendors. In particular, it is common to obtain AV labels from VT, which has
used different AV engines to scan uploaded files over time. Overall, we observe
99 different AV engines in our VT reports, which are detailed in Table 11 in the
Appendix. Some engines are only seen for a few days, while others have been
continually used by VT for nearly a decade.

Fig. 2. Running example.

AVclass: A Tool for Massive Malware Labeling 237

Still, an analyst can optionally provide an input list of engines to AVclass.
If provided, labels from engines not in the input list are removed at this step
and only labels from the input set of AV engines are used for every sample. For
brevity, our running example in Fig. 2 assumes the analyst provided an input
list with 10 engines. Figure 2a shows the input AV labels from the selected 10
engines for the same sample.

Duplicate Removal. The same AV vendor may have multiple engines such as
McAffee and McAffee-GW-Edition, or TrendMicro and TrendMicro-HouseCall.
Those engines often copy labels from each other. While we could include only one
engine per vendor, the reality is that their detections often differ. In addition, we
observe groups of AV vendors that copy labels from each other, something also
observed in prior work [20]. In both situations, the detection from these groups
of engines are not independent (an assumption of some prior works [14]).

To avoid giving too much weight on the selected family name to vendors with
multiple engines, or whose labels are often copied, we leverage the observation
that when two AV engines output exactly the same label for a sample this very
likely corresponds to one of those two situations. This happens because each
vendor structures its labels differently and also uses slightly different keywords
in their labels, so that two engines producing exactly the same label is rare
unless they are copying each other. Thus, at this step, AVclass remove all
duplicate labels. A special case is a vendor (Emsisoft) that when copying labels
adds to them the suffix “(B)”. For this vendor, we first remove this suffix from its
labels, and then check for duplicates. We have not observed any other such cases.
Figure 2b shows how the Emsisoft label is removed at this step as a duplicate of
the BitDefender label.

Suffix Removal. We have empirically observed that most noise in AV labels is
introduced in the suffix, i.e., the part of the AV label after the family name, where
AV vendors may encode information such as rule numbers and hexadecimal
strings that may be hashes. In general, it is difficult to remove those suffixes
for all engines as vendors use different label structures, which may even change
over time. Still, we have found 3 simple rules to truncate useless suffixes: (1)
for 17 AV engines, truncate label after last dot; (2) for AVG, truncate after last
dot if the suffix only contains digits or uppercase chars; and (3) for Agnitum,
truncate after the last ‘!’ character. Suffix removal is the only engine-specific
step in AVclass.

Tokenization. The next step is to split each label into tokens. We use a sim-
ple tokenization rule that splits the label on any sequence of consecutive non-
alphanumeric characters. Figure 2c shows the results of the suffix removal and
tokenization steps. Labels 4, 6, 8, and 10 have been truncated by the suffix
removal rules, and all labels have been tokenized.

Token Filtering. The goal of this step is to remove tokens that are not family
names. Each token goes through five substeps: (1) convert to lowercase; (2)
remove digits at the end of the token; (3) remove token if short, i.e., less than
4 characters; (4) remove token if present in the input list of generic tokens; and

238 M. Sebastián et al.

(5) remove token if it is a prefix of the sample’s hash2. Figure 2d shows the
results of token filtering where label 8 was removed as a result of not having any
tokens left.

Alias Replacement. Different vendors may use different names for the same
family, i.e., aliases. If a token shows in the input list of aliases as being an alias
for another family name, the token is replaced by the family name it aliases.
The alias detection process is detailed in Sect. 3.3. Figure 2d shows the results
after alias replacement, where token solimba has been identified as an alias for
the firseria family.

Token Ranking. Next, tokens are ranked by decreasing number of engines that
include the token in their label. Tokens that appear in at most one AV engine
are removed. This allows removing random tokens that earlier steps may have
missed, as the likelihood is low that a random token appears in labels from
multiple AV engines that did not copy their labels. At this point, the ranking
captures the candidate family names for the sample and the number of AV
engines that use each token can be seen as a confidence score. Figure 2f shows
the final token ranking for our running example where token 0049365d1 have
been removed because it appears in only one label.

Family Selection. AVclass chooses the most common token (top of the rank-
ing) as the family name for the sample. This corresponds to a plurality vote on
the candidate family names. AVclass also has a verbose option to output the
complete ranking, which is useful to identify samples with multiple candidate
family names with close scores, which may deserve detailed attention by the
analyst. In our running example, the selected family is firseria, which outscores
5 to 2 the other possible family name.

3.2 Generic Token Detection

AV labels typically contain multiple generic tokens not specific to a family. For
example, the labels in Fig. 2 include generic tokens indicating, among others, the
sample’s architecture (e.g., Win32, Android), that a sample is unwanted (e.g.,
Unwanted, Adware, PUP), generic malware classes (e.g., Trojan), and generic
families used with heuristic rules (e.g., Eldorado, Artemis). The generic token
detection module is used during the preparation phase to automatically build a
list of generic tokens used as input to the labeling phase in Sect. 3.1.

The intuition behind our technique for identifying generic tokens is that
tokens appearing in the labels of samples known to be of different families cannot
be specific to a family, and thus are generic. For example, an AV engine may
output the label Gen:Adware.Firseria.1 for a sample known to be of the Firseria
adware family and the label Gen:Adware.Outbrowse.2 for a sample known to be
of the Outbrowse adware family. Here, tokens Gen and Adware are likely generic
because they are used with samples of different families, and thus are not specific
to the Firseria or Outbrowse families.
2 We check the sample’s MD5, SHA1, and SHA256 hashes.

AVclass: A Tool for Massive Malware Labeling 239

Table 2. Categories in the manual generic token list.

Category Tokens Example tokens

Architecture 14 android, linux, unix

Behavior: download 29 download, downware, dropped

Behavior: homepage modification 2 homepage, startpage

Behavior: injection 5 inject, injected, injector

Behavior: kill 5 antifw, avkill, blocker

Behavior: signed 2 fakems, signed

Behavior: other 3 autorun, proxy, servstart

Corrupted 2 corrupt, damaged

Exploit 2 expl, exploit

File types 15 html, text, script

Generic families 13 agent, artemis, eldorado

Heuristic detection 12 generic, genmalicius, heuristic

Macro 11 badmacro, macro, x2km

Malicious software 5 malagent, malicious, malware

Malware classes 53 spyware, trojan, virus

Misc 9 access, hack, password

Packed 17 malpack, obfuscated, packed

Packer 6 cryptor, encoder, obfuscator

Patch 3 patched, patchfile, pepatch

Program 5 application, program, software

PUP 29 adware, pup, unwanted

Suspicious 13 suspected, suspicious, variant

Test 2 test, testvirus

Tools 8 fraudtool, tool, virtool

Unclassified 3 unclassifiedmalware, undef, unknown

The generic token detection module takes as input samples for which their
family name is known. It iterates on the list of input samples. For each sample,
it builds a sample token list, by iterating on the set of AV labels for the sample.
For each label, it tokenizes the label on non-alphanumeric characters, converts
tokens to lowercase, removes digits at the end of the token, removes tokens less
than 4 characters, and appends the remaining tokens to the sample token list.
Once all labels are processed, it removes duplicate tokens from the sample token
list. The sample token list for the sample in Fig. 2 would be: outbrowse, unwanted,
program, 0049365d1, solimba, eldorado, firseria, virus, msil, adware, and trojan.
Then, it iterates on the tokens in the sample token list updating a token family
map, which maps each unique token to the list of families of the samples where
the token appears in their labels.

240 M. Sebastián et al.

After all samples have been processed, it iterates on the token family map.
Each token that does not match a family name and has a count larger than Tgen

is considered generic. The default Tgen > 8 threshold is chosen empirically in
Sect. 4.3. For example, tokens firseria and solimba may have appeared only in
labels of samples from the Firseria family and thus are not generic, but token
eldorado may have appeared in labels from samples of 9 different families and is
identified as generic.

We have applied this approach to automatically generate a list of generic
tokens. One author has also manually generated a list of generic tokens. Our
experiments in Sect. 4.3 show that the automatically generated generic token list
performs similarly in most cases, and even outperforms the manually generated
lists in some cases, while scaling and being independent of an analyst’s expertise.

Table 2 shows the 15 categories of generic tokens in the manually built generic
token list. For each category, it shows the number of tokens in the category
and some example tokens. The categories show the wealth of information that
AV vendors encode in their labels. They include, among others, architectures;
behaviors like homepage modification, code injection, downloading, and disabling
security measures; file types; heuristic detections; macro types; malware classes;
encrypted code; and keywords for potentially unwanted programs. The categories
with more generic tokens are malware classes with 53 tokens (e.g., trojan, virus,
worm, spyware), download behavior with 29 (e.g., download, dload, downl, down-
ware), and potentially unwanted programs with 29 (e.g., pup, adware, unwanted).

3.3 Alias Detection

Different vendors may assign different names (i.e., aliases) for the same family.
For example, some vendors may use zeus and others zbot as aliases for the
same malware family. The alias detection module is used during the preparation
phase to automatically build a list of aliases used as input to the labeling phase
in Sect. 3.1.

The intuition behind our technique for automatically detecting aliases is that
if two family names are aliases, they will consistently appear in the labels of the
same samples. Alias detection takes as input the AV labels of a large set of
samples, for which their family does not need to be known, and a generic token
list. Thus, alias detection runs after the generic token detection, which prevents
generic tokens to be detected as aliases. Alias detection outputs a list of (ti, tj)
token pairs where ti is an alias for tj . This indicates that ti can be replaced with
tj in the alias detection step in Sect. 3.1.

Alias detection iterates on the list of input samples. For each sample, it
builds the sample token list in the same manner as described in the generic
token detection in Sect. 3.2, except that tokens in the generic token list are also
removed. Then, it iterates on the tokens in the sample token list updating two
maps. It first increases the token count map, which stores for each unique token
the number of samples where the token has been observed in at least one label.
Then, for each pair of tokens in the sample token list it increases the pair count

AVclass: A Tool for Massive Malware Labeling 241

Table 3. Top 10 families by number of aliases.

Family Aliases Example aliases

wapomi 12 pikor, otwycal, protil

firseria 10 firser, popeler, solimba

vobfus 9 changeup, meredrop, vbobfus

virut 8 angryangel, madangel, virtob

gamarue 7 debris, lilu, wauchos

hotbar 7 clickpotato, rugo, zango

bandoo 6 ilivid, seasuite, searchsuite,

gamevance 6 arcadeweb, gvance, rivalgame

loadmoney 6 ldmon, odyssey, plocust

zeroaccess 6 maxplus, sirefef, zaccess

map that stores for each token pair the number of samples in which those two
tokens have been observed in their labels.

We define the function alias(ti, tj) = |(ti,tj)|
|ti| , which captures the fraction of

times that the pair of tokens (ti, tj) appears in the same samples. The numerator
can be obtained from the pair count map and the denominator from the token
count map. Note that alias(ti, tj) �= alias(tj , ti).

Once all samples have been processed, the alias detection iterates on the pair
count map. For each pair that has a count larger than nalias, it computes both
alias(ti, tj) and alias(tj , ti). If alias(ti, tj) > Talias then ti is an alias for tj .
If alias(tj , ti) > Talias then tj is an alias for ti. If both alias(ti, tj) > Talias

and alias(tj , ti) > Talias then the less common token is an alias for the most
common one.

The two parameters are empirically selected in Sect. 4.4 to have default values
nalias = 20 and Talias = 0.94. nalias is used to remove pairs of tokens that have
not been seen enough times, so that a decision on whether they are aliases would
have low confidence. Talias controls the percentage of times the two tokens appear
together. For tj to be an alias for ti, tj should appear in almost the same samples
where ti appears, but Talias is less than one to account for naming errors.

Table 3 shows the Top 10 families by number of aliases. For each alias, it shows
the chosen family name, the total number of aliases for that family, and some
example aliases that appear both in the automatically and manually generated
alias lists.

242 M. Sebastián et al.

Table 4. Datasets used in evaluation.

Dataset Platform Lab. Samples EXE Collection period

University Windows ✗ 7,252,810 ✗ 01/2011 - 08/2015

Miller et al. [19] Windows ✗ 1,079,783 ✗ 01/2012 - 06/2014

Andrubis [17] Android ✗ 422,826 ✗ 06/2012 - 06/2014

Malsign [15] Windows � 142,513 ✗ 06/2012 - 02/2015

VirusShare 20140324 [30] Android ✗ 24,317 � 05/2013 - 05/2014

VirusShare 20130506 [30] Android ✗ 11,080 � 06/2012 - 05/2013

Malicia [21] Windows � 9,908 � 03/2012 - 02/2013

Drebin [1] Android � 5,560 � 08/2010 - 10/2012

Malheur Reference [29] Windows � 3,131 ✗ 08/2009 - 08/2009

MalGenome [33] Android � 1,260 � 08/2008 - 10/2010

4 Evaluation

4.1 Datasets

We evaluate AVclass using 10 datasets summarized in Table 4. The table shows
the architecture (5 Windows, 5 Android), whether the samples are labeled with
their known family name, the number of samples in the dataset, whether the
binaries are publicly available (otherwise we only have their hashes), and the
collection period. In total, the datasets contain 8.9 M distinct samples collected
during 7 years (08/2008 - 08/2015). Some of the datasets overlap, most notably
the Drebin [1] dataset is a superset of MalGenome [33]. We do not remove
duplicate samples because this way it is easier for readers to map our results to
publicly available datasets.

Labeled Datasets. All 5 labeled datasets come from prior works [1,15,21,29,
33]. Among the 3 labeled Windows datasets, Malheur and Malicia contain only
malware samples. In contrast, the Malsign dataset [15] contains majoritarily
PUP. Each of the labeled datasets went through 2 processes: clustering and
labeling. Samples may have been clustered manually (MalGenome), using AV
labels (Drebin), or with automatic approaches (Malheur, Malicia, Malsign). For
labeling the output clusters, the authors may have used AV labels (Drebin),
manual work (MalGenome), the most common feature value in the cluster (Mal-
sign), or a combination of popular features values and information from public
sources (Malicia). Drebin [1] is a detection approach and the family classifica-
tion was done separately using AV labels. Because of this we later observe best
results of AVclass on this dataset.

Drebin, MalGenome, Malheur, and Malicia datasets are publicly available.
Thus, AV vendors could have refined their detection labels using the dataset
clustering results after they became public. In contrast, the Malsign dataset and
thus its clustering results (i.e., labels) are not publicly available.

AVclass: A Tool for Massive Malware Labeling 243

0 5 10 15 20 25 30
Tgen

20

40

60

80

100
F-

M
ea

su
re

DREBIN
GENOME
MALHEUR
MALICIA
MALSIGN

Fig. 3. Parameter selection for generic token detection.

Unlabeled Datasets. For the unlabeled datasets, we do not know the family of
the samples and in some cases we only have access to the hashes of the samples,
but not their binaries. The University dataset contains malware hashes collected
from different sources including a commercial feed. It is our largest dataset with
7.2 M samples. The Andrubis dataset [17] contains hashes of samples submitted
by users to be analyzed by the Andrubis online service. The two VirusShare [30]
and the Miller et al. [19] datasets are publicly available.

For all samples in the 10 datasets we were able to collect a VT report. The VT
report collection started on September 2015 and took several months. Overall,
we observe 99 AV engines in the VT reports.

4.2 Metrics

To evaluate the accuracy of AVclass, we use an external clustering validation
approach that compares AVclass’s clustering results with a reference clustering
from one of the datasets in Table 4 for which we have ground truth. Note that
the external validation evaluates if both clusterings group the samples similarly.
It does not matter if the family names assigned to the equivalent cluster in both
clustering differ. If AVclass is not able to find a family name for a sample
(e.g., because all its labels are generic), the sample is placed in a singleton
cluster. Similar to prior work [3,15,21,25,29] we use the precision, recall, and
F1 measure metrics, which we define next.

Let M be a malware dataset, R = {R1, ..., Rs} be the set of s reference
clusters from the dataset’s ground truth, and C = {C1, ..., Cn} be the set of n
clusters output by AVclass over M . In this setting, precision, recall, and F1
measure are defined as

– Precision. Prec = 1/n · ∑n
j=1 maxk=1,...,s(|Cj

⋂
Rk|)

– Recall. Rec = 1/s
∑s

k=1 maxj=1,...,n(|Cj

⋂
Rk|)

– F-measure Index. F1 = 2 Prec·Rec
Prec+Rec

244 M. Sebastián et al.

4.3 Generic Token Detection

The generic token detection, detailed in Sect. 3.2, takes as input the AV labels
for samples with family name and counts the number of families associated to
each remaining token after normalization. Tokens that appear in more than
Tgen families are considered generic. To select the default threshold, we produce
generic token lists for different Tgen values and evaluate the accuracy of the
labeling phase using those generic token lists. Figure 3 shows the F1 measure as
Tgen increases for datasets with ground truth. Based on Fig. 3 results, we select
Tgen > 8 as the default threshold. The rest of experiments use, unless otherwise
noted, the automatically generated generic token list with this default threshold,
which contains 288 generic tokens. In comparison the generic token list manually
generated by one author contains 240 generic tokens.

88

90

92

94

30

F-
M

ea
su

re

nalias

20

Talias

10 10095908580

DREBIN
MALHEUR

X: 94
Y: 20
Z: 94.07

X: 94
Y: 20
Z: 93.8

Fig. 4. Parameter selection for alias detection.

4.4 Alias Detection

The alias detection module, detailed in Sect. 3.3, requires two parameters: nalias

and Talias. To select their default values, we first produce alias lists for different
combinations of those parameters using as input the 5 datasets with unlabeled
samples. Then, we evaluate the accuracy of the labeling phase using those alias
lists. Figure 4 shows the F1 measure for different combinations of parameter
values on the Drebin and Malheur datasets. The parameter values that maximize
the mean value in both surfaces are nalias = 20 and Talias = 0.94. The rest of
experiments use, unless otherwise noted, the automatically generated alias list
with these default values, which contains 4,332 alias pairs. In comparison, the
alias list manually generated by one author contains 133 alias pairs.

AVclass: A Tool for Massive Malware Labeling 245

Table 5. Accuracy evaluation. Full Label corresponds to using a plurality vote on all
labels without normalization. Manual corresponds to running AVclass with manu-
ally generated generic token and alias lists. AVclass corresponds to running AVclass
with automatically generated generic token and alias lists. The MalGenome* row cor-
responds to grouping the 6 DroidKungFu variants in MalGenome into a single family.

Dataset AVclass Manual Full Label

Prec Rec F1 Prec Rec F1 Prec Rec F1

Drebin 95.2 92.5 93.9 95.4 88.4 91.8 92.9 40.7 56.6

Malicia 95.3 46.3 62.3 94.9 68.0 79.2 98.6 2.4 4.6

Malsign 96.3 67.0 79.0 90.4 90.7 90.5 88.7 15.9 26.9

MalGenome 67.5 98.8 80.2 68.3 93.3 78.8 99.5 79.4 88.3

MalGenome* 87.2 98.8 92.6 87.9 93.3 90.5 99.7 63.3 77.5

Malheur 89.3 93.8 91.5 90.4 98.3 94.2 96.3 74.8 84.2

4.5 Evaluation on Labeled Datasets

In this section we evaluate the accuracy of AVclass on the labeled datasets.
We first compare the reference clustering provided by the dataset labels with
the clustering output by AVclass (i.e., samples assigned the same label by
AVclass are in the same cluster) using the precision, recall, and F1 measure
metrics introduced in Sect. 4.2. Then, we examine the quality of the output
labels.

Clustering Accuracy. Table 5 summarizes the clustering accuracy results for
3 scenarios. Full Label corresponds to not using AVclass but simply doing
a plurality vote on the full AV labels without normalization. Manual corre-
sponds to running AVclass with manually generated generic token and alias
lists. AVclass corresponds to running AVclass with automatically generated
generic token and alias lists.

The results show that using AVclass increases the F1 measure compared
to using the full label in 4 datasets (Drebin, Malicia, Malsign, and Malheur).
The median F1 measure improvement is 37 F1 measure percentual points and
can reach 13 times higher (Malicia). The exception is the MalGenome dataset,
whose F1 measure decreases. Manual examination shows that the main problem
is that the MalGenome dataset differentiates 6 variants of the DroidKungFu
family (DroidKungFu1, DroidKungFu2, DroidKungFu3, DroidKungFu4, Droid-
KungFuSapp, DroidKungFuUpdate). However, AV labels do not capture version
granularity and label all versions as the same family. If we group all 6 Droid-
KungFu variants into a single family (MalGenome* row in Table 5), the F1 mea-
sure using AVclass increases 12 points (from 80.2 to 92.6) and the full label
results decreases 11 points (from 88.3 to 77.5). This shows that AV labels are
not granular enough to identify specific family versions.

246 M. Sebastián et al.

Table 6. Labels for the top 5 clusters identified by AVclass in the Miller et al. dataset
and the most common full labels on the same dataset.

(a) AVCLASS.

Label Samples
1 vobfus 58,385
2 domaiq 38,648
3 installrex 37,698
4 firseria 28,898
5 multiplug 26,927

(b) Full labels.

Label Samples
1 Trojan.Win32.Generic!BT 42,944
2 Win32.Worm.Allaple.Gen 12,090
3 Gen:Variant.Adware.Graftor.30458 10,844
4 Gen:Adware.MPlug.1 10,332
5 Trojan.Generic.6761191 8,986

Table 7. Clustering results on unlabeled datasets.

Dataset Samples Clusters Singletons Unlab. Largest Runtime

University 7,252,810 1,465,901 1,456,375 19.2% 701,775 235min. 33 s

Miller et al. 1,079,783 187,733 183,804 16.6% 56,044 35min. 42 s

Andrubis 422,826 7,015 6,294 1.3% 102,176 12min. 47 s

VirusShare 20140324 24,317 2,068 1,844 6.9% 7,350 48 s

VirusShare 20130506 11,080 568 446 3.3% 3,203 17 s

Comparing the Manual section of Table 5 with the AVclass section shows
that the automatically generated lists of generic tokens and aliases work better
in 2 datasets (MalGenome and Drebin) and worse in 3 (Malicia, Malsign, Mal-
heur). For Malheur the difference is small (2.7 F1 points), but for Malicia and
Malsign it reaches 11–17 F1 points. Overall, the automatically generated lists
have comparable accuracy to the manual ones, although an analyst can improve
results in some datasets. While the manual list raises the worst F1 measure from
62.3 to 79.2, the automatic generation is faster, more convenient, and does not
depend on the analyst’s skill. To combine scalability with accuracy, an analyst
could first produce automatically the lists and then refine them manually based
on his expertise.

The final F1 measure for AVclass with automatically generated lists of
generic tokens and aliases ranges from 93.9 for Drebin down to 62.3 for Mali-
cia. The higher accuracy for Drebin is due to that dataset having been manually
clustered using AV labels. The lower accuracy for Malicia is largely due to smart-
fortress likely being an (undetected) alias for the winwebsec family. Manually
adding this alias improves the F1 measure by 18 points. The reason for the large
impact of this alias is that the Malicia dataset is strongly biased towards this
family (59 % of samples are in family winwebsec).

Label Quality. The clustering evaluation above focuses on whether samples
are grouped by AVclass similarly to the ground truth, but it does not evaluate
the quality of the family names AVclass outputs. Quantifying the quality of

AVclass: A Tool for Massive Malware Labeling 247

Table 8. Top 10 clusters on unlabeled datasets.

(a) University.

Label Samples
1 vobfus 701,775
2 multiplug 669,596
3 softpulse 473,872
4 loadmoney 211,056
5 virut 206,526
6 toggle 108,356
7 flooder 96,571
8 zango 89,929
9 upatre 82,413

10 ibryte 80,923

(b) Miller.

Label Samples
1 vobfus 58,385
2 domaiq 38,648
3 installrex 37,698
4 firseria 28,898
5 multiplug 26,927
6 sality 23,278
7 zango 21,910
8 solimba 21,305
9 ibryte 20,058

10 expiro 16,685

(c) Andrubis.

Label Samples
1 opfake 88,723
2 fakeinst 84,485
3 smsagent 24,121
4 plankton 22,329
5 kuguo 19,497
6 smsreg 15,965
7 waps 12,055
8 utchi 7,949
9 droidkungfu 7,675

10 ginmaster 6,365

Table 9. University dataset clustering with 4, 10, 48, and all AVs.

AVs Clusters Singletons Unlabeled Largest

All 1,465,901 1,456,375 1,394,168 (19.2 %) vobfus (701,775)

48 1,543,510 1,534,483 1,472,406 (20.3 %) vobfus (701,719)

10 3,732,626 3,730,304 3,728,945 (51.4 %) multiplug (637,787)

4 5,655,991 5,655,243 5,654,819 (77.9 %) vobfus (539,306)

the family names output by AVclass is challenging because the ground truth
may contain manually selected labels that do not exactly match the AV family
names. Table 6 shows on the left the labels assigned to the top 5 clusters in the
Miller dataset by AVclass and on the right, the labels for the top 5 clusters
when the full AV labels are used. The table shows that the cluster labels auto-
matically produced by AVclass are more fine-grained thanks to the generic
token detection, and also assigned to a larger number of samples thanks to the
normalization and alias detection techniques. More examples of the final labels
output by AVclass are shown in Table 8, which is discussed in the next section.

4.6 Evaluation on Unlabeled Datasets

In this section we apply AVclass to label samples in datasets without ground
truth. Table 7 summarizes the clustering results of using AVclass with auto-
matically generated lists on the 5 unlabeled datasets. For each dataset it shows:
the number of samples being clustered, the number of clusters created, the num-
ber of singleton clusters with only one sample, the percentage of all samples that
did not get any label, the size of the largest cluster, and the labeling runtime.
The results show that 78 %–99 % of the clusters are singletons. However, these

248 M. Sebastián et al.

only represent 1.4 %–20 % of the samples. Thus, the vast majority of samples are
grouped with other samples. Singleton clusters can be samples for which no label
can be extracted as well as samples assigned a label not seen in other samples.
Overall, the percentage of unlabeled samples varies from 1.3 % (Andrubis) up to
19.2 % (University). All AV labels for these samples are generic and AVclass
could not identify a family name in them.

Table 8 presents the top 10 clusters in the 3 largest unlabeled datasets (Uni-
versity, Miller, Andrubis). The most common family in both Windows datasets is
vobfus. Top families in these two datasets are well known except perhaps flooder,
which the author building the manual lists thought it was generic, but the auto-
matic generic token detection does not identify as such. This is an example of
tokens that may sound generic to an analyst, but may be consistently used by
AV vendors for the same family. In the University dataset 6 of the top 10 families
are malware (vobfus, multiplug, virut, toggle, flooder, upatre) and 4 are PUP
(softpulse, loadmoney, zango, ibryte). In the Miller dataset 3 are malware (vob-
fus, zbot, sality) and 7 PUP (firseria, installerex, domaiq, installcore, loadmoney,
hotbar, ibryte). This matches observations in Malsign [15] that large “malware”
datasets actually do contain significant amounts of PUP. The Andrubis top 10
contains 4 families that also sound generic (opfake, fakeinst, smsagent, smsreg).
However, these families are included as such in the ground truth of the labeled
Android datasets (MalGenome, Drebin). While these labels may be used specif-
ically for a family, we believe AV vendors should try choosing more specific
family names to avoid one vendor using a label for a family and another using
it generically for a class of malware.

Number of AV Vendors Used. To evaluate the effect of using an increasing
number of AV vendors into the labeling process, we repeat the clustering of the
University dataset using the same fixed sets of AV vendors used in some prior
work: VAMO (4 vendors), Drebin (10), and AV-meter (48). The results in Table 9
show that increasing the number of AV vendors reduces the fraction of samples
for which a label cannot be obtained (Unlabeled column). This motivates the
design choice of AVclass to include AV labels from any available vendor.

5 Discussion

This section discusses AVclass limitations, usage, and areas for future work.

As Good as the AV Labels Are. AVclass extracts family information AV
vendors place in their labels, despite noise in those labels. But, it cannot identify
families not in the labels. More specifically, it cannot label samples if at least 2
AV engines do not agree on a non-generic family name. Results on our largest
unlabeled dataset show that AVclass cannot label 19 % of the samples, typically
because those labels only contain generic tokens. Thus, AVclass is not a panacea
for malware labeling. If AV vendors do not have a name for the sample, it cannot
be named.

AVclass: A Tool for Massive Malware Labeling 249

Clustering Accuracy. AVclass is a malware labeling tool. While it can be
used for malware clustering, its evaluated precision is 87.2 %–95.3 %. This is
below state-of-the-art malware clustering tools using static and dynamic fea-
tures, which can reach 98 %–99 % precision. As shown in Appendix Table 10,
when comparing F1 measure, tools like Malheur [29] (F1= 95 %), BitShred [13]
(F1=93.2 %), and FIRMA [26] (F1=98.8 %) outperform AVclass. Thus,
AVclass should only be used for clustering when a state-of-the-art clustering
system is not available and implementing one is not worth the effort (despite
improved accuracy).

Building Reference Datasets. When using AVclass to build reference
datasets, there will be a fraction of samples (up to 19 % in our evaluation) for
which AVclass cannot extract a label and others for which the confidence (i.e.,
number of AV engines using the chosen family name) is low. While those can be
removed from the reference dataset, this introduces selection bias by removing
the harder to label samples [16].

AV Label Granularity. Our evaluation shows that AV labels are not granular
enough to differentiate family versions, e.g., DroidKungFu1 from DroidKungFu2.
Thus, when releasing labeled datasets, researchers should clearly differentiate the
family name from the family version (if available), enabling users to decide which
granularity to use.

Validation with Real Ground Truth. To evaluate AVclass, we have
assumed that the labels of publicly available datasets are perfectly accurate
and have compared accuracy to those. However, those labels may contain inac-
curacies, which would affect our results either positively or negatively. This can
only be resolved by using real ground truth datasets. How to obtain such real
ground truth is an important area for future work.

Generic Token Detection. Our generic token detection requires labeled sam-
ples. This creates a bit of a chicken-and-egg problem, which we resolve by using
publicly available labeled datasets. We also release a file with the generic tokens
we identified so that users can skip this step. We leave the development of tech-
niques to identify generic tokens that do not require ground truth for future work.

6 Conclusion

In this work we have described AVclass, an automatic labeling tool that given
the AV labels for a potentially massive number of malware samples, outputs the
most likely family names for each sample. AVclass implements novel techniques
to address 3 key challenges: normalization, removal of generic tokens, and alias
detection.

We have evaluated AVclass over 10 datasets, comprising 8.9 M samples,
larger than any previous dataset used for malware clustering or classification.

250 M. Sebastián et al.

The results show that the fully automated approach used by AVclass can
achieve clustering accuracy between 93.9 and 62.3 depending on the dataset.
We have compared the generic token and aliases lists automatically produced
by AVclass with the manual ones produced by an analysts observing that the
achieve comparable accuracy in most datasets. We have shown that an increas-
ing number of AV vendors reduces the percentage of samples for which a (non-
generic) family name cannot be extracted, thus validating the design choice of
using all AV engines. We have also observed that AV labels are not fine-grained
enough to distinguish different versions of the same family.

Finally, we have released AVclass’s source code to the community, along
with precompiled lists of alias and generic tokens.

Acknowledgments. We specially thank Manos Antonakakis and Martina Lindorfer
for providing us with the University and Andrubis datasets, respectively. We also thank
the authors of the Drebin, MalGenome, Malheur, Malicia, and the Malicious Content
Detection Platform datasets for making them publicly available. We are grateful to Srd-
jan Matic for his assistance with the plots, Davide Balzarotti and Chaz Lever for useful
discussions, VirusTotal for their support, and Pavel Laskov for his help to improve this
manuscript.

This research was partially supported by the Regional Government of Madrid
through the N-GREENS Software-CM project S2013/ICE-2731 and by the Spanish
Government through the Dedetis Grant TIN2015-7013-R. All opinions, findings and
conclusions, or recommendations expressed herein are those of the authors and do not
necessarily reflect the views of the sponsors.

A Additional Results

Table 10. Accuracy numbers reported by prior clustering works.

Work Metrics

Bailey et al. [2] Consistency=100 %

Rieck et al. [28] Labels prediction=70 %

McBoost [23] Accuracy=87.3 %, AUC=0.977.

Bayer et al. [3] Quality(Prec*Rec)=95.9

Malheur [29] F1= 95%

BitShred [13] Prec=94.2 %, Rec=92.2 %

VAMO [25] F1=85.1 %

Malsign [15] Prec=98.6 %, Rec=33.2 %, F1=49.7 %

AVclass Prec=95.2 %, Rec=92.5 %, F1=93.9 %

AVclass: A Tool for Massive Malware Labeling 251

Table 11. AV engines found in our datasets and their lifetime in days.

Engine First Scan Last Scan Days
Ikarus 22/05/2006 29/03/2016 3599
TheHacker 22/05/2006 29/03/2016 3599
F-Prot 22/05/2006 29/03/2016 3599
Fortinet 22/05/2006 29/03/2016 3599
BitDefender 22/05/2006 29/03/2016 3599
CAT-QuickHeal 22/05/2006 29/03/2016 3599
AVG 22/05/2006 29/03/2016 3599
Microsoft 22/05/2006 29/03/2016 3599
ClamAV 22/05/2006 29/03/2016 3599
Avast 22/05/2006 29/03/2016 3599
McAfee 22/05/2006 29/03/2016 3599
TrendMicro 22/05/2006 29/03/2016 3599
VBA32 22/05/2006 29/03/2016 3599
Symantec 22/05/2006 29/03/2016 3599
Kaspersky 22/05/2006 29/03/2016 3599
Panda 22/05/2006 29/03/2016 3599
DrWeb 22/05/2006 29/03/2016 3599
Sophos 22/05/2006 29/03/2016 3599
F-Secure 07/02/2007 29/03/2016 3338
AhnLab-V3 14/03/2007 29/03/2016 3303
Norman 22/05/2006 30/05/2015 3294
Rising 26/07/2007 29/03/2016 3169
AntiVir 22/05/2006 03/09/2014 3025
GData 12/05/2008 29/03/2016 2878
ViRobot 24/07/2008 29/03/2016 2805
K7AntiVirus 01/08/2008 29/03/2016 2797
Comodo 05/12/2008 29/03/2016 2671
nProtect 14/01/2009 29/03/2016 2631
McAfee-GW-Edition 19/03/2009 29/03/2016 2567
Antiy-AVL 24/03/2009 29/03/2016 2562
eSafe 16/11/2006 16/09/2013 2496
Jiangmin 16/06/2009 29/03/2016 2478
VirusBuster 13/06/2006 18/09/2012 2288
eTrust-Vet 22/05/2006 22/05/2012 2191
TrendMicro-HouseCall 04/05/2010 29/03/2016 2156
SUPERAntiSpyware 12/07/2010 29/03/2016 2087
Emsisoft 20/07/2010 29/03/2016 2079
VIPRE 17/11/2010 29/03/2016 1959
PCTools 21/07/2008 23/10/2013 1919
Authentium 22/05/2006 29/04/2011 1803
ByteHero 20/08/2011 29/03/2016 1683
Sunbelt 30/11/2006 29/04/2011 1611
TotalDefense 15/05/2012 29/03/2016 1414
NOD32 24/09/2008 19/07/2012 1394
ESET-NOD32 11/07/2012 29/03/2016 1357
Commtouch 18/01/2011 28/08/2014 1317
Agnitum 18/09/2012 29/03/2016 1288
Kingsoft 18/09/2012 29/03/2016 1288
MicroWorld-eScan 02/10/2012 29/03/2016 1274
NANO-Antivirus 28/11/2012 29/03/2016 1217

Engine First Scan Last Scan Days
Malwarebytes 30/11/2012 29/03/2016 1215
K7GW 15/04/2013 29/03/2016 1079
Prevx 13/05/2009 23/04/2012 1076
NOD32v2 22/05/2006 19/01/2009 973
Ewido 22/05/2006 20/01/2009 973
eTrust-InoculateIT 22/05/2006 15/01/2009 968
UNA 22/05/2006 15/01/2009 968
Baidu 02/09/2013 29/03/2016 939
Baidu-International 03/09/2013 29/03/2016 938
F-Prot4 30/06/2006 15/01/2009 929
Bkav 13/09/2013 29/03/2016 928
Antivir7 22/06/2006 05/01/2009 928
CMC 13/09/2013 29/03/2016 928
T3 14/07/2006 15/01/2009 915
Prevx1 15/11/2006 12/05/2009 909
Ad-Aware 26/11/2013 29/03/2016 854
SAVMail 03/10/2006 18/01/2009 838
Qihoo-360 21/01/2014 29/03/2016 798
AegisLab 29/01/2014 29/03/2016 790
McAfee+Artemis 21/11/2008 18/01/2011 787
PandaBeta 12/02/2007 10/02/2009 729
Zillya 29/04/2014 29/03/2016 700
FileAdvisor 19/02/2007 18/01/2009 699
Tencent 13/05/2014 29/03/2016 686
Zoner 22/05/2014 29/03/2016 677
Cyren 22/05/2014 29/03/2016 677
Avira 22/05/2014 29/03/2016 677
Webwasher-Gateway 20/03/2007 19/01/2009 671
AVware 28/07/2014 29/03/2016 610
a-squared 24/12/2008 28/07/2010 581
Avast5 03/03/2010 28/09/2011 573
McAfeeBeta 04/07/2007 18/01/2009 564
FortinetBeta 01/08/2007 18/01/2009 535
PandaBeta2 07/09/2007 16/01/2009 496
ALYac 26/11/2014 29/03/2016 489
AhnLab 14/03/2007 03/07/2008 477
Alibaba 12/01/2015 29/03/2016 442
NOD32Beta 24/09/2008 16/08/2009 325
Arcabit 02/06/2015 29/03/2016 301
SecureWeb-Gateway 26/09/2008 14/04/2009 200
VIRobot 23/07/2008 17/01/2009 177
Command 17/11/2010 29/04/2011 163
PandaB3 04/09/2008 19/01/2009 136
eScan 25/09/2012 15/10/2012 19
DrWebSE 18/01/2015 03/02/2015 15
ESET NOD32 26/06/2012 26/06/2012 0
Yandex 29/03/2016 29/03/2016 0
TotalDefense2 16/04/2015 16/04/2015 0
SymCloud 11/08/2015 11/08/2015 0

References

1. Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., Rieck, K.: Drebin: efficient
and explainable detection of android malware in your pocket. In: Network and
Distributed System Security (2014)

2. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Auto-
mated classification and analysis of internet malware. In: International Symposium
on Recent Advances in Intrusion Detection (2007)

252 M. Sebastián et al.

3. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: Network and Distributed System Security
(2009)

4. Beck, D., Connolly, J.: The common malware enumeration initiative. In: Virus
Bulletin Conference (2006)

5. Bureau, P.-M., Harley, D.: A dose by any other name. In: Virus Bulletin Conference
(2008)

6. Canto, J., Dacier, M., Kirda, E., Leita, C.: Large scale malware collection: lessons
learned. In: IEEE SRDS Workshop on Sharing Field Data and Experiment Mea-
surements on Resilience of Distributed Computing Systems (2008)

7. CARO Virus Naming Convention. http://www.caro.org/articles/naming.html
8. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using

random projections and neural networks. In: IEEE International Conference on
Acoustics, Speech and Signal Processing (2013)

9. Gashi, I., Sobesto, B., Mason, S., Stankovic, V., Cukier, M.: A study of the relation-
ship between antivirus regressions and label changes. In: International Symposium
on Software Reliability Engineering (2013)

10. Harley, D.: The game of the name: malware naming, shape shifters and sympathetic
magic. In: International Conference on Cybercrime Forensics Education & Training
(2009)

11. Huang, W., Stokes, J.W.: MtNet: a multi-task neural network for dynamic malware
classification. In: Detection of Intrusions and Malware, and Vulnerability Assess-
ment (2016)

12. Hurier, M., Allix, K., Bissyandé, T., Klein, J., Traon, Y.L.: On the lack of consensus
in anti-virus decisions: metrics and insights on building ground truths of android
malware. In: Detection of Intrusions and Malware, and Vulnerability Assessment
(2016)

13. Jang, J., Brumley, D., Venkataraman, S.: BitShred: feature hashing malware for
scalable triage and semantic analysis. In: ACM Conference on Computer and Com-
munications Security (2011)

14. Kantchelian, A., Tschantz, M.C., Afroz, S., Miller, B., Shankar, V., Bachwani, R.,
Joseph, A.D., Tygar, J.: Better malware ground truth: techniques for weighting
anti-virus vendor labels. In: ACM Workshop on Artificial Intelligence and Security
(2015)

15. Kotzias, P., Matic, S., Rivera, R., Caballero, J.: Certified PUP: abuse in authenti-
code code signing. In: ACM Conference on Computer and Communication Security
(2015)

16. Li, P., Liu, L., Gao, D., Reiter, M.K.: On challenges in evaluating malware clus-
tering. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307,
pp. 238–255. Springer, Heidelberg (2010)

17. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., van der
Veen, V., Platzer, C.: ANDRUBIS-1,000,000 apps later: a view on current android
malware behaviors. In: International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (2014)

18. Maggi, F., Bellini, A., Salvaneschi, G., Zanero, S.: Finding non-trivial malware
naming inconsistencies. In: International Conference on Information Systems Secu-
rity (2011)

http://www.caro.org/articles/naming.html

AVclass: A Tool for Massive Malware Labeling 253

19. Miller, B., Kantchelian, A., Tschantz, M.C., Afroz, S., Bachwani, R., Faizullabhoy,
R., Huang, L., Shankar, V., Wu, T., Yiu, G., Joseph, A.D., Tygar, J.D.: Reviewer
integration and performance measurement for malware detection. In: Caballero, J.,
Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016. LNCS, vol. 9721, pp. 122–141.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-40667-1 7

20. Mohaisen, A., Alrawi, O.: AV-Meter: an evaluation of antivirus scans and labels.
In: Detection of Intrusions and Malware, and Vulnerability Assessment (2014)

21. Nappa, A., Rafique, M.Z., Caballero, J.: The MALICIA dataset: identification and
analysis of drive-by download operations. Int. J. Inf. Secur. 14(1), 15–33 (2015)

22. Oberheide, J., Cooke, E., Jahanian, F.: CloudAV: N-version antivirus in the net-
work cloud. In: USENIX Security Symposium (2008)

23. Perdisci, R., Lanzi, A., Lee, W.: McBoost: boosting scalability in malware collection
and analysis using statistical classification of executables. In: Annual Computer
Security Applications Conference (2008)

24. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of HTTP-based malware
and signature generation using malicious network traces. In: USENIX Symposium
on Networked Systems Design and Implementation (2010)

25. Perdisci, R., ManChon, U.: VAMO: towards a fully automated malware clustering
validity analysis. In: Annual Computer Security Applications Conference (2012)

26. Rafique, M.Z., Caballero, J.: FIRMA: malware clustering and network signature
generation with mixed network behaviors. In: Stolfo, S.J., Stavrou, A., Wright, C.V.
(eds.) RAID 2013. LNCS, vol. 8145, pp. 144–163. Springer, Heidelberg (2013)

27. Rajab, M.A., Ballard, L., Lutz, N., Mavrommatis, P., Provos, N., CAMP: content-
agnostic malware protection. In: Network and Distributed System Security (2013)

28. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification
of malware behavior. In: Detection of Intrusions and Malware, and Vulnerability
Assessment (2008)

29. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)

30. Virusshare. http://virusshare.com/
31. Virustotal. https://virustotal.com/
32. Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: DroidMiner: automated

mining and characterization of fine-grained malicious behaviors in android appli-
cations. In: European Symposium on Research in Computer Security (2014)

33. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: IEEE Symposium on Security and Privacy (2012)

http://dx.doi.org/10.1007/978-3-319-40667-1_7
http://virusshare.com/
https://virustotal.com/

Semantics-Preserving Dissection of JavaScript
Exploits via Dynamic JS-Binary Analysis

Xunchao Hu1, Aravind Prakash2, Jinghan Wang1, Rundong Zhou1,
Yao Cheng1, and Heng Yin1(B)

1 Department of EECS, Syracuse University, Syracuse, USA
{xhu31,jwang153,rzhou02,ycheng,heyin}@syr.edu

2 Computer Science Department, Binghamton University, Binghamton, USA
aravind@cs.binghamton.edu

Abstract. JavaScript exploits impose a severe threat to computer secu-
rity. Once a zero-day exploit is captured, it is critical to quickly pinpoint
the JavaScript statements that uniquely characterize the exploit and the
payload location in the exploit. However, the current diagnosis tech-
niques are inadequate because they approach the problem either from a
JavaScript perspective and fail to account for “implicit” data flow invis-
ible at JavaScript level, or from a binary execution perspective and fail
to present the JavaScript level view of exploit. In this paper, we pro-
pose JScalpel, a framework to automatically bridge the semantic gap
between the JavaScript level and binary level for dynamic JS-binary
analysis. With this new technique, JScalpel can automatically pin-
point exploitation or payload injection component of JavaScript exploits
and generate minimized exploit code and a Proof-of-Vulnerability (PoV).
Using JScalpel, we analyze 15 JavaScript exploits, 9 memory corrup-
tion exploits from Metasploit, 4 exploits from 3 different exploit kits and
2 wild exploits and successfully recover the payload and a minimized
exploit for each of the exploits.

Keywords: Exploit analysis · Malicious JavaScript

1 Introduction

Malicious JavaScript has become an important attack vector for software
exploitation attacks. Attacks in browsers, as well as JavaScript embedded within
malicious PDFs and Flash documents, are common examples of how attackers
launch attacks using JavaScript. Interactive nature of JavaScript allows mali-
cious JavaScript to take advantage of binary vulnerabilities (e.g., use-after-free,
heap/buffer overflow) that are otherwise difficult to exploit. In 2014, 639 browser
vulnerabilities were discovered and the number was increased by 8 % over 2013
reported by Symantec [5]. This provides the attacker a broad attack space.

Previously unknown, or “zero-day”, exploits are of particular interest to the
security community. Once a malicious JavaScript attack is captured, it must
be analyzed and its inner-workings understood quickly so that proper defenses
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 254–276, 2016.
DOI: 10.1007/978-3-319-45719-2 12

Semantics-Preserving Dissection of JavaScript Exploits 255

can be deployed to protect against it or similar attacks in the future. Unfortu-
nately, this analysis process is tedious, painstaking, and time-consuming. From
the analysis perspective, an analyst seeks to answer two key questions: (1) Which
JavaScript statements uniquely characterize the exploit? and (2) Where is the
payload located within the exploit? The answer to the first question results in
the generation of an exploit signature, which can then be deployed via an intru-
sion detection system (IDS) to discover and prevent the exploit. The answer to
the second question allows an analyst to replace the malicious payload with an
amicable payload and use the modified exploit as a proof-of-vulnerability (PoV)
to perform penetration testing.

Program slicing [34] is a key technique in exploit analysis. This technique begins
with a source location of interest, known as slicing source, such as a statement or
instruction that causes a crash, and identifies any statements or instructions that
this source location depends on. Prior exploit analysis solutions have attempted to
analyze exploits at either theJavaScript level [11,12,18,20,26,27] or theunderlying
binary level [23,24,31,36,38].

While binary level solutions execute an exploit and analyze the underlying
binary execution for anomalies, they are unaware of any JavaScript level seman-
tics and fail to present the JavaScript level view of the exploit. JavaScript level
analysis fails to account for implicit data flows between statements because any
DOM/BOM APIs invoked at the binary level are invisible at the JavaScript
level. Unfortunately, implicit flows are quite common in attacks and are often
comprised of seemingly random and irregular operations in the JavaScript that
achieve a precise precondition or a specific trigger which exploits a vulnerability
in the binary. The semantic gap between JavaScript level and binary level during
the analysis makes it challenging to automatically answer the 2 key questions.

In this paper, we present JScalpel with password: “artifacts”, a system that
creatively combines JavaScript and binary level analyses to analyze exploits. It
stems from the observation that seemingly complex and irregular JavaScript
statements in an exploit often exhibit strong data dependencies in the binary.
JScalpel utilizes the JavaScript context information from the JavaScript level
to perform context-aware binary analysis. Further, it leverages binary analysis
to account for implicit JavaScript level dependencies arising due to side effects
at the binary level. In essence, it performs JavaScript and binary, or JS-Binary
analysis. Given a functional JavaScript exploit, JScalpel performs JS-Binary
analysis to: (1) generate a minimized exploit script, which in turn helps to gen-
erate a signature for the exploit, and (2) precisely locate the payload within the
exploit. It replaces the malicious payload with a friendly payload and generates
a PoV for the exploit.

We evaluated JScalpel on a corpus of 15 exploits, 9 from Metasploit1,
4 exploits from 3 different exploit kits and 2 wild exploits. On average, we
were able to reduce the number of unique JavaScript statements by 49.8 %, and
precisely identify the payload, in a semantics-preserving manner, meaning that

1 Metasploit Framework – http://www.metasploit.com/, a popular penetration testing
framework.

http://www.metasploit.com/

256 X. Hu et al.

the minimized exploits are still functional. In addition, we were able to replace
the payload with amicable payload to perform penetration testing. JScalpel
showed an average reduction of 75.5 % in trace size and 16x improvement in time
taken to trace. Finally, we presented the wild exploit CVE-2011-1255 as a case
study. We demonstrate how the exploit is minimized and payload is located.

Contributions. We make the following contributions:

– We make a key observation that semantics-preserving JavaScript exploit
analysis must bridge the gap between JavaScript and binary level.

– We propose a technique to bridge the semantic gap and tackle several chal-
lenges (e.g. dependency explosion and script engine code filtering) and incor-
porate our techniques into the JScalpel analysis framework.

– Using JScalpel, we analyze 15 JavaScript exploits, 9 memory corruption
exploits from Metasploit, 4 exploits from 3 different exploit kits and two
exploits from the wild and successfully recover the payload and a minimized
exploit for each of the exploits.

2 Background and Overview

2.1 Components of JavaScript Attack

Modern JavaScript attacks can be divided into four general components.
Figures 1(a) and (b) show these four components within the Aurora exploit.

Obfuscation: To avoid detection, obfuscation techniques are widely deployed
in JavaScript attacks. For example, in Fig. 1(a) JavaScript obfuscation is
used to perform a document.write(‘‘Get payload’’) operation. Simple
static analysis-based scanners cannot identify that “i[x][y]” is actually a
document.write() operation.

Fig. 1. (a) describes the components of a modern exploit, (b) presents the relevant
JavaScript code involved in Aurora Exploit and (c) presents the underlying code exe-
cution that results in use-after-free, (d) presents the assembly code for function Get-
DocPtr.

Semantics-Preserving Dissection of JavaScript Exploits 257

Fingerprinting: An exploit uses fingerprinting to glean information about vic-
tim’s environment. With such information, exploits specific to vulnerable compo-
nents are launched to compromise the victim process. For example, in Fig. 1(a),
the Aurora exploit is only performed if the type of the browser is identified as
being Microsoft Internet Explorer (“MSIE”).

Payload Injection: The exploit injects a malicious payload into the victim
process. Payloads can be broadly categorized as executable or non-executable
payloads. presents the payloads and the flow of execution in modern exploits.
The goal of exploits is to execute a malicious payload, but since the wide deploy-
ment of data execution prevention (DEP), the page containing the executable
payload cannot be directly executed. First, return-oriented programming (ROP)
is used to make a page executable by invoking VirtualProtect() on Windows
or mprotect() on Linux. Then, control is transferred to the malicious executable
code.

Exploitation: In this step, using one or more carefully crafted JavaScript state-
ments, the vulnerability in the victim process is exploited. The statements may
seem random and may lack data-dependencies, but they often involve a combi-
nation of explicit and implicit data dependency. Consider the exploit statements
for the Aurora exploit presented in Fig. 1(b, c and d). (b) presents the HTML
(statement 1) and JavaScript (2–26) statements that exploit a use-after-free
vulnerability in mshtml.dll of Internet Explorer browser. Figures 1(c and d)
present the underlying C++ and assembly code that is executed as a part of the
exploit. Statement 18 corrupts the memory that was freed in statement 10. The
corrupted memory is utilized in a call instruction arising from statement 26.
All the statements in Fig. 1(c) are pertinent to the exploit.

2.2 Problem Statement

We aim to develop JScalpel– a framework to combine JavaScript and binary
analyses to aid in analysis of JavaScript-launched memory corruption exploits.
It is motivated by two key observations.

First, analysis performed at only the JavaScript level is insufficient. In
Fig. 1(b), JavaScript level analysis of Aurora captures the explicit data depen-
dencies between statements 9 and 26 and statements 6 and 18. However, because
no explicit dependency exists between statements 18 and 26, the two groups of
statements will be incorrectly deemed to be independent of each other. Second,
while complete, analysis performed at only the binary level is also insufficient.
In Fig. 1(d), binary level analysis can expose the manipulation of pointers, how-
ever it can not expose exploit-related JavaScript statements in Fig. 1(c) due to
the lack of JavaScript context. A binary-level analysis will show the memory
written by the binary instructions of statement 18 is utilized through reads per-
formed by binary instructions of statement 26, revealing a straight-forward data
dependency between statements 18 and 26.

258 X. Hu et al.

Input: JScalpel accepts a raw functional exploit and a vulnerable program as
input. The vulnerable program can be any program like (PDF reader, web browser,
etc.) as long as it can be exploited through JavaScript. The exploit consists of
HTML and malicious JavaScript components. The exploit can be obfuscated or
encrypted. JScalpel makes no assumptions about the nature of payloads. That
is, the payload could be ROP-only, executable-only or combined.

Output: JScalpel performs JS-Binary tracing and slicing and generates 3 spe-
cific outputs. (1) A simplified exploit HTML that contains the key JavaScript
statements that are required to accomplish the exploit, and (2) the precise
JavaScript statements that inject the payload into the vulnerable process’ mem-
ory along with the exact payload string – both non-executable and executable –
within the JavaScript. Finally, (3) an HTML page, where the malicious payload
is replaced by a benign payload is generated as a Proof-of-Vulnerability (PoV).

Delta debugging [37] is firstly proposed to generate the minimized C pro-
grams that crash the compiler and might be a feasible approach to minimize the
exploit JavaScript to cause a crash. However, the effectiveness of this approach
is unknown, because of the complex and sophisticated nature of JavaScript.
Attackers can insert arbitrary junk code to make delta debugging ineffective.
In contrast, JScalpel can precisely pinpoint the JavaScript statements that
cause a crash and locate the malicious payload and our experiment has proven
its effectiveness.

2.3 JScalpel– Overview

Figure 2 presents the architecture of JScalpel, which leverages Virtual Machine
Monitor (VMM) based analysis. It consists of multiple components. A multi-level
tracer is used to gather JavaScript and binary traces. A CFI module is used to
determine the binary level “slicing sources”, which are the violations that cause
the exploit along with the various payload components. The multi-level slicer aug-
ments JavaScript level slicing with information from binary level slicing to obtain
the relevant exploit and payload statements. Finally, JScalpel packages the rel-
evant exploit statements within an HTML page to generate the minimized script.
It also replaces the malicious payload with a benign payload to generate a PoV.

Fig. 2. Architecture of JScalpel

Semantics-Preserving Dissection of JavaScript Exploits 259

Fig. 3. Performance index of 2-relays
system

Fig. 4. Semantics-preserving multi-
level slicing.

3 Multi-level Tracing and Slicing-Source Identification

We implement JScalpel on top of DECAF [19], a whole-system dynamic analy-
sis framework. The tracing consists of two parts, JavaScript and binary tracers.
JavaScript tracing is performed using a helper module that is injected into the
browser address space. It interacts with the JavaScript debug interface within the
browser to gather the JavaScript-level trace. The binary tracer and the exploit
detection module are implemented as 2 plugins of DECAF. Below, we detail
each of the components.

3.1 Context-Aware Multi-level Tracing

JavaScript Tracer. Prior approaches that gather JavaScript trace [11,21] mod-
ify JavaScript engine or the browser to identify the precise statements being exe-
cuted, however such an approach requires access to JavaScript engine (and/or
browser) source code which is not available for close sourced browsers like IE.

We take a JavaScript debugger-based approach. Our approach has two key
advantages. (1) Most browsers – open-sourced or otherwise – support a debug-
ging interface to debug the JavaScript statements being executed, and (2)
Because the debugger runs within the browser context, it readily provides the
JavaScript-level semantics. That is, we can not only gather the exact statements
being executed, but also retrieve the values of variables and arguments at various
statements. From within the VMM, we hook the JavaScript debugger at specific
APIs to retrieve the various JavaScript statements and the corresponding con-
texts. The accumulation of the JavaScript statements yields the JavaScript trace.

JavaScript tracer runs as an injected module within Internet Explorer. It
implements the “active script debugger” [1] interface and performs three specific
actions:

1. Establish Context: Through the script-debugger interface, the tracer is noti-
fied when execution reaches JavaScript code. Specifically, if a SCRIPT tag is

260 X. Hu et al.

encountered within an existing script or the script generated through eval
statement, the tracer is activated with the information regarding the state-
ment being executed. Until the next statement executes, the tracer associates
the context to the current JavaScript statement.

2. Record Trace: At the beginning of every JavaScript statement, the tracer
records the exact statement semantics along with the variable values and
arguments to APIs (if any).

3. Drive Binary Tracer: A stub function is defined to coordinate the JavaScript
tracer and the binary tracer. Before the statement executes, the binary tracer
is activated along with the context information passed as the arguments of
stub function such that the binary trace is associated with the particular
JavaScript statement.

Binary Tracer. Binary tracer is triggered by the JavaScript tracer with the
context information pertaining to a particular JavaScript statement. One way
to gather a binary trace would be to monitor and capture the entire execution of
the browser process at an instruction level. However, such a solution is resource
intensive and inefficient. In order to be practical, our solution is selective about
what is traced and when it is traced. Our goals towards an effective binary trace
are to: (1) include all the relevant binary instructions that contribute to the
attack, and (2) minimize the trace footprint as much as possible.

Firstly, since binary tracer is driven by JavaScript tracer, it has the precise
JavaScript context. Tracing is limited and selectively turned on only when the
execution is within a JavaScript statement. It is likely that the multithread-
ing of the browser will introduce unrelated execution trace. But it does not
jeopardize the analysis since all the binary instructions that contribute to the
attack are included. Secondly, the effects of statements at a JavaScript-level
manifest as memory reads and writes at a binary-level. Therefore, we implement
a lightweight tracing mechanism. Instead of logging every binary instruction, we
only log the memory read or write operations. We leverage memory IO specific
callbacks supported by DECAF to record the values of eip, memory address,
memory size, value in the memory and esp for each memory IO instruction.
We also record the addresses of basic blocks that are executed and dump their
raw bytes from virtual memory space of the monitored process at the end of
every JavaScript statement. Furthermore, the binary tracer maintains informa-
tion about active allocations made by the victim process. This information is
used to identify self-modifying (or JIT) code. When such code is encountered,
the code is dumped to the disk. When needed, the raw bytes are decoded to
retrieve the actual instructions. The propagation of the slicing sources between
registers and memory is identified by the memory IO logs and the binary instruc-
tion logic. While preserving the completed information as full instruction trace
does for slicing process, this lightweight trace minimizes the trace size and also
speeds up the slicing process.

Binary tracer is implemented as a plugin to DECAF. In the plugin, the
stub function of JavaScript tracer is hooked to coordinate the binary tracing
and JavaScript tracing. When the stub function is invoked by JavaScript tracer,

Semantics-Preserving Dissection of JavaScript Exploits 261

the Binary tracer first reads the parameters of stub function from the stack where
JavaScript Tracer passes the JavaScript statement and debugger information,
then starts the logging of binary trace and generates a combined JS-Binary
trace which contains the JavaScript and binary traces for each of the JavaScript
statements. Meanwhile, a JS-binary map is built to keep track of corresponding
JavaScript statement for every binary instruction.

Obfuscation and Encryption Resistance. The nature of JavaScript tracing
provides inherent resistance to obfuscation and encryption because it captures
each statement that is executed along with the runtime information like variable
values, arguments, etc. Therefore, the intermediate statements (like the ones in
Fig. 1(a)) that are used to calculate a value are each captured with their concrete
values. Similarly, encrypted statements must be decrypted before they are exe-
cuted, and the decrypted statements execute. Therefore, JScalpel encounters
and records the decrypted statements that execute.

In fact, JScalpel performs preliminary preprocessing by performing con-
stant folding with the help of the script execution trace. This simple optimiza-
tion will not cause over simplification and generates a functionally equivalent
de-obfuscated and decrypted version of the script. Then JScalpel executes the
de-obfuscated version to perform the analysis. This preprocessing reduces the
amount of analyzed JavaScript statements.

3.2 Identifying Slicing Sources

JScalpel makes use of a CFI module to identify slicing sources. Several solu-
tions have been proposed to implement CFI [7]. Since JScalpel already relies
on a VMM for trace gathering, it can leverage a VMM based CFI defense. We
opt the techniques presented in Total-CFI [24] because (1) it is a recent and
practical solution, (2) it has been demonstrated to work on recent real-world
exploits and finally (3) it imposes low overhead.

Fig. 5. Non-executable (ROP) and executable payloads used in an exploit.

It monitors the program execution at an instruction level and each point
where the CFI is violated is noted as a slicing source. Albeit the recent advance-
ment of exploitation techniques [28] can bypass the coarse-grained CFI tech-
niques like Total-CFI, JScalpel’s CFI module can be enhanced to include more
policies to adapt the development of exploitation techniques.

262 X. Hu et al.

Specifically, the first violation is the slicing source for the exploit-related code,
whereas the subsequent violations (if any) arise from the executable payload or
ROP-payload. In Fig. 5, the first violation is caused by the exploiting code,
then the violations that occur up to the execution of executable payload serve
as sources for ROP-payload. Moreover, the CFI module continues execution to
check for executable payloads. If after the first violation, the execution ever
reaches a region that within the list of allocated regions, the address is noted
and it serves as the binary slicing source for the executable payload.

4 Multi-level Slicing

Multi-level slicing employed by JScalpel is based on the following hypothesis.

Hypothesis. Implicit data dependencies at JavaScript level often manifest as
direct data dependencies at binary level.

Memory corruption exploits typically corrupt the memory by causing pre-
cise memory writes to key locations that are read by the program and result in
corruption of program counter. Chen et al., show that a common characteris-
tic of many classes of vulnerabilities is pointer taintedness [9], where a pointer
is said to be tainted if the attacker input can directly or indirectly reach the
program counter. In essence taint propagation reflects runtime data-flow within
the program. Therefore, at a binary level, memory corruption exploits such as
use-after-free, heap overflow, buffer overflow, etc. often exhibit simple data-flow,
which can be captured through data-dependency analysis.

Figure 4 presents the overview of slicing employed by JScalpel. In order
for the simplified exploit to be functional, it is necessary that the simplification
preserves the semantics between the original and simplified scripts. Given the
slicing sources and the JS-binary trace, JScalpel first performs a binary back-
ward slice from the slice source provided by CFI violation and generates sources
for JavaScript-level slicing. Slicing at the binary level ensures that no required
statement is missed. Then, slicing is performed at a JavaScript level to include
all the statements that sources are either data- or control-dependent on.

4.1 Binary-Level Slicing

The goal of binary slicing is to identify all the JavaScript statements that are
instrumental in coercing the control flow (i.e., statements that modify the pro-
gram counter) or injecting the payload into memory.

Algorithm 1 describes the backward slicing method using the lightweight
binary trace. For every JavaScript statement J [i], the corresponding binary
instruction trace Bi is extracted. A map called “JS-Binary map” M – a map-
ping between the JavaScript statements and the binary instructions that exe-
cute within the statement context – is used. Then for every binary instruction
bik ∈ Bi, if all of the elements in the slicing source S belong to memory loca-
tions, then the slicer checks if the current binary instruction bik has memory

Semantics-Preserving Dissection of JavaScript Exploits 263

write operations Mw ⊆ S and if it is false, the slicer jumps to the next instruc-
tion bi(k+1). Otherwise, the slicer does as traditional slicer to disassemble the
binary instruction bik and updates the slicing source S and determine if bik
should be added in the binary slice L based on the propagation rules for every
X86 instruction. If L is not empty when the slicing on Bi is finished, J [i] is added
to the JavaScript slice O as the hidden dependency slice which may be ignored
by pure JavaScript-level slicing.

In theory, a binary backward slice from the slicing sources must include all
the JavaScript statements that are pertinent to the attack. However, in practice
we found a key problem with such an approach. It is too permissive and ends
up including all the JavaScript statements in the script. The main reason is the
binary-level amalgamation of JavaScript and browser code along with JavaScript
code. In order to track the exploit-specific information-flow, the flow through
pointers must be considered. However, at a binary level, due to the complex
nature of a JavaScript engine, dependencies are propagated to all the statements
thereby leading to dependency explosion.

We exclude data propagation arising from code corresponding to the script
engine and debug interface. Particularly, we apply the following filters to mini-
mize the dependency explosion problem.

Algorithm 1. Binary level backward slicer

Input: binray trace B,slicing source S
and JS-Binary map M and JavaScript
trace list J

Output: JavaScript slice O
1: S ← {slicing source

(exploit point or payload location)}
2: O ← ∅
3: for i = len(J); i > 0; i − − do
4: Bi ← getBin-

InsTraceForJS(M,J [i], B)
5: for k = len(Bi); k > 0; k − − do
6: bik ← Bi[k]
7: L ← ∅
8: if S is all memory locations

then
9: Mw ←GetMemWriteRec(bik)

10: if S ∩ Mw == ∅ then
11: continue
12: end if
13: end if
14: if getDestOperand(bik) ∈ S

then
15: S ← S ∪ updateSlice-

Source(bik, S)
16: L ← L ∪ {bik}
17: end if
18: end for
19: if L! = ∅ then
20: O ← O ∪ {J [i]}
21: L ← ∅
22: end if
23: end for

Stack Filtering. Once the dependency propagates to stack pointer esp or stack
frame ebp, all data on the stack becomes dependent [30]. To avoid this, depen-
dencies arising due to esp or ebp are removed during slicing. In certain cases,
the stack data could be marked dependent, but when the callee returns, the
dependency is discarded if it exists on a stack variable. So JScalpel records
the current stack pointer for every read/write, and during backward slicing,

264 X. Hu et al.

when call instruction is encountered in the trace, the slicer checks the current
stack pointer and clears the dependencies propagating from the callee’s stack.

Module Filtering. During the slicing process, the propagation to or from
the JavaScript engine module or script debugger is stopped. In principle, every
Javascript statement executed by the same Javascript engine instance shares the
data and control dependency introduced by the Javascript engine and debugger
module. This kind of dependency is outside of “exploit specific” dependency and
should be excluded from slicing.

Other Filters. Between two consecutive JavaScript statements, we found that
sometimes there are data flows via CPU registers because of the deep call stack
incurred by JavaScript engine and script debugger. To avoid unintended depen-
dencies, the slicer clears the register sinks at the end of the slicing for every
JavaScript statement. During our experiments (Sect. 5), we found the above fil-
ters good enough to reduce the dependency-explosion problem without missing
any required statements.

4.2 JavaScript Slicing

The output of binary tracer provides the slicing sources for the JavaScript slicer.
Suppose binary slice S contains n instructions. For each instruction Si, let Ji be
the JavaScript statement that represents the context under which Si executes.
Then, the JavaScript slicing sources are O =

⋃n
i=0 Ji. For every JavaScript state-

ment in the slicing sources, we add the object used by this JavaScript statement
to the slicing sources and include this JavaScript statement in the slice. Given
the JavaScript trace, the slicer uses WALA’s [4] slicing algorithm to include all
the related JavaScript statement in the slice.

4.3 Minimized Exploit Script and PoV Generation

The statements are first simplified and then embedded into the exploit HTML
page to obtain the minimized exploit. Also, the identified executable payload is
replaced by an amicable payload to obtain a PoV in the form of a test case for
the Metasploit framework.

Simplification. As a final step, JScalpel performs constant folding and dead-
code elimination at JavaScript level to simplify the slice. It is focused on strings
and constants. Specifically, for each variable v, the definitions are propagated
to the uses. This is repeated for all the variables in all the statements until
no more propagations are possible. Finally, if a definition of a variable has no
more uses, the definition is considered dead-code and is removed only if the
statement is not a source for the JavaScript slicing. This distinction is important
because, the need for slice sources is already established from binary slicing. The
resulting processed script is used to exploit the browser and is accepted only if the
exploitation succeeds. Finally, all the statements in the script that are not a part
of the slice are removed. During our experiments, we found that the simplicity of

Semantics-Preserving Dissection of JavaScript Exploits 265

simplification incorporated by JScalpel is sufficient to bring about significant
reduction in the sizes of the scripts as highlighted in Sect. 5.

Fig. 6. CVE-2012-1876: ROP- and executable-payloads within the same string.

Collocated ROP and Executable Payloads. In some exploits, the payload
and the ROP-gadgets are contained within the same string or array. For exam-
ple in Fig. 6 the same string contains both ROP-payload and the executable
shellcode. In such cases, JS-Binary analysis identifies the statement as both
exploit and payload statement. This is an expected behavior. However, in order
to replace the payload to generate the PoV, we must precisely identify the loca-
tion of the start of the payload within the string. First, the JavaScript string
that contains the payload is located in the memory. Then, from the payload-
slice source we obtain the address of the entry point of the payload. Binary
slicing from the payload-slice source leads us to the offset within the JavaScript
string that corresponds to the payload. The substring beginning from the offset
is replaced for PoV generation.

ROP-Only Payload. Shacham [29] showed that a set of Turing complete gad-
gets can be created using program text of libc. Though we cannot find any
instances of ROP-only payload during our experiments, it is possible to compose
the entire payload using only ROP-gadgets without any executable payload.
Since JScalpel can locate the ROP-only payload precisely, a straightforward
way is to replace malicious ROP-only payload with benign ROP-only payload.

JScalpel can generate dependent JavaScript statements in the script for any
given binary-level source and the JS-Binary trace. Along with the exploit point
and the payload entry point, CFI component of JScalpel captures multiple
violations caused due to the ROP-gadget chain as separate binary-level slicing
sources. The sources are then subject to multi-level tracing the slicing to extract
the payload in JavaScript.

Disjoint Payload. Detecting the entry point of executable payload is sufficient
to replace the payload and generate the PoV. However, sometimes an analyst
may want to locate the entire executable payload. This is not a problem if the
payload is allocated by the same string in the JavaScript. However, it is not
necessary to be so.

JScalpel can only detect an executable payload when it executes. Therefore,
it is unaware of all the various fragments of payload that may be injected into

266 X. Hu et al.

the memory. As a result, JScalpel will only be able to detect the JavaScript
statement (and all its dependencies) that injects the entry point of the payload.
It may miss some JavaScript statements that inject non-entry point payload if
such statements are disjoint with the JavaScript statements that inject the entry
point, and the sources for those statements are missing. Note that this is not
quite a limitation for JScalpel, because the payload entry point is sufficient
to generate a PoV. One way to increase the amount of payload recovered is
for the CFI module to allow the payload to execute longer and capture more
binary-level sources for the payload.

5 Evaluation

We evaluate JScalpel on a corpus of 15 exploits. These samples exploit the
vulnerabilities discovered from 2009 to 2013 and target at Internet Explorer
6/7/8. In contrast to the large number of browser vulnerabilities discovered
every year, this sample set is relatively old and small. The reasons are twofold.
First, DECAF leveraged by JScalpel is based on emulator QEMU and only
supports 32-bit operating system. Not all of the exploits can function correctly
on DECAF. Second, it is difficult to collect working exploits although many
vulnerabilities are discovered every year. We went over Internet Explorer related
exploits in Metasploit, and tried to set up a working environment for each of
them. We were able to set up 15 exploits on the real hardware. The remaining
exploits either require specific browser/plugin versions that we were unable to
find, or do not use JavaScript to launch the attacks. We then tested these 15
exploits on DECAF and 9 of them worked correctly. The 6 exploits failed to
work on DECAF, because they exhibited heavy heap spray behavior, which
could not finish within a reasonable amount of time in DECAF. Based on a
whole-system emulator QEMU, DECAF translates a virtual memory address
into its corresponding physical address completely in software implementation,
and thus is much slower than the MMU (Memory Management Unit) in a real
CPU. In the future, we will replace DECAF with Pin to avoid this expensive
memory address translation overhead. We also crawled the Virustotal with the
keyword “exploit type:html”, and finally found 2 functional exploits on DECAF.
In addition, from 16 exploit kits used in EkHunter [14], we managed to get
4 functional exploits from exploitkit, Siberia and Crimepack. As a result, our
testset includes 9 exploits from Metasploit framework, 4 exploits from 3 different
exploit kits and 2 wild exploits.

To identify the CVE number of exploits from exploit kits and wild, we ran
JScalpel to extract exploitation component first and then manually searched
Metasploit database and National Vulnerability Database [3] for a match. While
CVE-2012-1889 exploits the vulnerability in msxml.dll, all the remaining sam-
ples exploit mshtml.dll.

Though we evaluated JScalpel on Internet Explorer only, potentially it can
work on other browsers or any other programs (e.g., Adobe Reader) that have
JavaScript debug interface. The experiments were performed on a server running

Semantics-Preserving Dissection of JavaScript Exploits 267

Ubuntu 12.04 on 32 core Intel Xeon(R) 2 GHz CPU and 128 GB memory. The
code comprises of 890 lines of Python, 2300 lines of Java and 4000 lines of C++.

5.1 Minimizing Exploits

Table 1 presents the results for exploit analysis. Given one exploit, we first ran
JScalpel to get the multi-level trace and CFI violation point. Then multi-level
slicing was conducted to yield exploitation component and payload injection
component. Based on this knowledge, our experiments demonstrate that for
each exploit, JScalpel was able to generate a simplified exploit and PoV which
were able to successfully exploit the vulnerability and launch the payload.

Exploitation Analysis. The binary-level slicing was conducted on the multi-
level trace starting from the CFI violation point. It mapped binary level slicing
results to JavaScript statements with the help of JS-binary map. The number of
JavaScript statements identified by binary-level analysis is listed in Column I.

Table 1. Exploit analysis results

Source CVE Exploitation component Payload injection Simplified exploit

I II III IV V VI VII VIII IX X

Metasploit 2009-0075 9 6 � 17 � 14 30 30 0.00

2010-0249 3 6 ✗ 19 � 10 45 22 0.51 b c

2010-0806 2 10 � 10 � 14 803 13 0.98 a c b

2010-3962 1 1 � 1 � 15 105 17 0.83 a c b

2012-1876 32 1 ✗ 30 � 14 67 47 0.30 a c b

2012-1889 1 2 � 2 � 67 77 77 0.00

2012-4969 16 1 ✗ 8 � 53 117 70 0.40 b c

2013-3163 9 1 ✗ 13 � 32 43 42 0.02 a b d

2013-3897 26 1 ✗ 41 � 23 187 63 0.66 d

Wild 2011-1255 40 1 ✗ 16 � 26 97 44 0.55 a b e

2012-1889 1 2 � 2 � 27 53 12 0.77 a b e

exploitkit 2010-0806 2 6 � 6 � 13 109 29 0.73 b c

Siberia 2010-0806 2 6 � 6 � 12 103 22 0.79 a b c

Crimepack 2010-0806 2 1 ✗ 6 � 11 198 30 0.85 a b c

2009-0075 4 6 ✗ 12 � 12 36 33 0.08 a b c

I. # of JS slicing sources.
II. # of stmts from JS analysis only.
III. Can stmts from JS-only analysis cause crash?
IV. # of stmts from JS-Bin analysis
V. Can stmts from JS-Bin analysis cause crash?
VI. # of stmts from JS-Bin analysis
VII. # of unique JS stmts of original exploit.
VIII. # of unique JS stmts of simplified exploit
IX. potency of minimization.
X. Obfuscation & fingerprinting Techniques. (a: Randomization Obf. b: Data Obf. c: Encod-

ing Obf. d: Logic Structure Obf. e: Fingerprinting tech)

268 X. Hu et al.

They were used as the slicing sources for JavaScript level slicing. This multi-level
slicing extracted the exploitation related statements the number of which were
listed in Column IV. Column V shows if the extracted statements can crash
the browser. For the exploits with the same CVE number like CVE-2009-0075
and CVE-2010-0806, the results of Column IV can be different due to the differ-
ent implementation of exploitation. But we can see that for all of the exploits,
the extracted statements can crash the browser, meaning that the semantics of
exploitation component are preserved.

In comparison, the JavaScript-level only analysis cannot achieve this as pre-
sented in Column II and III. Column II lists the number of JavaScript statements
obtained from backward slicing only at the JavaScript level starting from the
statement that causes the first CFI violation. Column III indicates if the state-
ments extracted from JavaScript-level slicing can cause the browser to crash. We
can see that for 8 out of 15 exploits, the extracted statements do not cause a
crash, which means these exploits are overly simplified in these cases. For the
exploits with the same CVE number like CVE-2010-0806 and CVE-2009-0075,
the JavaScript-level only analysis results were different, because the different
obfuscation techniques used in these exploits introduced or eliminated unex-
pected dependency at JavaScript level.

Payload Injection. The CFI violation information provides the exact location
of the payload in memory. The multi-level slicing yields the payload injection
statements of which the number is listed in Column VI of Table 1. Column 3
in Table 2 lists the payload definition statements. For each of the exploit, our
JS-Binary analysis was able to precisely pinpoint the payload injection
statements for PoV generation. By contrast, solutions like JSGuard [16] or
NOZZLE [26] cannot do the same, because they lack the JavaScript context
and can only pinpoint the payload in the memory. Solutions by scanning the
exploit code directly cannot always identify the correct payload injection state-
ments since the payload is often obfuscated.

Minimized Exploit. For each of the exploits, we combined the payload injec-
tion statements (Column VI) with the exploitation component (Column IV) to
generate a minimized working exploit. In the experiment, we observed that each
minimized exploit was indeed functional, meaning that it can exploit the vulner-
ability and launch the payload successfully. The Column VII lists the number of
unique JavaScript statements observed at the execution of the original exploit.
Column VIII lists the number of unique JavaScript statements observed in the
execution of the minimized exploit.

The minimized exploit excludes the JavaScript statements that belong to
obfuscation code or fingerprinting code. We characterize those codes in Col-
umn X of Table 1. They cover different obfuscation or fingerprinting techniques.
These techniques are designed to bypass the detection tool and make the analysis
challenging. So the minimized exploit can ease the manual analysis process by
removing these JavaScript statements. To quantify the degree of code complexity
reduction in these minimized exploits, we adopt a metric called “potency of min-
imization” from an existing work [10]. A minimization is potent if it makes the

Semantics-Preserving Dissection of JavaScript Exploits 269

Table 2. Payload analysis results. All exploits provide a single JavaScript statement
from the binary perspective, which is the context in which the exploiting instruction
executes.

Source CVE Payload definition stmt I II

Metasploit 2009-0075 var shellcode = unescape(“%u1c35%u90a8%u3abf...”) 3024 ✗

2010-0249 var LLVc = unescape(“%u1c35%u90a8%u3abf%u..”) 3024 ✗

2010-0806 var wd$ = unescape((function(){return “%u4772%u9314%u9815...”})) 3072 ✗

2010-3962 var shellcode = unescape(“%u0c74%ud513%uf...”) 3072 ✗

2012-1876 for (var a3d = unescape(“%uec01 %u77c4 %u...”),...) 3072 �
2012-1889 var code = unescape(“%uba92%u91b5%ub0b1...”) 3072 ✗

2012-4969 var GBvB = unescape(“%uc481%uf254%uffff...”) 618 ✗

2013-3163 p += unescape(“%ub860 %u77c3 %ud038...”) 36696 �
2013-3897 sprayHeap({shellcode:unescape(“%u868a%u77c3...”}) 696 �

Wild 2011-1255 var sc = unescape(“%u9090%u9090%u9090%u1c3...”) 3024 ✗

2012-1889 var mmmbc=(“Data5756Data3352Data64c9...) 2880 ✗

Exploitkit 2010-0806 var qq = unescape(“%ucddb%u74d9%uf424%u...”) 649 ✗

Siberia 2010-0806 var qq = unescape(“!5350!5251!..”.replace(...”) 1750 ✗

Crimepack 2010-0806 var rktchpv= unescape(“%u06b8%u5c67%udae4...”) 648 ✗

2009-0075 var ysazuzbwzdqlr=unescape(“%u06b8%u5c67%u...”) 648 ✗

I. Payload Length II. Collocated payload?

minimized program P ′ less obscure (or complex or unreadable) than the origi-
nal program P . we choose the number of unique JavaScript statements observed
in the execution as the metric because it represents the number of inspected
statements by an analyst. This is formalized in the following definition:

Definition 1 (Potency of Minimization). Let U(P) be the number of unique
JavaScript statements observed at the execution of P . τpot, the minimization
potency with respect to program P , is a measure of the extent to which the
minimization reduces the obscurity of P . It is defined as

τpot
def= 1 − U(P ′)

U(P) .

On average, the minimization potency was 0.498, which means we were able
to eliminate 49.8 % of statements in the trace, whereas the maximum is 0.98. The
potency of minimization of CVE-2009-0075 and CVE-2012-1889 from Metas-
ploit are both 0, because no obfuscation techniques are applied to them. We did
observe that for the exploits from the wild and exploit kits, the average potency
of minimization (0.63) was higher than that (0.41) for the exploits from Metas-
ploit. This means that it is generally more difficult to analyze the real world
exploits.

5.2 PoV Generation

PoV generation is an end result of payload analysis. By replacing the payload
in the minimized exploit with a benign one, a PoV is generated for penetration
test. Column 3 in Table 2 lists the payload definition statements, where the pay-
load content is first introduced or defined in the JavaScript code. The definition
statement is usually accompanied with other statements required to inject the

270 X. Hu et al.

Table 3. Effects of filtering on exploit analysis.

Source CVE Unique # # JS after No Stack Module All

JS stmts pre-processing filter filter filter filters

Metasploit 2009-0075 30 30 30 14 28 9

2010-0249 45 32 32 4 32 3

2010-0806 803 27 27 13 27 2

2010-3962 105 17 16 16 16 1

2012-1876 67 51 50 41 50 32

2012-1889 77 78 78 2 77 1

2012-4969 117 77 77 16 75 16

2013-3163 43 43 41 4 41 9

2013-3897 187 64 64 26 64 26

Wild 2011-1255 97 66 66 45 66 40

2012-1889 53 53 51 1 1 1

Exploitkit 2010-0806 109 32 31 31 31 2

Siberia 2010-0806 103 27 26 26 26 2

Crimepack 2010-0806 198 195 194 22 194 2

2009-0075 36 35 25 5 5 4

payload. Payload length (Column 4 in Table 2) is the size of the payload that
was identified. In one of the samples (CVE-2013–3163), the encoder was embed-
ded within the payload and therefore, the size of the payload was much larger
than other exploits. In 3 out of 15 exploits, we found the ROP and executable
payloads to be collocated within the same string. In each exploit, the payload
was replaced with a benign payload and a PoV was generated.

5.3 Effects of Filtering

The filters help to exclude the unexpected dependencies. In Table 3, we evaluated
the effects of filtering on minimizing exploits. We found that preprocessing is
effective in cases where the scripts are obfuscated because, during obfuscation,
multiple statements are used to accomplish the tasks of a single statement like
eval. Column 3–4 lists the number of the unique JavaScript statements in the
slicing results under different filter configurations. With no filters, we did not
find any significant reduction in the slicing results. This emphasizes the need for
filtering. Stack Filter and Module Filter individually produced varying amount of
size reduction depending on the exploit, but in general, the combination proved
to be most effective. For example, for CVE-2010-3962, the combination of all
the filters reduced the number of statements to a single statement, while none
of the filters were individually effective.

Semantics-Preserving Dissection of JavaScript Exploits 271

5.4 Case Study – CVE-2011-1255

In order to highlight the advantages of JScalpel, we perform a study of the wild
exploit, CVE-2011-1255 [2], which exploits a “Time Element Memory Corruption
Vulnerability” of the Timed Interactive Multimedia Extension implementation
in Microsoft Internet Explorer 6 through 8. The exploit (MD5:016c280b8f1f155
80f89d058dc5102bb) targets Internet Explorer 6 on Windows XP SP3. Given the
exploit sample, JScalpel successfully generated the minimized exploit code,
payload injection code and penetration test template for Metasploit. We would
like to highlight that a sample for CVE-2011-1255 was previously unavailable on
Metasploit DB and JScalpel was able to generate one.

Simplified Exploit Statements JScalpel loads the simplified page and
logs the JS-Binary trace until the CFI violation-point (detailed in Fig. 7) is
reached. The violation point 1© represents the hijacked control flow transfer
from 0x7ddd44a1 to the payload location 0x0c0c0c0c through an indirect call
instruction – call DWORD[ecx+0X8]. Note that the exploit does not contain
any ROP-gadgets and that the entire payload is executable. From the violation,
either ecx or [ecx + 0x8] may be manipulated by the attacker and therefore
both will have to be considered as possible slicing sources. From the memory
IO log (point 2©), the location of [ecx+0x8] is extracted as 0x0c0c0c14. Both
ecx and the memory location 0x0c0c0c14 are provided as the slicing sources for
the binary-level slicer to uncover the implicit data dependency pertaining to the
exploit.

The binary level slicer identified 40 JavaScript level sources. JavaScript slicer
included an additional 64 statements to generate the simplified exploit. Using
the simplified exploit), we were able to trigger the vulnerability in IE 6.

Fig. 7. CFI violation point

Simplified Payload-Injection Statements and Payload Location Sim-
ilar to simplifying the exploit statements, JScalpel uses payload location
0x0c0c0c0c as the slicing source for identifying the payload-injection statements,

272 X. Hu et al.

and gathers the simplified statements. The binary-level slicer confirmed the state-
ment 36: a[i] = lh.substr(0, lh.length) as the JavaScript statement that
injects payload into memory. Then, this statement was used as the slicing source
for JavaScript-level slicer. Finally, JScalpel identified all the payload injection
JavaScript statements.)

The payload is located at 0x0c0c0c0c. Therefore, JScalpel extracts the
page at 0x0c0c0c0c to analyze the payload. JScalpel first trims the padding
instruction like nop from the payload. Next, JScalpel compares it with the con-
stant strings in the payload injection JavaScript statements to identify the exact
payload string. JScalpel identified (var sc = unescape(‘‘%u9090 %u9090 %u90
90 %u9090 %u1c35 %u90a8 %u3abf%ub2d5....’’)) as the JavaScript statement
containing the payload. Since the entire payload is executable, JScalpel replaced
the entire payload to generate the Metasploit test case. We generate a Ruby tem-
plate script) for Metasploit framework, and we were able to successfully test it on
Internet Explorer 6 on Windows XP SP3.

6 Discussion

Vulnerabilities Within Filtered Modules. If the vulnerability exploited
exists within the filtered modules, the slicer produces the incomplete slice. Cur-
rent implementation of JScalpel can not detect exploits that target the filtered
modules. In the future, fine-grained analysis can be applied on these modules
to determine which part of the code introduces the dependency and then limit
the filter from whole module to some specific code range. This will reduce the
number of vulnerabilities that JScalpel cannot handle.

Debug-Resistant JavaScript. In order for JScalpel to be able to analyze a
script, it is important that JScalpel executes the program and monitors from
the debugger. Though we did not find any samples that can detect debuggers, it
is possible that exploits could use techniques (e.g., timing-based) to determine if
a debugger is running and hide the malicious behavior. Currently, JScalpel is
vulnerable to such attacks. It would be an interesting future work to reconstruct
JavaScript-level semantics directly from the Virtual Machine Monitor, similar
to how DroidScope [35]) recovers Java/Dalvik level semantic view.

Impact of JIT-Enabled JavaScript Engine on JScalpel. When JIT is
enabled on JavaScript engine, the data flow within JavaScript engine becomes
more complex because of the mixture of code and data. JScalpel may not work
in this case. Since JScalpel is designed as an analysis tool and is not perfor-
mance sensitive, the analyst can simply disable the JIT engine. However, this
workaround would sacrifice the capability of analyzing attacks that perform JIT
spray, as these attacks rely on the side-effects of the JIT compiler. We leave it
as future work to address this issue.

Semantics-Preserving Dissection of JavaScript Exploits 273

7 Related Work

Drive-by-download Attacks. The drive-by-download attacks drive the emer-
gence of “Exploit-as-a-Service” paradigm on the malware ecosystem [15].
Machine learning based approaches [6,11,13,25,32] and honeypot based app-
roach [33] for large scale analysis have been explored to detect the mali-
cious web pages. JShield [8] proposed a vulnerability-based approach, which
uses opcode vulnerability signature to match drive-by-download attacks. NOZ-
ZLE [26] detects the existence of shellcode to identify heap spray attacks
launched by malicious web pages. ZOZZLE [12] uses Bayesian classification of
hierarchical features of the JavaScript abstract syntax tree to identify syntax ele-
ments that are highly predictive of malware. BLADE [22] focuses on the client
side approach by preventing unconsented content execution, which is the ulti-
mate goal of drive-by-download attacks.

Exploit Diagnosis. PointerScope [38] uses type inference on binary execu-
tion to detect the pointer misuses induced by an exploit. ShellOS [31] built a
hardware virtualization based platform for fast detection and forensic analysis
of code injection attacks. Dynamic taint analysis [23] keeps track of the data
dependency originated from untrusted user input at the instruction level, and
detects an exploit on a dangerous use of a tainted input. explored whole system
taint tracking for malware analysis. Chen et al., [9] showed that pointer taint-
edness analysis can expose different classes of security vulnerabilities, such as
format string, heap corruption, and buffer overflow vulnerabilities. pinpoints the
guilty bytes in polymorphic buffer overflows on heap or stack by tagging data
from network with an age stamp. However, it is not feasible for complex attacks
launched using JavaScript code.

Malicious JavaScript Analysis. To deobfuscate malicious JavaScript, Kol-
bitsch et al., [20] uncover environment-specific malware by exploring multiple
execution paths within a single execution. Previous work [11,17,21] execute
JavaScript using an emulated JavaScript running environment and acquire de-
obfuscated JavaScript. Our solution adopts the real browser environment and can
defend most of the obfuscation techniques. JSGuard [16] proposed a methodology
to detect JS shellcode that fully uses JS code execution environment information
with low false negative and false positive. [21] simplify the obfuscated JavaScript
code by preserving the semantics of the observational equivalence. However, the
simplified JavaScript code may not exploit the vulnerability of web browser due
to oversimplification. Our combined analysis can identify the JavaScript code
contributing to exploit and avoid over simplification.

8 Conclusion

We presented JScalpel, a framework that combines JavaScript and binary
analyses to analyze JavaScript exploits. Our multi-level tracing bridges the
semantic gap between the JavaScript level and binary level to perform dynamic

274 X. Hu et al.

JS-Binary analysis. We analyzed 15 JavaScript exploits, 9 memory corruption
exploits from Metasploit , 4 exploits from 3 exploit kits and 2 exploits from the
wild and successfully recover the payload and a minimized exploit for each of
the exploits.

Acknowledgments. We would like to thank anonymous reviewers and our shep-
herd Dr. Manuel Egele for their insightful feedback. This research was supported in
part by National Science Foundation Grant #1054605, Air Force Research Lab Grant
#FA8750-15-2-0106, and DARPA CGC Grant #FA8750-14-C-0118. Any opinions, find-
ings, and conclusions in this paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

References

1. Active script debugging overview. http://msdn.microsoft.com/en-us/library/
z537xb90(v=vs.94).aspx

2. Detailed analysis exp/20111255-a. http://www.sophos.com/en-us/threat-center/
threat-analyses/viruses-and-spyware/Exp∼20111255-A/detailed-analysis.aspx

3. National vulnerability database. https://nvd.nist.gov/
4. The T.J. Watson Libraries for Analysis (WALA). http://wala.sourceforge.net/
5. Internet security threat report. https://www4.symantec.com/mktginfo/white

paper/ISTR/21347932 GA-internet-security-threat-report-volume-20-2015-
social v2.pdf, April 2015

6. Borgolte, K., Kruegel, C., Vigna, G.: Delta: automatic identification of unknown
web-based infection campaigns. In: Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security (2013)

7. Burow, N., Carr, S.A., Brunthaler, S., Payer, M., Nash, J., Larsen, P., Franz, M.:
Control-flow integrity: precision, security, and performance. arXiv preprint (2016).
arXiv:1602.04056

8. Cao, Y., Pan, X., Chen, Y., Zhuge, J.: Jshield: towards real-time and vulnerability-
based detection of polluted drive-by download attacks. In: Proceedings of Annual
Computer Security Applications Conference (ACSAC) (2014)

9. Chen, S., Pattabiraman, K., Kalbarczyk, Z., Iyer, R.K.: Formal reasoning of vari-
ous categories of widely exploited security vulnerabilities using pointer taintedness
semantics. In: Security and Protection in Information Processing Systems (2004)

10. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical report, Department of Computer Science, The University of Auck-
land, New Zealand (1997)

11. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious JavaScript code. In: Proceedings of the 19th International
Conference on World Wide Web (2010)

12. Curtsinger, C., Livshits, B., Zorn, B.G., Seifert, C.: Zozzle: fast and precise in-
browser JavaScript malware detection. In: USENIX Security Symposium (2011)

13. Eshete, B.: Effective analysis, characterization, and detection of malicious web
pages. In: Proceedings of the 22nd International Conference on World Wide
Web Companion, International World Wide Web Conferences Steering Committee
(2013)

14. Eshete, B., Alhuzhali, A., Monshizadeh, M., Porras, P., Yegneswaran, V.: Ekhunter:
a counter-offensive toolkit for exploit kit infiltration. In: Proceedings of the 22nd
Annual Network and Distributed System Security Symposium, February 2015

http://msdn.microsoft.com/en-us/library/z537xb90(v=vs.94).aspx
http://msdn.microsoft.com/en-us/library/z537xb90(v=vs.94).aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Exp~20111255-A/detailed-analysis.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Exp~20111255-A/detailed-analysis.aspx
https://nvd.nist.gov/
http://wala.sourceforge.net/
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
http://arxiv.org/abs/1602.04056
http://arXiv.org/abs/1602.04056

Semantics-Preserving Dissection of JavaScript Exploits 275

15. Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C.J., Levchenko, K.,
Mavrommatis, P., McCoy, D., Nappa, A., Pitsillidis, A., Provos, N., Rafique, M.Z.,
Rajab, M.A., Rossow, C., Thomas, K., Paxson, V., Savage, S., Voelker, G.M.:
Manufacturing compromise: the emergence of exploit-as-a-service. In: Proceedings
of the 2012 ACM Conference on Computer and Communications Security (2012)

16. Gu, B., Zhang, W., Bai, X., Champion, A.C., Qin, F., Xuan, D.: Jsguard: shell-
code detection in JavaScript. In: Security and Privacy in Communication Networks
(2013)

17. Hartstein, B.: Jsunpack: an automatic JavaScript unpacker. In: ShmooCon Con-
vention (2009)

18. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow
in JavaScript and its APIs. In: Proceedings 29th ACM Symposium on Applied
Computing (2014)

19. Henderson, A., Prakash, A., Yan, L.K., Hu, X., Wang, X., Zhou, R., Yin, H.: Make
it work, make it right, make it fast: building a platform-neutral whole-system
dynamic binary analysis platform. In: Proceedings of the 2014 International Sym-
posium on Software Testing and Analysis (2014)

20. Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: de-cloaking internet mal-
ware. In: 2012 IEEE Symposium on Security and Privacy (SP) (2012)

21. Lu, G., Debray, S.: Automatic simplification of obfuscated JavaScript code: a
semantics-based approach. In: Proceedings of the 2012 IEEE Sixth International
Conference on Software Security and Reliability (2012)

22. Lu, L., Yegneswaran, V., Porras, P., Lee, W.: Blade: an attack-agnostic approach
for preventing drive-by malware infections. In: Proceedings of the 17th ACM Con-
ference on Computer and Communications Security (2010)

23. Newsome, J., Song, D.: Dynamic taint analysis: automatic detection, analysis, and
signature generation of exploit attacks on commodity software. In: Proceedings of
the Network and Distributed Systems Security Symposium, February 2005

24. Prakash, A., Yin, H., Liang, Z.: Enforcing system-wide control flow integrity for
exploit detection and diagnosis. In: Proceedings of the 8th ACM SIGSAC Sympo-
sium on Information, Computer and Communications Security (2013)

25. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N., et al.: The
ghost in the browser analysis of web-based malware. In: Proceedings of the First
Conference on First Workshop on Hot Topics in Understanding Botnets (2007)

26. Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: a defense against heap-spraying
code injection attacks. In: Proceedings of the Usenix Security Symposium (2009)

27. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: 2010 IEEE Symposium on Security and
Privacy (SP) (2010)

28. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.-R., Holz, T.: Coun-
terfeit object-oriented programming: on the difficulty of preventing code reuse
attacks in C++ applications. In: 2015 IEEE Symposium on Security and Privacy
(SP). IEEE (2015)

29. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc with-
out function calls (on the X86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security (2007)

30. Slowinska, A., Bos, H.: Pointless tainting? evaluating the practicality of pointer
tainting. In: Proceedings of the 4th ACM European Conference on Computer sys-
tems. ACM (2009)

276 X. Hu et al.

31. Snow, K.Z., Krishnan, S., Monrose, F., Provos, N.: Shellos: enabling fast detection
and forensic analysis of code injection attacks. In: USENIX Security Symposium
(2011)

32. Stringhini, G., Kruegel, C., Vigna, G.: Shady paths: leveraging surfing crowds to
detect malicious web pages. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security (2013)

33. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King, S.:
Automated web patrol with strider honeymonkeys: finding web sites that exploit
browser vulnerabilities. In: Proceedings of the 2006 Network and Distributed Sys-
tem Security Symposium (2006)

34. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering. IEEE Press (1981)

35. Yan, L.K., Yin, H.: Droidscope: seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis. In: Proceedings of the 21st
USENIX Conference on Security Symposium (2012)

36. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communications Security, New York,
NY, USA (2007)

37. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

38. Zhang, M., Prakash, A., Li, X., Liang, Z., Yin, H.: Identifying and analyzing pointer
misuses for sophisticated memory-corruption exploit diagnosis. In: Proceedings of
19th Annual Network & Distributed System Security Symposium (2012)

Network Security

The Messenger Shoots Back: Network Operator
Based IMSI Catcher Detection

Adrian Dabrowski1(B), Georg Petzl2, and Edgar R. Weippl1

1 SBA Research, Vienna, Austria
{adabrowski,eweippl}@sba-research.org

2 T-Mobile Austria, Vienna, Austria
Georg.Petzl@t-mobile.at

Abstract. An IMSI Catcher, also known as Stingray or rogue cell, is
a device that can be used to not only locate cellular phones, but also
to intercept communication content like phone calls, SMS or data trans-
mission unbeknown to the user. They are readily available as commercial
products as well as do-it-yourself projects running open-source software,
and are obtained and used by law enforcement agencies and criminals
alike. Multiple countermeasures have been proposed recently to detect
such devices from the user’s point of view, but they are limited to the
nearby vicinity of the user.

In this paper we are the first to present and discuss multiple detection
capabilities from the network operator’s point of view, and evaluate them
on a real-world cellular network in cooperation with an European mobile
network operator with over four million subscribers. Moreover, we draw
a comprehensive picture on current threats against mobile phone devices
and networks, including 2G, 3G and 4G IMSI Catchers and present detec-
tion and mitigation strategies under the unique large-scale circumstances
of a real European carrier. One of the major challenges from the oper-
ator’s point of view is that cellular networks were specifically designed
to reduce global signaling traffic and to manage as many transactions
regionally as possible. Hence, contrary to popular belief, network opera-
tors by default do not have a global view or their network. Our proposed
solution can be readily added to existing network monitoring infrastruc-
tures and includes among other things plausibility checks of location
update trails, monitoring of device-specific round trip times and an offline
detection scheme to detect cipher downgrade attacks, as commonly used
by commercial IMSI Catchers.

1 Introduction

IMSI Catchers are MITM (Man-in-The-Middle) devices for cellular networks [28].
Originally developed to steal IMSI (International Mobile Subscriber Identity)
numbers from nearby phones, later versions offered call- and message interception.
Today, IMSI Catchers are used to (i) track handsets, (ii) deliver geo-target spam
[32], (iii) send operator messages that reconfigure the phone (e.g., installing a per-
manent MITM by setting a new APN, http-proxy, or attack the management inter-
face [39]), (iv) directly attack SIM cards with encrypted SMS [33] that are filtered
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 279–302, 2016.
DOI: 10.1007/978-3-319-45719-2 13

280 A. Dabrowski et al.

by most operators by now, and (v) also can potentially intercept mobile two-factor
authentication schemes (mTAN). IMSI Catchers have become affordable, and can
be build for less then USD 1,500 [14]. Pell and Soghoian [36] argue that we are cur-
rently on the brink of age where almost everyone is able to eavesdrop phone calls,
similar to the 1990ies when cheap analog scanners were used to listen to mobile
phones in the US and Europe.

In brief, these devices exploit the phone’s behavior of preferring the strongest
cell phone tower signal in the vicinity to maximize the signal quality and mini-
mize its own power consumption. Additionally, on GSM networks (2G), only the
phone (via the SIM - Subscriber Identification Module) needs to authenticate to
the network, but not vice versa and can therefore be easily deluded to disable
content data encryption. This enables an attacker to answer a phone’s requests
as if the phone was communicating with a legitimate cell phone network.

In contrast, the Universal Mobile Telecommunication System (UMTS, 3G)
and Long Term Evolution (LTE, 4G) require mutual two-way authentication,
but are still not completely immune to IMSI Catchers. Tracking and identifying
IMSI Catchers are build on the weakness that a network has to be able to identify
its subscriber before it can authenticate him/her. Additionally, unauthenticated
commands can be used to downgrade a phone into using 3G or the less secure 2G
(GSM) only, eventually giving way to a full Man-in-the-Middle attack. Addition-
ally, some phones execute unauthenticated commands, even though the standard
demands prior authentication [35].

This issue gains additional momentum as commercial networks increasingly
surpass dedicated administrative and governmental networks in coverage and
data rates and thus carry more and more increasingly sensitive data. Addition-
ally, today, many economic sectors critically depend on a reliable and secure
mobile communication infrastructure (e.g., logistics).

While previous work [15,31,34,37,40] mainly focused on the detection of
rouge base stations on the consumer side, this paper takes the approach from
the network operator’s perspective and discusses novel detection capabilities
from an academic as well as practical point of view.

The cooperation with a mobile phone network operator with over four million
subscribers enabled us to test theories, identify detection artifacts and generate
statistics out of core network data. We focused on passive detection methods,
readily available data in today’s monitoring solutions and the identification of
changes that promise better detectability and scalability.

The scope of this paper is the detection of attacks on the radio access network
(RAN) in 2G (GE/RAN), 3G (UTRAN), and LTE networks (E-UTRAN). While
there are attacks on the backbone and interconnection interface, or within a
mobile network provider, we focus on the last-mile radio link between the cell
tower and the terminal device. The traditional telecommunication network model
centers all the intelligence in the network and attaches (dumb) end devices that
have to obey the network. Thus, these types of attacks give an attacker a lot of
control over the end user device.

The Messenger Shoots Back: Network Operator 281

The pivotal sections of the paper are as follows:

– Evaluation of 22 phones on (i) how they interact with the genuine network
once released from an IMSI Catcher (Sect. 5.1) and (ii) which artifacts are
produced.

– Development and implementation of detection strategies based on the artifacts
and test of their fitness including their limitations on real-world data of a
network operator (Sects. 5 and 6)

2 Background

Previous work [15,31,34,37,40] focused on the subscriber (customer) side; this
paper shifts perspectives and addresses the detection of such attacks from the
operator side. The particular challenge lies in the structure of digital mobile
networks: They where drafted in a time of low bandwidth connections, when
signaling traffic occupied a significant amount of the network infrastructure.
Therefore, these networks were designed in a highly hierarchical and geographi-
cally distributed fashion with as much signaling traffic as possible being handled
locally or regionally, thus, offloading the backbone. This poses unique challenges
when acquiring and correlating the necessary data in order to detect anomalies in
the network. Additionally, the legacy of having a GSM network being upgraded
to UMTS and later again upgraded to LTE implies that the structure and the
used data formats are not as clean and neat as one would expect from a freshly
built LTE network with additional 2G and 3G radio front-ends.

Compared to the time when 2G networks were designed, today the ratio
between user data and signaling data has completely changed. With LTE, users
are offered 100 MBit or more.

The lowered backbone bandwidth costs and the (now) relatively low volume
of signaling data allows mobile phone operators to en-bloc collect and monitor
more data parameters than before. Many cellular network operators routinely
collect data on different network levels and elements (e.g., from switches, servers,
and via network probes) to detect, track and debug malfunctions and optimize
their network. The strength of such Network Intelligence systems is to correlate
transactions over different levels and protocols in the network structure, extract
important values, and build an extensive index of the latter. This is done for
several million signaling packets per minute. The limitation is that these indices
are primarily built to search for traffic based on simple identifiers such as a
specific customer, network element, protocol, or transaction type. Our goal is to
use this monitoring systems to find far more complex symptom patterns that
are typically produced by IMSI Catchers.

2.1 Working Principles of a Mobile Phone Network

Mobile phone networks became much more complex over the years. Each new
generation or access technology (e.g., 2G GSM, 3G UMTS, 4G LTE) introduced

282 A. Dabrowski et al.

a new terminology which complicates the description in an access-technology-
neutral fashion.

For example, the base station (the radio front end of the network) with
roughly the same functionality is called Base Transceiver Station (BTS) in
GSM, Node B in UMTS, and evolved Node B (eNodeB or eNB) in LTE. Like-
wise, a mobile phone is called Mobile Station (MS) in GSM and User Equip-
ment (UE) in UMTS as well as LTE. However, apart from the radio layer and
some distinct organizational differences, they have many similarities on higher
(more abstract) levels. Regardless of the access technology, the network needs
to know how and (roughly) where to reach every subscriber, even when they are
idle. This is solved by grouping radio cells into Location Areas (GSM, UMTS),
Routing Areas (GPRS, UMTS; a subdivision of a Location Area), or Track-
ing Areas (LTE). In the phone’s idle state, the network only knows the Loca-
tion/Routing/Tracking Area where the subscriber is located, but not the exact
cell. The phone (MS, UE) can listen to the broadcast channel of any cell as an
incoming phone call, message, or data triggers a paging of the subscriber in all
cells of a Location/Routing/Tracking Area. Upon a received page, the phone
will contact the network and request a dedicated (logical) channel for further
communication, thus giving away its position on cell level.

Only if the UE/MS switches to another Location/Tracking Area, it will tell
the network about it, using a Location Update Request (GSM, UMTS) or Track-
ing Area Update (LTE). This method substantially reduces the signaling traffic
caused by the subscribers’ mobility.

In general, all subscribers are not identified by their phone ID (the 14-digit
International Mobile Equipment Identity, IMEI), but by their Subscriber Iden-
tity Module (SIM) on GSM, orUniversal Subscriber Identity Module (USIM) on
UMTS and LTE which provides a 15-digit unique International Mobile Sub-
scriber Identity (IMSI). However, sending the IMSI over the air would make
subscribers easily trackable. Therefore, the network frequently (re)assigns a Tem-
porary Mobile Subscriber Identity (TMSI) that is used instead1 of the IMSI on
2G and 3G. 4G extends the TMSI by multiple Radio Network Temporary Iden-
tifiers (RNTI) for different use cases (e.g., paging, random access). TMSIs are
meant to be reassigned on Location/Tracking Area changes, and some networks
even reassign them on every interaction (e.g., call, text message) between the
phone (MS, UE) and the network.

On a Location/Tracking Area Update message the phone will (usually) trans-
mit its current TMSI and the old Location Area Identity (LAI, consisting of the
Mobile Country Code MCC, Mobile Network Code MNC, and the Location Area
Code LAC on GSM and UMTS) or Tracking Area Identity (TAI, comprising
MCC, MNC, and the Tracking Area Code TAC). The Mobile Switching Cen-
ter (MSC) for a Location/Tracking Area can now fetch all the data about the
subscriber from the old Location/Tracking Area and inform the central user
database (Home Location Register HLR on GSM and UMTS, Home Subscriber
Server HSS on LTE) about where to reach that subscriber from now on.

1 Except for the very first initial registration.

The Messenger Shoots Back: Network Operator 283

Location/Tracking Area Update Messages are the Swiss army knife of the
Mobility Management (MM) in mobile networks: A phone freshly turned on
will first try to make a Location/Tracking Area Update Request (LUR, TAUR)
using its last known (cached) values. If its TMSI hasn’t expired and is valid
in this Location/Tracking Area, the network will accept the phone. Otherwise
it will trigger a re-authentication. Therefore, even a phone arriving on a plane
from another continent will first try to perform an LUR/TAUR providing the
LAI/TAI data from another network. This is intended, as it allows for national
roaming and seamless handover of active calls across an international border. (In
LTE, the network can additionally provide an individual set of Tracking Areas
for each UE, so that a group of subscribers – e.g., on a train – do not perform
a Tracking Area Update all at once.)

Additionally, a ME/UE will perform periodic Location/Tracking updates,
even when not moved in an interval configured by the network (e.g., 24 h) to
assure the network of its continued presence.

Periodically during operation and at shutdown, parts of the baseband state
are stored on the SIM card and the phone itself. For example, instead of per-
forming a full frequency scan for all receivable base stations at power on, the
phone will first try the frequency range where it received signals from its mobile
phone network before. Also, it will retry its old TMSI in an attempt to speed up
the procedure. (After all, if the phone has not been offline for too long, it still
could be valid.)

3 Capabilities of IMSI Catchers

In general, IMSI Catchers come in two variants: (i) a tracking or identifying
IMSI Catcher and (ii) capturing or Man-in-the-Middle IMSI Catchers. The first
read out specific data from a phone or launch a specific attack before releasing
the phone back into the genuine network. This is useful for enumerating phones
in the vicinity or check for a specific device in radio range. The latter holds the
phone captured in its fake cell and can relay traffic to the outside world.

While IMSI Catchers originally exploit a specific vulnerability in 2G net-
works, they are still a relevant threat in 3G and LTE networks, for several
reasons: First, the weakest-link principle applies. As long as users can be delib-
erately downgraded to a less secure system, the weakest link sets the limit.
Additionally, it has been recently shown that IMSI Catchers are possible on 3G
and 4G in either a tracking-only setup or for full traffic interception in combina-
tion with backbone attacks (SS7, Diameter). These protocols are often used for
interconnection and roaming of phone calls, but also of cryptographic material
such as keys. In the roaming case the remote network has to be able to fulfill the
same cryptographic operations as the home network. Engel [19] also presented
sole backbone attacks, but they are out of this paper’s scope.

284 A. Dabrowski et al.

3.1 Access Technology

2G/GSM. The original IMSI Catcher was build for GSM. Originally used
only for identifying users (tracking), later devices allowed full man-in-the-middle
attacks. GSM networks are specifically easy to impersonate, as the standard does
not require encryption nor support mutual authentication.

3G/UMTS. Recent datasheets [22] show (limited) 3G capabilities of commer-
cial available IMSI Catchers. For man-in-the-middle attacks they often down-
grade users to 2G and capture them there. Osipov and Zaitsev [35] presented
a de-facto 3G IMSI Catcher by using a reverse engineered femtocell. They also
discovered that contrary to the standard, many phones accept unauthenticated
SMS messages or time synchronization.

4G/LTE. Similar to UMTS, tracking IMSI Catchers are possible and phones
tend to ignore integrity for many messages [38].

3.2 Catching Capability

Tracking or Identification Mode (Catch and Release). In this mode, the
IMSI Catcher is luring phones into its fake cell, reading out IMSI and IMEI
and pushing them back into the real network. For a target with known IMSI
or IMEI this method can be used to check his/her presence in vicinity (omni-
directional antenna) or position (directional antenna). When used with a direc-
tional antenna, this can also be used to (visually) correlate a person to his/her
IMSI and IMEI (see Sect. 5).

Capturing or MITM Mode (Catch and Hold). In this case the MS/UE is
held in the cell and not pushed back into the real network. There exist several
methods to decrypt, relay, and/or modify the traffic (see Sect. 6).

Passive Monitoring. This mode can be used e.g., after a target has been
identified. Since the attacker does not have control over the phone it can switch
to different cells and Location/Tracking Areas anytime. It has to follow the
target across different frequencies and cells.

3.3 Cryptographic Capabilities

On GSM an attacker can choose between several methods. The easiest one, is
to downgrade the client side and the network side to A5/0 (i.e. no encryption).
However, many networks started prohibiting clients using A5/0. This can be
problematic if legacy clients do not support any encryption. The GSM export-
grade cypher A5/2 has been broken by Goldberg et al. in 1999 [23] and phased
out by GSMA (GSM Association) by 2006 [25]. Barkham et al. presented a

The Messenger Shoots Back: Network Operator 285

Fig. 1. Downgrade attack from 4G to 2G using Access Technology not allowed messages
(simplified)

realtime ciphertext-only attack on A5/2 [10] in 2008. However, the GSM stan-
dard cipher A5/1 is also not secure; a number on publications [10,18,26] showed
severe weaknesses and later 2 TB rainbow tables for decryption within seconds
became freely available [29]. Thus, we must assume [3], that reasonable new IMSI
Catcher are able to decrypt A5/1 and A5/2. Recently, many operators imple-
mented A5/3 – a backport of the KATSUMI based UMTS cipher – for which no
practical attacks are known. However, only newer handsets support this mode
(cf. Fig. 4), and are easily downgrade-able by a fake cell (Sect. 3.4 below).

For UMTS and LTE encryption no practical cryptanalytic attacks are known,
and mutual authentication is needed for (most) transactions. However, vulner-
abilities in the SS7/Diameter exchange between providers allow the recovery of
sessions keys [19,34] and therefore either decrypting traffic or impersonating a
network.

3.4 Access Technology Downgrade Capability

For UMTS and LTE a downgrade to a less secure access technology (such as
GSM) is also an option.

Jamming. A simple but brutal way is to jam the frequency band. In an attempt
to restore connection to the network, the phone will try other (potentially less
secure) access technology: e.g., jamming the UMTS band will encourage phones

286 A. Dabrowski et al.

to connect via GSM. Longer jamming sessions will show up in the operator’s
network quality metrics and allow radio technicians to pin-point the source.
Therefore, this method is only suitable for short term operations. In general, an
attacker might strive for more subtle and less detectable ways.

Spoofing No-Authorization for a Specific Access Technology. A BTS,
NodeB and eNodeB has the ability to deny access to a specific cell, loca-
tion/tracking area or access technology for a number of reasons (e.g., no resources
left, no subscription for a specific service, no authorization, etc.). Depending on
the error code from the network, the phone will not retry and revert to other
methods (e.g., another access technology) [8,9,24]. An error code for a perma-
nent error will be cached by the MS/UE until next reboot. 3GPP defined rules
on how to allow a network operator to expel a mobile from one access technology
e.g., for LTE [9,38, c.f. reject cause #7] or 3G [24]. Therefore, a chain of track-
ing IMSI Catchers denying access and forcing a cell re-selection with another
access technology can downgrade a client step by step (Fig. 1). Once arrived at
2G/GSM without mutual authentication the attacker can capture the phone and
hold it in the fake cell.

These Location/Tracking Update Reject messages are intentionally not cov-
ered by the mutual authentication in UMTS and LTE, as a (foreign) network
must be able to reject a user that has no subscription or no roaming agreement
with the home network.

4 Design and Data Sources

For the development of our detection methods, we tested the interaction of 22
phones between an IMSI Catcher based on an USRP [20] and a mobile phone
network. After that, we ware able to retrieve log and PCAP files from the mobile
phone network’s monitoring system for analysis. Based on that we developed
detection strategies and implemented them. We tested them on real monitoring
data and counter checked them with statistics from the real network.

Based on our NDA and the secrecy of telecommunications laws we had to
work on site and where not allowed to take any actual data outside of the
building. Additionally, the limitations of the current monitoring systems only
allowed us to retrieve data based on simple queries and a specific buffer size.
For example, we could either retrieve data for a specific IMSI (e.g. our test SIM
card) or a specific cell for longer periods of time, or a specific transaction type
nationwide but only for a short time period (e.g. minutes), but not both.

The problem lies in the scattered transactions in mobile phone networks that
forbid a natural global view on the status of a network. Thus, state-of-the-art
mobile network monitoring put probes next to the MSCs which preselect and
extract key values out of the signaling traffic. This signaling traffic is heavily
depended on the access technology. A database cluster collects this data and
makes it available based on simple queries on the extracted features. This system
has to deal with high loads: e.g. just the Location Updates for 2G and 3G

The Messenger Shoots Back: Network Operator 287

peak at roughly 150,000 transaction per minute during daytime, whereas the 3G
transaction are more complex and consist of more packets than on 2G.

The number of returned transactions on a query is limited by a (rather small)
return buffer. However, data can be retrieved and reassembled to complete trans-
actions which include everything from the initial mobile request, its way through
the network instances up to the database access at the HLR and back to the
mobile. This data can be exported to text and PCAP files for further analysis.
Basically, any data extraction has to be reimplemented for each access technol-
ogy. Even if the hight level behavior (e.g. Location Updates) are quite similar,
the signaling traffic is completely different on a technical level.

This setup sets limits in the ability to analyze data for complex anomalies
such as finding network areas with higher than usual non-adjacent neighbor
location updates (see Sect. 6.3). Therefore, we tested our programs and made our
statistics on data sets consisting of several thousands up to 47,000 transactions,
based on the type of transaction. With small changes in the monitoring system
(e.g. extraction and indexing of additional values by the probes) our solutions
below can work on much larger data sets or on real-time data (e.g. they can
request a much more focused selection of packets, and don’t have to filter them
themselves).

5 Tracking IMSI Catcher

A tracking (or identifying) IMSI Catcher does not hold a mobile device in the
fake cell, but drops it back into the real network immediately. For an attacker
it is advantageous to simulate a new Cell-ID as well as a new LAC as this will
always trigger an active communication (Location/Tracking Update) from the
attracted mobile device.

Simulation of a new Cell without a LAC leaves the attacker without knowl-
edge which phones are currently listening to the broadcast channel. He/she could
only page previously known subscribers (based on IMSI) to verify their existence.
Additionally, it will disturb the availability of the attracted phones for the com-
plete operating time of the IMSI Catcher.

Unless for very specific operations, for the above mentioned reasons, an
attacker will most likely choose a fake Location/Tracking Area Code (LAC) (or
one that is unused in the geographical area) so that every mobile phone attach-
ing to this cell initiates a Location/Tracking Update procedure. This informs the
attacker of every phone entering the cell, gives him/her the ability to download
identification data and then reject the Location/Tracking Update. Depending
on the error cause used, the phone might return later (temporary error), or put
the LAC or MNC on a blacklist (permanent error). An attacker wishing to enu-
merate all phones again simply chooses another LAC. This procedure disturbs
each phone for less than a second per scan and has no major implications on
availability.

Figure 2 (upper part) presents the message flow. Known IMSI Catchers down-
load the IMSI and IMEI since both are easily retrievable. The IMEI is also

288 A. Dabrowski et al.

Fig. 2. A tracking IMSI Catcher identifies a phone and drops it back into the real
network.

commonly downloaded by genuine networks in order to apply the correct proto-
col (workaround) policy based on the phone model.

The Messenger Shoots Back: Network Operator 289

Fig. 3. Phone models that produce a
new LUR after a Location Update
Reject (n = 22 test phones)

Fig. 4. Cipher usage on 2G nationwide
(n = 7402 call setups)

5.1 Detecting Phones When Reattaching to the Original Network

From the operator’s point of view, a phone leaving the network for a fake cell is
invisible. If there should be a page request in the mean time, the phone will not
receive it. However, since the phone is away for only a short period of time, it
will likely receive a retransmit of that page request.

Once the phone receives a Location Update Reject message, it has three
options (cf. Fig. 2):

1. Assume that it is still known by the network at its old location. Therefore,
no new message is needed.

2. A new Location Update Request is sent to the network using the IMSI
Catcher’s Location Area Code as origin (see also Sect. 6).

3. A new Location Update Request is sent using a dummy Location Area Code,
since the last LAC value isn’t valid.

We tested 22 different phone models2 for their behavior after they dropped
back into the genuine network in 2G (Fig. 3). 86 % produced no Location Update
(Option 1) and 14 % generated3 a Location Update Request with a dummy
origin-LAC 0xFFFE (65534). The special values 0 and 0xFFFE are reserved
when no valid LAC is available by the MS/UE [1,7]. Additionally, on GSM
many phones also use 0× 8001 (32769).

However, these dummy LACs are no direct indicator for an IMSI Catcher
even for this minority of phones, as they are used quite regularly. In a dataset
containing all nationwide 2G Location Update Requests within one minute (day-
time) we found 9.1 % of all transactions using a dummy LAC and 11.1 % using
no LAC at all (see Fig. 5a) without any geographical pattern. The numbers for
3G (Fig. 5b) are smaller: 4 % of Location Update Requests contained a dummy
LAC (0×FFFE or 0× 0000) from the same network. 1 % contained also dummy
values for the Mobile Country Code (MCC) and Mobile Network Code (MNC).
2 Nokia Lumia 920.1, E71, 6310, 6150, 3210, 3710A-1, LG Nexus 4, Nexus 5, Apple

IPhone 4, IPhone 6, Nexus One, Motorola Moto G2, Moto G XT1032, Samsung
Galaxy Nexus, Galaxy S3, Galaxy Xcover2, Galaxy S5, Sony Xperia Z2-SCR10, BG
Aquaris E4.5 Ubuntu Phone, Kyocera Torque KS-701, Sony Ericsson ST17I.

3 All Nokia models introduced before 2000.

290 A. Dabrowski et al.

Fig. 5. Origin LAC provided at Location Update Requests. Valid means that the LAC
is within the local LAC plan. 0, 0x8001, and 0xFFFE are literal (dummy) values. Other
are LACs from outside the network (e.g. international or national roaming, accepted
and rejected). No LAC describes the requests that do not provide a valid LAC or that
provide dummy Values for MNC and MCC as well (such as 0 × 00 or 0 × FF)

64 % of our test phones generated a GPRS Attach4 request within the next
two minutes, if and only if it had a data connection before and did not have
an additional WiFi connection. This is due to the fact that our test setup did
not indicate GPRS support for the fake cell. Such a GRPS Attach request is
nothing extraordinary and happens regularly (42 % of all Location Updates on
a real network contain such a header) for example if a phone drops out of WiFi
and needs an Internet connection.

18 % of this GPRS Attach messages had the No Valid TMSI available flag
set. However, on a real network 4.5 % of LUR messages have this flag set.

6 Capturing IMSI Catcher

An IMSI Catcher of this type holds the mobile in the cell and can therefore
man-in-the-middle any transaction, and has control over the mobile phone by
means of any network management commands (Fig. 6).

6.1 Detection of Cipher Downgrades

A man-in-the-middle IMSI Catcher has to forward the traffic to the network. An
easy way, is to tap into the cipher negotiation sequence and change the set of
supported ciphers. The easiest choice for attackers is A5/0 (no encryption) and
A5/2 (the weakened export-variant of A5/1), as described in Sect. 3.3. However,
many networks (incl. T-Mobile Austria) banned these ciphers for years.

Instead, they started to support the A5/3 cipher [2]. On GSM this is the only
cipher without (publicly) available rainbow tables or other decryption methods.

4 Technically, this is an Location Update Request with Origin LAC set to the current
LAC and an optional GRPS header with the Attach-Bit set.

The Messenger Shoots Back: Network Operator 291

Fig. 6. A man-in-the-middle IMSI Catcher identifies a phone and withholding it from
the real network. During fall-back into the real network, the captures phone gives away
the LAC of the IMSI Catcher.

However, many MS still do not support this mode. On our network, in
September 2015, 29 % used A5/1 and 71 % A5/3 (Fig. 4, n = 7402). Other cipher
modes where prohibited in this network.

An operator-run database of {IMEI, highest-used-cipher}-tuples provides the
basis to detect cipher downgrades. This database is updated on first contact with
the network and whenever a device uses a higher ranked5 encryption than the

5 A5/0 < A5/2 < A5/1 < A5/3.

292 A. Dabrowski et al.

one stored. As long as there is no SS7/Diameter standard on exchanging this
form of information, every operator has to run their own database (or include it
into the HLR/HSS). Once the highest available cipher of a device is established,
the network should not accept a lower one, or at least generate a warning. Thus,
making a downgrade attack visible to the operator except when the user is
attacked on the very first contact with a new network. Except for a firmware
bug, there is no reason why a device should stop supporting higher cipher levels.

6.2 Detection of Relayed Traffic

The most compatible and least interfering way for a capturing IMSI Catcher to
operate is to relay all traffic. If it is encrypted with A5/1 or A5/2 the decryption
can be done separately, otherwise it has to be downgraded. Based on enough
traces, the session key Kc can be reconstructed [27,29]. In conjunction with
another vulnerabilities (e.g., weak COMP128), also the secret authentication
key Ki can be read and the SIM card cloned [12]. Once Kc is known, this allows
an IMSI Catcher to decrypt A5/3 as well, since the Kc is used for all ciphers.
For SIM cards with only a 64 bit key, the Kc is doubled K = {Kc||Kc} to 128
bit and therefore allows decryption of UMTS as well6.

We tested if the analysis of the round-trip times can be a good measure
to uncover traffic relay. Therefore, we analyzed authorization round trips in the
wild of 4165 random transactions within one minute, nationwide. The histogram
in Fig. 7 shows a high deviation (x̄ = 0.586 sec, δ = 0.334) of response times

Fig. 7. Authorization round trip time: distribution of time between Authentication
Request and Authentication Response on a real network.

6 The attacker has to brute-force the 48-bit sequence number, though.

The Messenger Shoots Back: Network Operator 293

with a notable retransmission interval of about 0.25 s. We estimate that a well-
designed traffic-forwarding IMSI catcher could relay the traffic in 100 ms or less,
thus being far from statistically significant in single instances.

Further analysis presented vast differences between manufacturers as well as
handset types. Based on the Type Allocation Code (TAC)7 we run independent
nationwide collections. Figure 8 shows 12 diverse popular handset types and
highlights three different iPhones to illustrate their different behavior (based
on an average of 3,400 transactions per phone type). Since this values have a
much smaller standard deviation (e.g., σGalaxyS4 = 0.198, σIPhone3gs = 0.200,
σIPhone4s = 0.206), they are a better basis to detect relay delays (i.e. average
authorization round trip time increases on multiple occasions for a single user).
Additionally, a provider side detection can correlate such changes geographically
(i.e. average authorization round trip time increases in a geographical area).

Fig. 8. Normalized distribution of authorization round trip time broken up by phone
models. Three Apple phones highlighted to show the distinct differences in their autho-
rization response time. (n ≈ 3400 for each phone type)

6.3 Detection of Unknown, Unusual or Implausible Origin-LAI/TAI
in Location Update Requests

Eventually, every IMSI Catcher victim falls back into the genuine network (Fig. 6).
During this step, the LAC of the attacker is leaked back into the real network8. As
stated above, it is favorable for an attacker to choose an unused LAC as this forces
7 TAC are the first 8 digits of an IMEI that encode the manufacturer and phone

model. Popular models might end up with multiple assigned TACs. This is somewhat
similar to the assigned OUI prefix in Ethernet MAC addresses: they encode the
manufacturer.

8 See Sects. 7.3 and 7.4 for further discussion and possible mitigations.

294 A. Dabrowski et al.

every victim to actively contact the fake base station on entrance and therefore
inform the attacker about its capture. This LAC is either completely unknown in
the genuine network or far away.

We investigated the possibility of creating shadow instances that follow every
location area update and reject implausible location changes. While the cur-
rent monitoring infrastructure does not allow to monitor all location updates
nationwide for all mobile phones (Sect. 7.3), we scaled down and implemented
a prototype that is able to follow individual UE/MS through different access
technologies based on PCAP files from the core network. The two main inves-
tigated properties are (i) the correctness and completeness of location update
trails and (ii) the geographical plausibility of location updates (i.e. only adjacent
locations).

The correctness and completeness of location update trails means that loca-
tion trails form an uninterrupted chain. A gap would be a strong hint for a visited
LAC to not be under the control of the operator. The geographical plausibility
checks if updates only occur between geographically neighboring locations. This
neighbor property does not have to be derived geographically, but can be estab-
lished statistically (i.e. recording frequent location updates between Location
Areas). Unless operators agreed on national roaming, the phone stays on the
home network, so no operator collaboration is necessary.

In the following evaluation we discovered a number of corner cases that com-
plicate the interpretation of the results.

Power on at a New Location. UE/MS not always correctly detach from
a network when turned off (e.g. battery loss, temporary reception loss during
power off). At the next power on, the UE/MS will use the previous LAC as
origin for a location update. Imagine this plausible case as depicted in Fig. 9: A
flight passenger turns off the phone at takeoff in one city, but the IMSI deattach
message was not produced or did not arrive at the network. After landing, the
passenger turns the phone back on during the train ride from the airport to the
city. In most cases, the phone will send a location update to the network as if it
just passed the border between the two location areas. This even happens after
intercontinental flights. Airport cells could be whitelisted to some extent, but
they will not catch all cases (such as in the example above).

Because such (tunneled) location update are indistinguishable from a direct
location changes, they are not immediately a red flag.

Additionally, road and railway tunnels also offer geographical shortcuts, but
– unlike plane routes – the ends of the tunnel only connect two points and will be
statistically assigned as neighbors, since a large number of passengers traverse
without turning off their phones.

Old Baseband State Restoration. Phones regularly and at certain events save
parts of the baseband state information to non-volatile memory. For faster boot

The Messenger Shoots Back: Network Operator 295

Fig. 9. Location update tunneling effect: Because a detach message is not guaranteed,
location/tracking area updates happen between non-adjacent cells.

times, the phone can facilitate this information (e.g. already knows the frequency
range of the preferred operator anddoes not has to scan thewhole frequency range).
This includes the last known LAC.

One of our test phones had a defective power button which lead to random
reboots. In the traces we discovered that the phone sometimes used obsolete
LAC information as origin (i.e. reused a LAC as origin a second time, because
another location change was not recorded properly before reboot).

6.4 Detection of a Access Technology Downgrade

As described in Sect. 3.4 and Fig. 1, access technology downgrades are easy
to perform and included in todays commercially available IMSI Catchers [22].
A phone camping on 2G even though 3G or 4G should be available in the area
is not a strong indicator. In some cases, structural properties can lead to bet-
ter reception of certain frequency ranges (e.g., 2G on lower frequencies is usu-
ally better receivable underground). On the other hand, a MS/UE can be set
intentionally to use 2G only for power conservation. A provider could install an
application on the SIM to monitor the access technology and location updates;
however, this is out of scope for this paper.

7 Discussion

We identified strong and weak indicators based on the statistics of certain fea-
tures in real-world data. Strong indicators have low potential for false positives.

A per device (IMEI) database of the highest-used cipher can reliably
detect cipher downgrades or deactivation of ciphering. Additionally, we have
shown that mobile phones leak the (fake) LAC of the capturing IMSI
Catcher to the real network. This case can trivially be detected based the on
analysis of Location Update Requests. If the attacker misuses a genuine LAC, it
can still be detected by a consistence check of the Location Update trail.
Based on certain corner cases, the latter has the potential for false positives

296 A. Dabrowski et al.

(LUR tunnel effect, restoration of old baseband states) and therefore needs to be
backed up by additional geographical, temporal and subscriber based correlation.

Another method is the transmission delay introduced by an MITM
attack. We tested this technique based on the authorization round trip times.
In general, the deviation is quite large, but can be narrowed if the device type
is considered as well. Every device has a very specific distribution of round
trip times. However, for a statistically significant result (e.g. for a device under
attack), multiple measurements have to be collected.

From the provider point of view, the hardest attack to detect is that of
a tracking-only IMSI Catcher. Except for a few very old phones, this partic-
ular attack does not produce any messages in the core network. It has still
to be explored if certain frequency-monitoring functions on BTS, NodeBs, and
eNodeBs can be repurposed to detect such rouge base stations.

7.1 Ethical Considerations

As described in the research set up (Sect. 4) we have used real data only under
very strict conditions to comply with ethical and legislative requirements. We
have only worked on signaling data and never had access to user data or personal
subscriber information.

7.2 Comparison with Client Detection Methods

Operator detection of IMSI Catchers does not supersede client detection
(c.f. Sect. 8.1). It complements it and gives the operator the opportunity to
monitor such attacks in its network regardless of precautions by individual sub-
scribers. However, since the detection schemes can only find phones that are
either under the control of an attacker - or just switched back to the genuine
network - the operator can only warn the user in question post-attack.

On the other hand, client based techniques give the user the ability to detect
a current attack against his/her very device. On tracking IMSI Catchers this
technique provides better detection rates.

7.3 Limitations

The current implementation of our detection methods is based on the old some-
what limited monitoring system deployed in the network. It can filter some pre-
extracted of each packet and transaction against a query containing a limited
set of operators and literal values (i.e. filter by a specific cell, IMSI, IMEI, pro-
tocol type, etc.). It can not compare between cells or apply more complex filters.
Additionally, the return buffer size is limited to 10 K–30 K results, depending
on the search mode. This limits our current implementations to single users
(or single cells) at a time. This is the reason we could not run a nation wide
search so far.

The Messenger Shoots Back: Network Operator 297

7.4 Future Work

Our results show that detection from the operator side is possible and tested its
usefulness within the limitations of the current monitoring system. We suggest
that parameters such as ciphering and origin LAC in Location Area Updates
should be extracted directly at the probes and made available. This pre-selection
step will eliminate current limitations. For example, it will allow to search for
inconsistencies in used ciphers, based on the IMEI (or TAC). Additionally, a new
monitoring system based on Apache Hadoop is currently in development that is
expected to remove most limitations of the current system.

With the large number of dummy LACs used by phones, one can wonder if
an attacker could use dummy LACs such as 0xFFFE for masking their existence.
Another way, to mask the fake LAC of an IMSI Catcher is, to announce a neigh-
bor frequency occupied by a second IMSI Catcher with a reasonable LAC. While
doubling the hardware costs for an attacker, this might whitewash the Origin
LAC field used in Sect. 6.3. Both ideas need further testing with end devices
to confirm or deny their practical feasibility. As discussed before (Sect. 6.4), a
SIM card application can monitor and report certain network parameters back
to the network (e.g., keep a local copy of a CellID/LAC trail) and detect both
cases. However, over time, many different cards from different vendors have been
acquired so developing and maintaining such an application poses a financial
burden and an operational risk.

Furthermore, we plan to refine the timing models used in Sect. 6.2 to become
more accurate and create better models for timing delays introduced by traffic
relaying.

8 Related Work

8.1 IMSI Catcher Detection

So far, IMSI Catcher detection has almost exclusively been tackled from the
clients’ point of view. Malete and Nohl first developed a solution for OsmocomBB
phones, and later on for rooted Android phones with a very specific Qualcomm
chipset [31,40]. Other applications replicated similar client side detection without
the need for a rooted phone [15,37].

Van den Broek et al. proposed a pseudo-random IMSI that will not allow
others than the home operator to distinguish particular users [13]. However, this
will introduce a higher overhead in the roaming case and needs to be extended
to cover cases where IMSI Catchers use additional identification numbers (such
as IMEI).

Van Do et al. are so far the only ones to look at the provider side [16].
Their solution is based on encryption elimination detection and anomalies such
as disappearance of a large group of phones in a geographical area, fed into a
machine learning system. However, their approach has limited applicability, for
real world networks: Disabling encryption is only found in older capturing IMSI
catchers and disappearance detection has a latency up to 24 h – the time scale

298 A. Dabrowski et al.

of periodic location updates (i.e. the mobile phone’s periodic reassurance to the
network). This will only detect IMSI Catchers operating for an extended amount
of time.

8.2 Working Principle of IMSI Catchers

Osipov and Zaitsev reverse-engineered a Huawei Femtocell and were able to
create a 3G IMSI Catcher and test phone implementations for messages where
integrity is ignored [35]. Shaik et al. researched 4G IMSI Catchers and their
possibilities [38]. Dunkelman et al. did research on the KATSUMI algorithm on
which A5/3 is based, but the attack is not practical in real-world networks [17].

8.3 Related Attacks on Cellular Devices

There are many attacks that are relevant as they are performed directly or in
conjunction with an IMSI Catcher.

SS7 MSISDN Lookup. IMSI Catching does not reveal the telephone number
(known as Mobile Station International Subscriber Directory Number, MSISDN)
of the subscriber. If not blocked by a firewall, an attacker with access to the
international interconnect network using Signaling System 7 (SS7) can request
subscriber information based on the IMSI (or the TMSI), just as any roaming
network would do [19].

SS7 Session Keys. An attacker with access to the international intercon-
nect network based on SS7 is able to retrieve RAN session keys [19,34]. The key
retrieval is a legitimate function required for roaming support: The roaming net-
work needs to authenticate on behalf of the home network. SS7 stateful firewalls
(e.g., keep track if and where a user is roaming) can block such requests.

SIM Card Rooting. Several SIM card attacks described by Nohl et al. [33]
have been blocked by the network operators worldwide. However, an IMSI
Catcher is directly communicating with the UE/MS. This gives the attacker
the ability to perform attacks such as the retrieval of SIM card application keys,
eventually giving him/her the control over the installation of new SIM card
applications on the victims device.

SIMCardCloning. In 1998, Briceno, Goldberg, and Wagner reverse engineered
and broke the COMP128 [11] key derivation algorithm which enabled cloning of
GSM SIM cards of many network operators [12]. In 2015, Liu et al. [30] found that
AES-based MILENAGE algorithm on some USIM implementations is prone to
power-based side-channel analysis and thus giving way to clone these cards as well.
Unfortunately, they never named the manufacturers of the USIMs.

The Messenger Shoots Back: Network Operator 299

Unauthenticated SMS. 2G as well as some 3G devices [35] allow the reception
of SMS messages while captured by the rouge base station. The results for 3G
are somewhat surprising, since this is actually prohibited by current standards.
However, many phones do accept these messages nonetheless. SMS in 4G works
entirely differently and is therefore not affected by this vulnerability, although
recent results [41] show that vulnerabilities exist in other constellations.

Presidential Alert Cell Broadcast. A feature dubbed presidential alert mes-
sages [6] is a special form of short messages that cannot be suppressed and
interrupt the phone in whichever state it is to be shown to the user. A fake base
station can send out this kind of messages.

GPS Lookup Initialized by Network. The Radio Resource Location Services
(LCS) protocol (RRLP) is an extension [4] to GSM and UMTS that allows the
network (real or fake) to trigger a GPS localization on the phone and submitting
the location back to the network. Harald Welte [42] demonstrated that this
happens without any authentication.

Measurement Triangulation. The network has the ability to request mea-
surement reports to other cells in the vicinity. A fake base station can use these
reports to estimate the position of the phone based on signal levels and known
positions of the cells. This is also possible on 4G [38].

Disable GPS. Because of (former) Egyptian regulations prohibiting the usage
of GPS, some older phones (iPhone [21], Nokia [5]) are known to disable the
GPS receiver when either associated or just in the vicinity of a network using
the Egyptian Mobile Country Code. An attacker can use this to disable the GPS
receiver on certain phones.

9 Conclusion

IMSI Catchers are still a major problem for todays networks: (i) Tracking
IMSI Catchers work directly on GSM, UMTS, and LTE networks as Loca-
tion/Tracking Update Rejects are excluded from cryptographic message integrity
checks. Mutual authentication only prevent plain capturing IMSI Catchers.
(ii) These reject messages can be used to downgrade a phone until the next
reboot to a lower access technology (e.g. GSM) without mutual authentication.
Therefore, the weakest-link principle applies.

In this paper we analyzed the different types of IMSI Catchers and their
working principles as well as if and how they can be detected from the network
operator’s side. Due to our cooperation with an European carrier we have been
able to systematically perform real-world experiments and test our detection
methods on real world-data.

300 A. Dabrowski et al.

Strong indicators we identified are for example the usage of invalid LACs
(which are transmitted by the phones when they fall back to the genuine network
after an attack), or the usage of weak ciphers to detect downgrade attacks for
devices that were previously able to use strong ones. Additionally we showed that
a number of weak indicators can be correlated geographically, temporally, and
on subscriber basis e.g., for detecting targeted attacks, similar to current fraud
detection schemes used by credit card companies. This includes fingerprinting
devices based on profiles, unusual movements, and implausible location update
trails. We also addressed corner cases and how to deal with them.

As mobile networks where initially designed with the reduction of signal-
ing traffic in mind, not all of the necessary information is readily available for
analysis, or even not collected centrally and in a scalable fashion. Some of the
indicators we identified therefore demand changes in the monitoring systems
currently used in such networks. However, based on already available data from
a real-world mobile network, we were able to show the practical applicability for
multiple of our methods.

Acknowledgments. We want to thank the whole crew of the core network security
team and radio access network team at T-Mobile. They have been a great help. We are
very grateful for the reviewers’ comments and help to improve the quality of the paper and
point to new interesting future work opportunities. This research was partially funded by
the COMET K1 program through the Austrian Research Promotion Agency (FFG).

References

1. Digital cellular telecommunications system (Phase 2+); Interworking between
Phase 1 infrastructure and Phase 2 Mobile Stations (MS). http://www.etsi.org/
deliver/etsi ts/101600 101699/101644/05.01.00 60/ts 101644v050100p.pdf

2. GSM security map. http://gsmmap.org/
3. How the NSA pinpoints a mobile device. http://apps.washingtonpost.com/g/page/

world/how-the-nsa-pinpoints-a-mobile-device/645/. Accessed 30 Oct 2015
4. Digital cellular telecommunications system (Phase 2+); Location Services (LCS);

Mobile Station (MS) - Serving Mobile Location Centre (SMLC) Radio Resource
LCS Protocol (RRLP), 3GPP TS 04.31 version 8.18.0 (2007). http://www.etsi.
org/deliver/etsi ts/101500 101599/101527/08.18.00 60/ts 101527v081800p.pdf

5. Egypt tries to control the use of GPS by banning except with individ-
ual licences (2008). http://www.balancingact-africa.com/news/en/issue-no-429/
top-story/egypt-tries-to-contr/en

6. Emergency Communications (EMTEL); European Public Warning System (EU-
ALERT) using the Cell Broadcast Service (2012). http://www.etsi.org/deliver/
etsi ts/102900 102999/102900/01.01.01 60/ts 102900v010101p.pdf

7. Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Numbering, addressing and identifica-
tion (2014). http://www.etsi.org/deliver/etsi ts/123000 123099/123003/12.04.01
60/ts 123003v120401p.pdf

8. 3rd Generation Partnership Project: Non-Access-Stratum (NAS) Functions related
to Mobile Station (MS) in Idle Mode, 3GPP TS 23.122 v8.2.0

http://www.etsi.org/deliver/etsi_ts/101600_101699/101644/05.01.00_60/ts_101644v050100p.pdf
http://www.etsi.org/deliver/etsi_ts/101600_101699/101644/05.01.00_60/ts_101644v050100p.pdf
http://gsmmap.org/
http://apps.washingtonpost.com/g/page/world/how-the-nsa-pinpoints-a-mobile-device/645/
http://apps.washingtonpost.com/g/page/world/how-the-nsa-pinpoints-a-mobile-device/645/
http://www.etsi.org/deliver/etsi_ts/101500_101599/101527/08.18.00_60/ts_101527v081800p.pdf
http://www.etsi.org/deliver/etsi_ts/101500_101599/101527/08.18.00_60/ts_101527v081800p.pdf
http://www.balancingact-africa.com/news/en/issue-no-429/top-story/egypt-tries-to-contr/en
http://www.balancingact-africa.com/news/en/issue-no-429/top-story/egypt-tries-to-contr/en
http://www.etsi.org/deliver/etsi_ts/102900_102999/102900/01.01.01_60/ts_102900v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102900_102999/102900/01.01.01_60/ts_102900v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/123000_123099/123003/12.04.01_60/ts_123003v120401p.pdf
http://www.etsi.org/deliver/etsi_ts/123000_123099/123003/12.04.01_60/ts_123003v120401p.pdf

The Messenger Shoots Back: Network Operator 301

9. 3rd Generation Partnership Project: Technical Specification Group Core Network
and Terminals; Non-Access-Stratum (NAS) protocol for Evolved Packet System
(EPS), 3GPP TS 24.301

10. Barkan, E., Biham, E., Keller, N.: Instant ciphertext-only cryptanalysis of GSM
encrypted communication. J. Cryptol. 21(3), 392–429 (2008)

11. Briceno, M., Goldberg, I., Wagner, D.: An implementation of the GSM A3A8 algo-
rithm. (Specifically, COMP128.). http://www.scard.org/gsm/a3a8.txt. Accessed
24 Jun 2016

12. Briceno, M., Goldberg, I., Wagner, D.: GSM Cloning. http://www.isaac.cs.
berkeley.edu/isaac/gsm.html. Accessed 24 Jun 2016

13. van den Broek, F., Verdult, R., de Ruiter, J.: Defeating IMSI catchers. In: 22nd
ACM Conference on Computer and Communications Security (CCS 2015), pp.
340–351. ACM (2015)

14. Paget, C. (Kristin Paget): Practical Cellphone Spying. In: DEFCON 19 (2010)
15. Dabrowski, A., Pianta, N., Klepp, T., Mulazzani, M., Weippl, E.: IMSI-Catch me if

you can: IMSI-catcher-catchers. In: Proceedings of the Annual Computer Security
Applications Conference (ACSAC 2014). ACM, December 2014

16. van Do, T., Nguyen, H.T., Momchil, N., et al.: Detecting IMSI-catcher using soft
computing. In: Berry, M.W., Mohamed, A.H., Yap, B.W. (eds.) Soft Computing
in Data Science. CCIS, vol. 545, pp. 129–140. Springer, Heidelberg (2015)

17. Dunkelman, O., Keller, N., Shamir, A.: A practical-time attack on the A5/3
cryptosystem used in third generation GSM telephony. IACR Cryptology ePrint
Archive 2010, 13 (2010)

18. Ekdahl, P., Johansson, T.: Another attack on A5/1. IEEE Trans. Inf. Theor. 49(1),
284–289 (2003)

19. Engel, T.: SS7: Locate. Track. Manipulate, at 31C3 (2014). https://events.ccc.de/
congress/2014/Fahrplan/events/6249.html. Accessed 30 Oct 2015

20. Ettus Research: Universal Software Radio Peripheral. https://www.ettus.com/
product

21. Farivar, C.: Apple removes GPS functionality from Egyptian iPhones (2008).
http://www.macworld.com/article/1137410/Apple removes GPS func.html

22. Gamma Group: 3G-GSM Interctiopn and Target Location. Sales brochure. https://
info.publicintelligence.net/Gamma-GSM.pdf. Accessed 2 Nov 2015

23. Goldberg, I., Wagner, D., Green, L.: The (Real-Time) Cryptanalysis of A5/2. In:
Rump Session of Crypto 1999 (1999)

24. GSM Association: IR.50 2G 2.5G 3G Roaming v4.0 (2008). http://www.gsma.
com/newsroom/all-documents/ir-50-2g2-5g3g-roaming/. Accessed 25 Sep 2015

25. Prohibiting A5/2 in mobile stations and other clarifications regarding A5
algorithm support. http://www.3gpp.org/ftp/tsg sa/TSG SA/TSGS 37/Docs/
SP-070671.zip

26. Güneysu, T., Kasper, T., Novotny, M., Paar, C., Rupp, A.: Cryptanalysis with
COPACOBANA. IEEE Trans. Comput. 57(11), 1498–1513 (2008)

27. Steve, H.D.: Cracking GSM. In: Black Hat DC, March 2008 (2008)
28. Joachim, F., Rainer, B.: Method for identifying a mobile phone user or for eaves-

dropping on outgoing calls, patent, Rohde & Schwarz, EP1051053 (2000)
29. SR Labs: Kraken: A5/1 Decryption Rainbow Tables. via Bittorent (2010). https://

opensource.srlabs.de/projects/a51-decrypt. Accessed 12 Nov 2015
30. Liu, J., Yu, Y., Standaert, F.X., Guo, Z., Gu, D., Sun, W., Ge, Y., Xie, X.: Small

tweaks do not help: differential power analysis of MILENAGE implementations
in 3G/4G USIM cards. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS
2015. LNCS, vol. 9326, pp. 468–480. Springer, Heidelberg (2015)

http://www.scard.org/gsm/a3a8.txt
http://www.isaac.cs.berkeley.edu/isaac/gsm.html
http://www.isaac.cs.berkeley.edu/isaac/gsm.html
https://events.ccc.de/congress/2014/Fahrplan/events/6249.html
https://events.ccc.de/congress/2014/Fahrplan/events/6249.html
https://www.ettus.com/product
https://www.ettus.com/product
http://www.macworld.com/article/1137410/Apple_removes_GPS_func.html
https://info.publicintelligence.net/Gamma-GSM.pdf
https://info.publicintelligence.net/Gamma-GSM.pdf
http://www.gsma.com/newsroom/all-documents/ir-50-2g2-5g3g-roaming/
http://www.gsma.com/newsroom/all-documents/ir-50-2g2-5g3g-roaming/
http://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_37/Docs/SP-070671.zip
http://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_37/Docs/SP-070671.zip
https://opensource.srlabs.de/projects/a51-decrypt
https://opensource.srlabs.de/projects/a51-decrypt

302 A. Dabrowski et al.

31. Malette, L.: Catcher Catcher. https://opensource.srlabs.de/projects/mobile-
network-assessment-tools/wiki/CatcherCatcher. Accessed 12 Nov 2015

32. Muncaster, P.: Chinese cops cuff 1,500 in fake base station spam raid. The Reg-
ister, 26 March 2014. http://www.theregister.co.uk/2014/03/26/spam text china
clampdown police/

33. Nohl, K.: Rooting SIM cards. In: Blackhat (2013)
34. Nohl, K.: Mobile self-defense, 31C3 (2014). https://events.ccc.de/congress/2014/

Fahrplan/events/6122.html. Accessed 30 Oct 2015
35. Osipov, A., Zaitsev, A.: Adventures in Femtoland: 350 Yuan for invaluable fun. In:

Black Hat USA 2015, August 2015
36. Pell, S.K., Soghoian, C.: Your secret stingray’s no secret anymore: the vanish-

ing government monopoly over cell phone surveillance and its impact on national
security and consumer privacy. Harvard J. Law Technol. 28(1) (2014)

37. SecUpwN (Pseudonym, Maintainer): Android IMSI-Catcher Detector. https://
secupwn.github.io/Android-IMSI-Catcher-Detector/. Accessed 12 Nov 2015

38. Shaik, A., Borgaonkar, R., Asokan, N., Niemi, V., Seifert, J.: Practical attacks
against privacy and availability in 4G/LTE mobile communication systems (2015).
http://arxiv.org/abs/1510.07563

39. Solnik, M., Blanchou, M.: Cellular exploitation on a global scale: the rise and fall
of the control protocol. In: Blackhat 2014, Las Vegas (2014)

40. SR Labs: Snoopsnitch, December 2014. https://opensource.srlabs.de/projects/
snoopsnitch. Accessed 12 Nov 2015

41. Tu, G., Li, Y., Peng, C., Li, C., Raza, M.T., Tseng, H., Lu, S.: New threats to
sms-assisted mobile internet services from 4G LTE networks (2015). http://arxiv.
org/abs/1510.08531

42. Welte, H.: OpenBSC - running your own GSM network, talk at Hacking at
Random, August 2009. https://openbsc.osmocom.org/trac/raw-attachment/wiki/
FieldTests/HAR2009/har2009-gsm-report.pdf

https://opensource.srlabs.de/projects/mobile-network-assessment-tools/wiki/CatcherCatcher
https://opensource.srlabs.de/projects/mobile-network-assessment-tools/wiki/CatcherCatcher
http://www.theregister.co.uk/2014/03/26/spam_text_china_clampdown_police/
http://www.theregister.co.uk/2014/03/26/spam_text_china_clampdown_police/
https://events.ccc.de/congress/2014/Fahrplan/events/6122.html
https://events.ccc.de/congress/2014/Fahrplan/events/6122.html
https://secupwn.github.io/Android-IMSI-Catcher-Detector/
https://secupwn.github.io/Android-IMSI-Catcher-Detector/
http://arxiv.org/abs/1510.07563
https://opensource.srlabs.de/projects/snoopsnitch
https://opensource.srlabs.de/projects/snoopsnitch
http://arxiv.org/abs/1510.08531
http://arxiv.org/abs/1510.08531
https://openbsc.osmocom.org/trac/raw-attachment/wiki/FieldTests/HAR2009/har2009-gsm-report.pdf
https://openbsc.osmocom.org/trac/raw-attachment/wiki/FieldTests/HAR2009/har2009-gsm-report.pdf

On the Feasibility of TTL-Based Filtering
for DRDoS Mitigation

Michael Backes1, Thorsten Holz2, Christian Rossow3, Teemu Rytilahti2(B),
Milivoj Simeonovski3(B), and Ben Stock3(B)

1 CISPA, MPI-SWS, Saarland University, Saarland Informatics Campus,
Saarbrücken, Germany

2 Horst Görtz Institute for IT-Security, Ruhr University Bochum, Bochum, Germany
teemu.rytilahti@rub.de

3 CISPA, Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
stock@cs.uni-saarland.de, simeonovski@cs.uni-saarland.com

Abstract. A major disturbance for network providers in recent years
have been Distributed Reflective Denial-of-Service (DRDoS) attacks. In
such an attack, the adversary spoofs the IP address of a victim and sends
a flood of tiny packets to vulnerable services. The services then respond
to spoofed the IP, flooding the victim with large replies. Led by the idea
that an attacker cannot fabricate the number of hops a packet travels
between amplifier and victim, Hop Count Filtering (HCF) mechanisms
that analyze the Time-to-Live (TTL) of incoming packets have been pro-
posed as a solution.

In this paper, we evaluate the feasibility of using HCF to mitigate
DRDoS attacks. To that end, we detail how a server can use active prob-
ing to learn TTLs of alleged packet senders. Based on data sets of benign
and spoofed NTP requests, we find that a TTL-based defense could block
over 75 % of spoofed traffic, while allowing 85% of benign traffic to pass.
To achieve this performance, however, such an approach must allow for
a tolerance of ±2 hops.

Motivated by this, we investigate the tacit assumption that an
attacker cannot learn the correct TTL value. By using a combination
of tracerouting and BGP data, we build statistical models which allow
to estimate the TTL within that tolerance level. We observe that by
wisely choosing the used amplifiers, the attacker is able to circumvent
such TTL-based defenses. Finally, we argue that any (current or future)
defensive system based on TTL values can be bypassed in a similar fash-
ion, and find that future research must be steered towards more funda-
mental solutions to thwart any kind of IP spoofing attacks.

Keywords: IP spoofing · Hop count filtering · Reflective Denial-
of-Service

1 Introduction

One of the major hassles for network provides in recent years have been so-called
Distributed Reflective Denial-of-Service (DRDoS) attacks [5]. In these attacks,
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 303–322, 2016.
DOI: 10.1007/978-3-319-45719-2 14

304 M. Backes et al.

an attacker poses as its victim and sends a flood of tiny packets to vulnerable
services which then respond with much larger replies to the victim. This is
possible because the Internet Protocol (IP) does not have means to protect
against forgery of source addresses in its packets, so-called IP spoofing. A variety
of different UDP-based protocols have been known to be vulnerable for this
category of attacks for long [22], but despite the efforts to locate and shut down
vulnerable services, they remain a problem even today.

To ensure that a server does not become unwilling participant in a DRDoS
attack, an appealing defense is to detect spoofed packets at the recipient. One
such technique is to validate certain IP header fields and drop packets that seem
unsound. Most promising, Cheng et al. [10] propose a technique called Hop
Count Filtering (HCF) to leverage the Time-to-Live (TTL) field encoded in the
IP header. The intuition behind a TTL-based filtering approach is that the route
of the actual source of the traffic and the claimed source is likely different, i.e.,
the spoofing source is in a different network than the spoofed IP address. This
is then also reflected in the TTL value, as the attacker’s route to the server
differs from the one of the spoofed system, and hence the number of hops is
different. Thus, it is seemingly possible to filter most spoofed traffic by dropping
any traffic which does not correspond to the expected TTL.

In this paper, we evaluate the feasibility of using HCF to defend against
DRDoS attacks. To do so, we analyze several means of probing for the TTL of
an alleged sender, using different types of probes towards a host in question as
well as horizontal probing of its neighbors. We show that this process is prone to
errors and frequently tedious in practice, raising the need for a certain tolerance
in TTL-based defenses. More precisely, we show that an error margin of ±2 must
be allowed to enable 85 % of benign traffic to pass, while dropping more than
75 % of spoofed traffic.

Any TTL-based defense relies on the tacit assumption that an attacker can-
not learn the correct TTL when spoofing a packet. We, however, show that a
spoofing attacker can subvert TTL-based filters by predicting the TTL value—
without having access to the system or network of either server or impersonated
victim. Our idea is to leverage publicly available traceroute data to learn sub-
paths that an IP packet from IPA to IPB will take. We follow the intuition that
subpaths from IPA to any other host on the Internet are quite constant and
can be learned by the attacker. Similarly, we show that the attacker can observe
that any packet to IPB traverses a certain subpath. We augment such subpath
information with an approximation of how the packet is routed on the higher-
tier Internet layers. Given the tolerance required in TTL-based defenses, we can
estimate the initial TTL value that the attacker has to set to enable bypassing
of such defenses.

These “negative” results prove that TTL-based spoofing filters are unreli-
able and (if at all) a short-sighted solution only. Rather than attacking existing
defense systems, our findings conceptually show that TTL-based defenses can-
not work to thwart the outlined attacks. Hence, we see this paper as a valuable
contribution to steer future research towards more fundamental solutions, be it

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 305

alternative defenses against spoofing, or conceptual redesigns of the Internet and
its protocols.

To summarize, we make the following contributions:

– We discuss how a server can use active probing to measure the hops to hosts
which connect to its services (Sect. 3).

– We re-evaluate the concept of HCF to determine the necessary level of toler-
ance required for it to work in practice (Sect. 4).

– We describe a methodology which leverages previous knowledge about routing
and statistical models to estimate the number of hops between an arbitrary
victim and an amplifier of the attacker’s choosing (Sect. 5).

– In doing so, we show that TTL-based defenses can be circumvented by an
attacker with as little as 40 globally distributed probes (Sect. 6).

2 Background

In this section, we discuss the background information on routing on the Internet,
Distributed Denial of Service attacks, and Hop Count Filtering as a countermea-
sure against such attacks.

2.1 Relevant Internet Technologies

The Internet is a network of interconnected sub-networks, which route packets
between them based on the established routes. These smaller networks are also
referred to as Autonomous Systems (AS). For a host in network A to connect to
a host in network B, a route must be found through potentially several different
ASes. Traffic between different autonomous systems is routed based on the Bor-
der Gateway Protocol, in which routers exchange information about accessible
IP ranges and the corresponding AS paths, i.e., routes to these ranges.

To ensure that a packet is not stuck in a routing loop, the Internet Proto-
col (IP) header contains a field dubbed Time-to-Live (TTL). When handling a
packet, “[...] every module that processes a datagram must decrease the TTL”
and whenever a packet’s TTL value reached zero, the packet must be discarded
by the routing device [19]. In practice, the TTL is implemented as a decreas-
ing hop count. The value is initially set by the sending host and depends on
the operating system, e.g., Mac OS X uses 64, Windows 128, and while Linux
distributions nowadays mostly use 64, some even use 255 [1]. When receiving a
packet, analysis of the TTL values therefore allows to approximate the number
of routing devices the packet has passed.

The concept of TTLs can also be used to learn the exact route of a packet
(tracerouting). To that end, the initiator of the tracerouting sends an IP packet
towards the intended destination, initially setting the TTL value to 1. When this
packet reaches the first hop, the TTL is decreased. According to the RFC, the
router must now drop the packet. In such a case, most routers will also send an
Internet Control Message Protocol (ICMP) error message to the original sender,

306 M. Backes et al.

indicating that the timeout of the packet has been exceeded. This response can
be used by the tracerouting machine to learn the IP address of the first hop. By
repeating this process with increasing TTL values, this method can be used to
learn all IP addresses of routers on the packet’s way to its destination.

2.2 Source Spoofing and DRDoS

In its original design, the Internet Protocol does not feature a means of verifying
the source of a packet. Since IP packets are only directed based on the desti-
nation, an attacker may generate an IP packet with a fabricated (or spoofed)
source address. This design flaw can be abused by an adversary towards several
ends. One example are Denial of Service (DoS) attacks, where an attacker tries
to either saturate the network link to a server or exhaust resources on the target
machine by, e.g., initiating a large number of TCP handshakes. To defend against
this, a network administrator may configure a firewall to drop packets from the
attacker. The attacker, however, can spoof IP packets from other machines to
bypass this defense mechanism.

Moreover, recent years have seen an increase in Distributed Reflective Denial
of Service (DRDoS) attacks. These attacks rely on spoofing packets in conjunc-
tion with services which respond to requests with significantly larger responses.
There are a variety of vulnerable protocols (described in [22,23]), but recently,
the most nefarious attacks have been misusing protocols such as DNS, NTP,
SSDP, or chargen. As an example, the Network Time Protocol’s (NTP) monlist
feature may generate a response that is more than 4,500 times larger than the
request. To abuse this, an attacker generates a flood of monlist requests to vul-
nerable servers while spoofing the source IP address to be that of the victim.
Subsequently, a vulnerable NTP server will send the response to the victim’s IP.
In doing so, the attacker can massively amplify his own bandwidth, while also
not revealing his real IP address in the process.

Although this kind of attack has been well-known for long [14,24] and
attempts have been made to shut down vulnerable systems used in such attacks
(e.g., [12]), they still pose a threat to online services. In order to fight such
attacks, several countermeasures dating back to 2001 [17] have been proposed.
One obvious defense strategy would be to limit the number of requests a client
may issue. However, while such mechanisms may help to protect against exces-
sive abuse of a single amplifier, Rossow’s [22] analysis shows that even with rate
limiting the aggregated attack bandwidth of some protocols is still an issue. This
and many other countermeasures have been evaluated and analyzed by Beitollahi
and Deconinck [7], hence we omit to discuss them further and refer the reader
to their paper. Instead, we discuss the hop count filtering mechanisms relevant
for our work in the following.

2.3 Hop Count Filtering

When a packet is received, its TTL depends on (i) the initial TTL value and
(ii) the number of hops the packet has traversed. While it is easy to forge an

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 307

IP header as such, Cheng et al. [10] propose to use the TTL to detect nefarious
packets. More precisely, they assume that an attacker trying to impersonate
a specific host cannot ascertain the hop count between the spoofed host and
the recipient of the packet. Based on this assumption, they present a reactive
defense against DDoS attacks. To detect an attack in which the sender spoofs IP
addresses to conceal his true location, they first require a period of observing the
legitimate upcoming traffic (learning state), where the victim builds a mapping
between the legitimate clients (IP addresses) and their respective hop count.
Once an attack is detected, the victim rejects all packets where the TTL values
do not match the recorded hop count. This way, the victim does not have to
allocate resources for handling incoming spoofed traffic.

To increase the accuracy of the hop count filtering (HCF), Mukaddam
et al. [15] proposed a modified version of HCF that aims to improve the learning
phase. Instead of recording only one hop count value per IP, they record a list
of all possible hop count values seen in the past. They justify the need for such
an extension by arguing that the hop count may change due to the use of differ-
ent routes. Indeed, such a system decreases the collateral damage by correctly
classifying legitimate traffic. On the other hand, however, this mechanism allows
an attacker more guesses in evasion attempts by ascertaining the correct TTL
value.

3 Re-evaluating the Feasibility of Hop-Count Filtering

As the previous work by Mukaddam et al. has shown, the original HCF approach
may be impaired by routing on the Internet. In addition, such an approach
requires a prior learning phase, e.g., through passive TCP handshake analysis,
to facilitate detection of spoofing. In the following, we investigate how far the
methodology from Cheng et al. can be extended to filter out spoofed traffic used
in DRDoS attacks. In contrast to the original HCF, this process cannot rely solely
on TCP handshakes from previous connections by the client, as protocols used
in DRDoS attacks, such as NTP or DNS, are connection-less. Simply dropping
all packets from any host without a previous TCP connection would render any
benign use of UDP-based services moot. Therefore, we investigate with what
margin of error TTLs for an alleged sender can be learned by the server to
evaluate the efficacy of TTL-based filtering on the Internet.

3.1 Protocol-Based Probing

The most intuitive way for a server to ascertain a TTL value of a client is to
receive an unspoofed packet from that host. This can be done after a success-
ful TCP handshake, as an established connection can only occur if the alleged
sender actually initiated the connection. Due to its connection-less nature, we
cannot rely on such a process for UDP. Instead, we need to prompt the alleged
sender for an unspoofed packet. To achieve this, we can rely on ICMP, TCP,
or UDP requests to the system in question. The ports we used in our work for

308 M. Backes et al.

TCP and UDP are derived from the most scanned port discussed by Durumeric
et al. [8]. We realize that it might not be feasible to send a plethora of probes
to an end host whenever a packet to a UDP-based service is received, as this
itself would be an amplification attack. Regardless, we want to investigate how
different protocols and techniques might be leveraged to learn the TTL.

One way of compelling the probed system to send a packet is to use ICMP.
ICMP echo can be used to measure the round trip time of a packet to a given
host. The TTL of the probe target can be extracted from the IP header of an
echo reply. In addition to the echo command, several operating systems also
implement the non-mandated timestamp command. This can be used in the
same fashion to induce a response from the probed system.

Additionally, the probing server can itself try to establish a TCP connection
to the alleged sender. The methodology is independent of the actual application
used underneath, since the TCP handshake is conducted by the operating system
before handing the socket to the underlying application.

In contrast to TCP, where no application data needs to be sent to the probed
host, most UDP-based services require protocol-specific data to be submitted.
As an example, DNS and NTP servers only react to datagrams which are con-
formant to the respective protocol. On the other hand, the UDP-based chargen
service “simply sends data without regard to the input” [20]. Therefore, we
send protocol-conformant packets to DNS and NTP ports, and random data to
chargen.

3.2 Interpreting Responses

In any of the cases described above, we may receive a positive or negative
response. In the following, we discuss these types of responses and indicate how
they can be used to extract the TTL from probed systems.

Positive Responses. When using ICMP, an echo or timestamp reply suffices to
extract the TTL value from the encapsulating IP packet. For TCP, if a service
listens on the probed port, the operating system will follow the three-way hand-
shake process and respond with a SYN/ACK packet. In the case of UDP, the
process differs slightly: when a service is listening on the probed port and the
incoming packet adheres to the specification of that service, it sends a response
back to the requesting system. Analogously to ICMP, the TTL value can be
extracted from TCP and UDP responses by simply examining the IP header.

Negative Responses. In addition to responses which indicate that the host is
up or a service is listening on the probed port, we can also leverage negative
responses or error messages to learn the TTL. For example, in cases where a
TCP port is not open, the host system may respond with a packet which has
the RST flag set. Assuming that the packet is usually generated by the probed
system (we discuss exceptions to this rule in Sect. 3.4), we can extract the TTL
value in the same fashion used for positive responses. For UDP, we leverage
ICMP Port Unreachable replies.

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 309

Next to these protocol-specific errors, we may also receive a message indicat-
ing that the host is not reachable. For example, the last router on the path can
issue an ICMP Host Unreachable message. In this case, given the assumption
that only the last router will send such a message, we can use the TTL from the
incoming packet and decrease it by one (since the original sender would have had
one more hop). ICMP also features a more generic Destination Unreachable mes-
sage; this, however, can be sent by any router on the path and therefore cannot
be used to conclusively calculate the TTL value. Next to these, we may receive
ICMP Communication Administratively Prohibited messages. Such a message
can either be sent by a router or the system itself when a packet is rejected by
the firewall.

3.3 Horizontal Probing

A probed host may not answer, e.g., because it is firewalled and drops any
incoming packets. In these cases, we may still gather valuable information on
the path to the host by probing neighboring hosts. A neighbor in this case is a
host which is located within the same subnet as the target. Although assuming
that each subnet consists of exactly 256 IPs is not correct, this measure can
still provide partial insight into the route and give a close estimate of the actual
TTL value. Therefore, we probe neighbors by changing the last octet of the IP
address ±1, and use previous knowledge from hosts within the same /24 subnet,
as this is the smallest network section generally advertised and accepted via
BGP [18].

3.4 Caveats of Active Probing

There are several scenarios which can induce errors in probes. Typically, pri-
vate customers receive a router for their dial-up account, which uses Network
Address Translation (NAT) to allow multiple LAN clients access to a single
Internet connection. Unless these routers are configured to forward packets to a
machine behind the NAT, any response to the previously mentioned probes will
be generated by the router. As the router adds an additional hop (and hence
decreases the TTL by one) on the way from the NAT client to the server, the
TTL values will mismatch in such a case.

For negative responses, additional artefacts may skew the results. Specifically,
TCP resets or ICMP error packets may be generated by a firewall located before
the intended probe target. In such a case, the firewall itself must spoof the probed
IP to send these packets to ensure that the packet is attributed correctly on the
system which initiated the connection. Hence, we may assume that negative
responses are indeed generated by the probed system. Since we cannot learn the
number of hops between the firewall and probed system, using negative responses
can yield false results. We discuss the number of false results in Sect. 4.

As outlined before, the initial TTL value depends on the operating system of
the sending host. Considering an example in which a Windows client is located
behind a NAT router, which is running a Linux system with an initial TTL value

310 M. Backes et al.

of 255. Even though a packet originating from the Windows machine will only
have one additional hop on its way to the probing server, the TTL value received
by the probing system will greatly differ depending on whether the Windows or
Linux host responded to the probing request. To accommodate for this and for
horizontal probing, we normalize all TTL values to values between 0 and 63, i.e.,
TTL = TTL%64. As the maximum TTL of 255 is not divisible by 64, we first
increment TTL values above 128 by one to correct this discrepancy.

4 Probing Analysis

To evaluate how well active probing could be used in the wild to enable the
use of HCF, we set up two systems. First, we used a regular NTP server not
susceptible to DRDoS to attract benign clients. Second, we set up a honeypot
system running a vulnerable version of NTP to attract spoofing attackers. In the
following, we describe both data sets, discussing for what fraction of hosts we
could learn any TTL value, and comparing this to the TTL values of incoming
packets. Although we are using NTP servers for our evaluation, it is out of
convenience of getting both spoofed and non-spoofed clients for comparison.
In contrast, for protocols like chargen, getting benign traffic would have been
significantly harder. We end this section with a discussion on the implications
of the results of our analysis.

4.1 Benign Traffic

To capture benign traffic, we set up an NTP server that does not implement
monlist feature at all, and is therefore not susceptible to amplification vectors.
To attract NTP clients, we joined the NTP pool project. Note that the term
client refers to its role in NTP, i.e., such a host could either be an end user’s
computer or a server synchronizing its clock with us. Within hours, the server was
added to the public pool and started to receive NTP requests. We analyzed the
incoming traffic for patterns of suspicious behavior (especially dreaded monlist
requests). Our analysis showed that such requests were only issued in small
numbers by scanners (e.g., operated by research groups). As we did not respond
to such amplification requests and did not notice any suspicious activity, it is
highly unlikely that an attacker would choose our server for his amplification
attack. Hence, we deem this data set to consist exclusively of unspoofed traffic.

In total, we gathered data for 48 h, in which we received packets from 543,514
distinct IP addresses. In a first step, we probed each of these hosts immediately
after their first contact using the different types of probes outlined in Sect. 3.1.
In doing so, we could extract TTL values for 316,012 (58.1 %) for probed sys-
tems. The most successful type of probe was ICMP echo, which yielded a result
for 257,694 or 47.4 % of the hosts. In comparison, the most successful TCP-
based, positive response were SYN/ACKs from TCP port 443 (HTTPS), which
accounted for a mere 31,966 (5.9 %) of the hosts. For any UDP-based probes,
we only received negligible amounts of positive responses. Among the negative

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 311

Fig. 1. Deviation differences for selected probe types

responses, ICMP Communication Prohibited for TCP port 4899 (Radmin) was
the most frequent message (113,058 or 20,8 %).

To find out how accurate these results actually are, we compared the nor-
malized TTL values to the ones from the incoming traffic. As stated before,
we assume that the traffic directed to the NTP server is indeed generated by
the alleged senders, i.e., the ground truth value for each sending host can be
extracted from these incoming packets. Initially, we consider all probes to a spe-
cific host for our analysis. In cases where the measured TTL values differ between
the probe types, we select the minimum value of any test. The intuition of this
is straightforward: whenever a firewall or router answers instead of the probed
system, the number of hops between them and our probing server is smaller.
Hence, by choosing the minimum TTL value, we ensure that we measure the
longest path between us and the host responding to the probe. Therefore, if the
probed system answers to one probe whereas all others are responded to by the
firewall, we still measure the accurate value for the system in question.

The results of applying this methodology on the data set are shown in Table 1.
We observe that, with respect to the total number of responding systems, 26.1 %
of the measured TTLs match the ground truth. Moreover, 92.2 % of the values
are within a threshold of ±1, and almost 97 % within ±2. In the following, we
analyze the results for specific tests in more detail, and discuss potential reasons
for the observed deviations.

Table 1. Accuracy of measured TTLs (direct probes only)

Deviation Amount Fraction Cumulated fraction

±0 82,629 26.1 % 26.1 %

±1 208,891 66.1 % 92.2 %

±2 14,623 4.6 % 96.9 %

±3 4,684 1.5 % 98.4 %

More 5,185 1.6 % 100 %

312 M. Backes et al.

The deviation between the measured and actual values is shown in Fig. 1 for
ICMP echo, Communication Prohibited to TCP port 4899, and SYN/ACK for
TCP port 443. We can observe that for ICMP echo, 12.8 % of measured TTLs
were correct, whereas an additional 78.8 % were off-by-one, i.e., 91.6 % of the
measured TTLs were within a threshold of ±1. For Communication Prohibited
on port 4899, we observe that 96.8 % of the values are within ±1, whereas 91 %
are off-by-one. This appears natural to the scenarios we discussed: ICMP echo
requests will often be answered by routers and firewalls due to network address
translation. Although SYN on TCP port 443 was only responsive on 5.9 % of the
hosts, the results are quite interesting. We observe that for 42.2 % of the hosts
which responded to such a probe, the TTL value could be correctly measured.
In addition, another 45.9 % were off-by-one, resulting in 88 % of the values being
within a threshold of ±1. We argue that this is caused by nature of TCP, i.e., we
only receive a SYN/ACK in case a service is listening on the probed system. This
can either occur if the connection directly reached the probed system, i.e., it is
not behind a NAT or the corresponding port is forwarded, or there could be a
chance that a public-facing administrative interface is being exposed for service
needs [2]. Therefore, it is plausible that such routers may respond to HTTPS
requests, explaining the high number of our off-by-one measurements.

Next to probing of the target system itself, we can probe neighboring hosts.
More specifically, we probe direct neighbors (IP ±1) and additionally rely on
previous measurements aimed towards other hosts within the same /24 network.
In doing so, we find that both types of probing increase the coverage. In our
experiment, we found that directly probing neighbors increases the number of
measurable TTLs by 69,399, resulting in a total coverage of 73.4 %. Taking into
account all information from hosts within the same /24 network increases the
coverage more drastically (by 168,730 hosts), yielding TTL values for 91.6 % of
all hosts. At the same time, the accuracy remains similar, with 27 % of the probed
values matching the ground truth. For ±1, we can correctly measure the TTL in
88.9 % of the cases, and 94.3 % of all measurements are within a threshold of ±2.
Given these results for coverage and accuracy, we note that combining different
types of probing towards a single host with horizontal probing of the system’s
neighbors allows us measure the TTL within a threshold of ± 2 for 86.4 % of all
connecting hosts.

4.2 Spoofed Traffic

Next to the benign data set, for which we can measure the TTL within a small
threshold for the majority of the hosts correctly, we wanted to investigate how
well HCF would be suited for spoofed traffic. To that end, we set up a honeypot
running a vulnerable version of NTP server prone to becoming an amplifier for
DRDoS attacks. To avoid unnecessarily harming the spoofed targets while still
pretending to be attractive to adversaries, the outgoing bandwidth was limited,
i.e., we answered to at most two monlist requests per host per minute. We did
not announce the IP address of this machine in any manner and hence assume
that no legitimate traffic would be directed to the host. Instead, incoming NTP

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 313

Fig. 2. Deviation difference between spoofed and non-spoofed traffic

requests are either due to scanning, or spoofed packets sent by an attacker. In
a time-period of 96 h, we recorded 5,616 distinct alleged sender addresses, for
which we could gather direct probe results in 3,983 cases (70.9 %). This slightly
higher coverage (compared to the benign data) can be explained by the fact that
most attacks are targeting servers, which also are more likely to expose services
we actively probe for.

Before conducting any of our measurements, one property of the spoofed
traffic became apparent: more than 99 % of all incoming packets had an assumed
initial TTL of 255. This specific feature, however, should not be used solely to
detect spoofed traffic, since the initial TTL can be changed without much effort
by the attacker. Therefore, we normalized the TTL value as outlined before.

Figure 2 shows the comparison between the measured TTL values and the
TTL values extracted from incoming packets, for both benign and spoofed data
sets. While we can clearly observe that for the majority of benign clients, the
TTL can be guessed within a threshold of ±2, we note that no such trend is
visible for spoofed traffic.

4.3 Implications

In this section, we outlined the results of our experiments on benign and spoofed
data sets to evaluate a feasible margin of error for HCF. With respect to those
data sets, we find that distinguishing between benign and spoofed traffic appears
to yield useful results when using a threshold of 2. The reasons for the impre-
cision of the measurements are manifold, e.g., when a client is behind a NAT
or incoming traffic to the machine is filtered by a firewall. Therefore, a TTL-
based defense mechanism must make a trade-off between false positives and
false negatives, respectively. Based on the data sets we analyzed, if a TTL-based
defense mechanism was to be deployed to protect a service against becoming an

314 M. Backes et al.

unwilling actor in an attack, over 85 % of the benign traffic could pass, while
more than 3/4 of spoofed packets could be dropped, thus avoiding to harm the
targets.

Depending on the type of attacked hosts, this distinction might be even easier
to make. Nevertheless, any TTL-based defense relies on one tacit assumption:
an attacker can not learn the correct TTL value for an arbitrary victim and
an amplifier of his choosing. Therefore, in the following section, we discuss the
feasibility of a method in which the attacker can learn the TTL value (within a
given threshold).

5 Methodology for Estimating Hop Count Value

So far we showed that deploying a TTL-based filtering at the server side would
require some tolerance interval to be functional and avoid collateral damage by
incorrectly classifying legitimate traffic. In this section, we assess if an attacker
can actually bypass the filtering by predicting the correct hop count value
between the hosts and properly adjusting the TTL value. That is, we present a
methodology for estimating the hop count value between amplifiers and victims.

5.1 Key Idea and Attacker Model

Our key idea lies on the observation that paths between arbitrary locations
to a selected destination share (small) segments of the path. We leverage the
fact that such path information can be learned by an attacker to estimate the
number of hops of a packet sent from one location to another. To learn subpaths,
we (i) probabilistically model known paths obtained via traceroutes, and (ii)
combine this knowledge with BGP routing information. Figure 3 shows our idea
for estimating the distance (number of hops) between an amplifier (M) and a
victim (V). For our methodology, we use the common approach for representing
the Internet, which is a graph where nodes are the autonomous systems and
edges are the peerings (routing links) between them. Additionally, we assign
weights to the nodes to denote the hop count number within the individual
AS. One way to build such a graph that illustrates the AS-level topology of the
Internet is to use available BGP data to discover the connectivity information for
the ASes. Nevertheless, studies have shown that BGP data is only available to a
limited extent, therefore the Internet AS-level topology is partially hidden [9,16].
However, our methodology does not primarily rely on the available BGP data,
but rather on the traceroute information an attacker can obtain. We use the
BGP data, when available, as a complement to the traceroute data in order to
discover the missing ASes, and to subsequently calculate the number of hops.

Our attacker (A) aims at evading any TTL-based filter or, at least, reduce its
effectiveness in mitigating amplification attacks. His main goal is to predict the
TTL value as close as possible to the correct one, such that he can craft requests
which are deemed to be legitimate to the server, i.e., amplifier. In theory, there
are few approaches that the attacker may follow to learn the correct TTL value.

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 315

Fig. 3. Approach to estimate the hops between amplifier (M) and victim (V)

First, he may learn the TTL value by actively or passively monitoring traffic
anywhere on the route, and then probe the destination in order to calculate
the remaining part of the route. This approach is neither realistic nor practical
because the attacker has to be present at every route Ri between Mi and the
victim V . Second, if the attacker can position a probe either in the network of
M or V, he can easily measure the TTL value by tracerouting to the other host.

For a more realistic scenario, we restrict the attacker’s capabilities. Figure 3
illustrates this attacker model. Similar to the reverse traceroute method [11],
our attacker is capable of probing from random, distributed locations and can
use any publicly available online resources to traceroute to the amplifier and to
the victim (e.g., RIPE Atlas [3] or looking glass servers). However, he does not
have control over the amplifier and not necessarily full control over the probes.

We restrict neither the location of the amplifiers nor the victims, i.e., they
can be located at arbitrary network locations. We assume that A can obtain a
set of amplifiers (e.g., NTP, DNS), all of which deploy TTL-based filtering and
respond to valid requests only1.

5.2 Methodology

We propose a methodology for estimating the distance between hosts on the
internet through an Exploratory Data Analysis (EDA)2. Our methodology is
comprised of three main components, namely, data collection, data processing,
and EDA. Figure 4 illustrates the methodology we propose in this paper.

1 We assume that the amplifiers have deployed HCF to protect against amplification
attacks, therefore “valid” protocol requests are those with matching TTL value.

2 Exploratory Data Analysis is not a method or a technique, but rather a philosophy
for data analysis that employs a variety of techniques.

316 M. Backes et al.

Fig. 4. Workflow of the methodology

Data Collection. First, depicted in the data collection component, the attacker
collects traceroute data for the victim and the amplifier(s). The attacker launches
traceroutes to the targeted locations from a globally distributed set of hosts on
the Internet such as RIPE Atlas [3]. Note that the distribution of the selected
hosts is required to be global such that there will be a diversity of the paths,
allowing us to predict TTLs for arbitrarily chosen victims.

Data Processing. Second, in the data processing component, we have to ensure
that the relevant data collected in the previous stage is complete and usable.
In an ideal world, tracerouting returns a complete path including all the IP
addresses and ASes on the way up to the destination. In practice, the collected
data from the previous phase is usually imperfect, with a plethora of missing
connecting hops [13]. Such data can pose difficulties in effective data analysis;
therefore, we need to develop certain methods for efficient data scrubbing. First,
we discard all the traceroutes that are missing more than a certain percentage
(e.g., 50 %) of the intermediate hops. Also, we ignore traceroutes that cannot
reach at least the AS of the destination. In the case where the destination address
belongs to the same AS as the last replying node, we make an intuitive assump-
tion that this is the last AS in the path, and we supplement the route with the
AS number of the last replying node. We then continue filling up the gaps of
the unknown ASes due to private IP addresses within the traceroute. Private
addressing might occur when a packet passes through someone’s internal net-
work with implemented Multiprotocol Label Switching (MPLS) routing [21]. In
such cases, we assume that the border AS, the one with a public IP address
before the MPLS routing, is the correct one, and we fill in the gaps accordingly.
Finally, to fill in the remaining missing hops, we apply a technique that employs
the publicly available BGP data. The BGP data assists in the discovering of the
neighboring AS3 and helps us to bridge the gap between two known autonomous

3 A neighbor (or peering) autonomous system is the one that the AS directly inter-
connect with in order to exchange traffic.

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 317

Fig. 5. Connecting border ASes (AS-Mi and AS-Vi)

systems. Note that this technique can only complete the lacking AS numbers,
but not the actual hops (and their IP addresses).

Exploratory Data Analysis. Once the data is processed, i.e., prepared for
analysis, we dissect the data set using the EDA approach. This stage of the
methodology repeats for every victim and it involves three subsequent steps.

Find Common Patterns. Finding common patterns is the first step in the
data exploration. This method transforms the paths from detailed traceroutes
with IP addresses of the hops to coarse-grained ones with only AS-level paths
and their weights, i.e., the number of hops in each AS for a particular traceroute.

Build a Model. This method assists in constructing a probabilistic table that
identifies the likelihood of an AS to be part of the route between amplifier and
victim. If all collected traceroutes pass through a particular AS, say AS-1, on
the way to the target location T, the method denotes the probability of 1 that
the AS-1 exist as a hop on the way to T. Moreover, this method also considers
the average number of hops within the AS and the distance of the AS from the
target. The average number is the AS internal hop count value, and it may vary
due to routing-related reasons such as load balancing. To identify the border
autonomous systems (in the next step), we need to define the distance as a
number of hops that a particular AS is distant from the target AS. For example,
the AS the target T belongs to always has a probability of 1 and distance 0.

Approximate the TTL Value. The probabilistic modeling helps in building a
partial path between two hosts. Consider the scenario illustrated in Fig. 5. The
model identifies with a degree of certainty the common subpaths of the target
and the source. Furthermore, it estimates the hop count value of these subpaths.
To estimate the final hop count value, we need to bridge these two subpaths with
the missing intermediate AS(s). To this end, we apply techniques based on the
available BGP data such that the final result is a fully connected AS-level path.

Initially, we identify the border autonomous systems (labeled as AS-Mi and
AS-Vi in Fig. 5), i.e., the last certain (most distant) AS in the common subpaths.
With respect to the possible missing hops for connecting these two subpaths, we
distinguish three different scenarios (marked with a, b and c in Fig. 5):

318 M. Backes et al.

Direct connection (a) When a direct peering between the border autonomous
systems exists, i.e., AS-Mi is in the neighborhood4 of AS-Vi and vice versa,
and the intersection set of the AS-Mi and AS-Vi neighbors is empty; we
assume that the border ASes are directly connected (AS-Mi ←→ AS-Vi).

One-hop connection (b) To identify the single connecting point in between,
accordingly, we have to check the neighbors of the border ASes. In the case
where only one intersecting AS exists, we assume that this particular AS is
the connecting point. If the intersection set contains more than one common
AS, we refer to our probability table. We then accordingly choose the AS
with the biggest probability to be a part of the route.

N-hop connection (c) A more complex scenario is when two or more interme-
diate AS are missing. In such a scenario, we build a tree of possible subpaths
by examining additional two levels5 of neighbors. Upon building up the tree
of all possible paths, we test every branch over the database of available
BGP routes and the pre-computed table of probabilities. In case the branch
is present in the BGP routing database, we deem that particular route to be
the accurate one.

Once the bridging subpath is identified, we add up the average hop count
of the connecting ASes to the sum of the hop count value estimated for the
subpaths.

6 Experimental Setup and Results

In the following, we describe the data set used to evaluate our approach. Subse-
quently, we present and discuss the experimental results of the evaluation.

6.1 Data Set

To evaluate the proposed methodology, we mainly use services provided by the
RIPE Atlas network [3], which is the largest Internet measurement network built
by RIPE NCC. Moreover, they provide an API for creating different types of
measurements and for collecting the data in a structured format. In the following,
we list the services and data sources used for our experimental evaluation.

1. RIPE Atlas probes: To attain a global coverage and also to have a possibility
to obtain the ground truth, we use the RIPE Atlas network of probes [3] as
a basis for our experiments. We observe that this network has around 9,000
active probes, spread across 181 countries and 3,386 ASes [4]. Such a global
coverage fulfils the requirements for our experimental evaluation. Moreover,
the platform give us the flexibility for requesting custom measurements, in

4 Peering ASes are ASes which directly interconnect with each other. We obtain this
information from the available BGP data.

5 Statistics [3] show that average length of AS-level paths is 4, therefore we bound the
subpath examination to 2 levels, i.e., we can examine paths of at least 6 hops.

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 319

our case traceroutes, by selecting any of the deployed active probes. This
flexibility is of particular importance for our experiments since we can select
a subset of nodes with different geographical and logical locations to collect
the traceroute data. Additionally, when a probe acts as a victim in our leave-
one-out analysis (which we outline in the following), we can easily obtain
the ground truth by running traceroute measurement from the probes to the
amplifiers.

2. BGP data: When the collected traceroute data is not enough for making the
final assessment of the connectivity between the ASes, we utilize available
BGP data. In order to infer the AS-level connectivity, we use RIPE Atlas
as an accurate source for BGP data. Also the BGP data helps to obtain a
ground truth of individual ASes.

3. Amplifiers: To investigate the real-world implications of our attack, we
scanned for chargen amplifiers on the Internet. In total, we randomly selected
16 such servers.

6.2 Leave-one-out Evaluation

To evaluate the performance of our methodology, we use a leave-one-out (L-1-
O) evaluation approach, in which every probe acts like a victim at a selected
time. Informally, for a data set with P probes, we perform P experiments with
P − 1 training cases and one test case. In other words, for every experiment we
temporarily remove one probe from the data set and select that particular probe
as our victim. Upon fixing the probe Pi as a victim V , the model is rebuilt upon
this newly defined set.

Suppose that P = p1, . . . , pn is a set of probes, M = m1, . . . ,ml set of
amplifiers, and R = r11, . . . , rnm set of traceroutes where rij is a traceroute
from pi to mj . For ease of exposition, we use the notation pi ⇒R M to describe
a set of all traceroutes from pi to every member of the set M . Applying the L-1-0
approach to the methodology works as follows:

1. Collect the traceroute data (R
⋃ {pi ⇒R P\{pi}|i = 1, . . . , n}).

2. Process the data and extract the ground truth.
3. Remove probe pi from P (P\{pi}) and set V = pi, where V is the victim.
4. Extract the ground truth for pi to M i.e., the distance from pi ⇒R M .
5. Run the EDA using the remaining data.
6. Repeat step 3–5 for i = 1, . . . , n

L-1-O in Practice. We apply the L-1-O method on a set of 40 random RIPE
Atlas probes, located in different ASes, and 16 randomly distributed chargen
amplifiers. We first collect the required data, namely, we obtain the path from
every probe to all of the 16 amplifiers, and also between the probes within the
set. We use the RIPE Atlas REST API to create IPv4 traceroutes using ICMP
packets and hops limit of 32. In order to get more precise paths and avoid
measurements inconsistencies caused by load balancing routers, we employ the
Paris traceroute measurement tool [6].

320 M. Backes et al.

Once the traceroute data is collected and the data set is processed, i.e.,
cleaned up using the method described in Sect. 5.2, we pass the data through step
3–6 from the L-1-0 approach. In such experimental setup, L-1-O theoretically
can evaluate 640 TTL predictions, i.e., paths from 16 amplifiers to 40 victims.
Unfortunately, because of the incompleteness of the traceroute data as well as
instability of some of the probes, the method was able to predict and evaluate
around 593 (92.6 %) individual paths.

Overall Performance. Table 2 shows the overall performance of our method-
ology. The experimental results show that using our methodology, an attacker
can predict correctly without any deviation roughly 13 % of the paths between
the amplifiers and the victims, i.e., 13 % of the measured hop counts match the
ground truth. However, we showed in Sect. 4 that, with a tolerance of ±2, a
TTL-based defense could block over 75 % of spoofed traffic, while allowing 85 %
of benign traffic to pass. Therefore, when we take this threshold into considera-
tion, our methodology is effective for 56.3 % of the paths.

Table 2. Overall performance of the methodology

Amount Fraction Cumulated fraction

±0 78 13.2 % 13.2 %

±1 170 28.7 % 28.5 %

±2 132 22.3 % 56.3 %

±3 49 8.3 % 69.1 %

More 164 27.7 % 100%

Moreover, we observe that applying our methodology to a set of randomly
chosen amplifiers, the attacker can isolate amplifiers for which he can predict
the hop count value between the amplifier and any arbitrary victim with higher
accuracy. Thus, he can bypass the TTL-based defense running on the amplifier
and exploit it for a DRDoS attack. Figure 6 illustrates the average hop count
deviation per amplifier and shows that the attacker can, indeed, sample a set
of good amplifiers. We see several explanations for such a deviation among the
amplifiers. The geographical and logical location of the amplifiers and the victims
plays an important role. As we discussed before, the limitation of the BGP data
makes our methodology not equally precise for all the AS. Also another cause is
the inconsistency of the collected data between BGP data and traceroute path
caused by Internet Exchange Points and sibling ASes managed by the same
institution. However, these results show that even with a low threshold value
at the amplifier, by wisely choosing amplifiers to use, an attacker is able to
circumvent any TTL-based defense against DRDoS attacks.

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 321

Fig. 6. Average hop deviation per amplifier

7 Conclusion

In this paper, we evaluated the feasibility of using Hop Count Filtering to mit-
igate DRDoS attacks. To that end, we detailed how a server can use active
probing to learn TTLs of alleged packet senders. Based on data sets of benign
and spoofed NTP requests, we find that with a tolerance of ±2, a TTL-based
defense could block over 75 % of spoofed traffic, while allowing 85 % of benign
traffic to pass. Subsequently, however, we show that an attacker can use a com-
bination of tracerouting and BGP data to build statistical models, which allows
him to estimate the TTL for his target within that tolerance level. Hence, by
wisely choosing amplifiers to use, he is able to circumvent any TTL-based defense
against DRDoS attacks. We therefore argue that any (current or future) defen-
sive system based on TTL values can be bypassed in a similar fashion, and find
that future research must be steered towards more fundamental solutions to
thwart any kind of IP spoofing attacks.

Acknowledgments. This work was supported by the German Federal Ministry of
Education and Research (BMBF) through funding for the Center for IT-Security, Pri-
vacy and Accountability (CISPA) as well as through the BMBF grant 01IS14009B
(“BDSec”).

The authors would like to thank Sven Bugiel for his comments on an earlier version
of the paper. Additionally, we are grateful for the feedback from our shepherd Roberto
Perdisci as well as those of our anonymous reviewers.

References

1. Default TTL values in TCP/IP. http://www.map.meteoswiss.ch/map-doc/
ftp-probleme.htm

2. Functional requirements for broadband residential gateway devices. https://www.
broadband-forum.org/technical/download/TR-124.pdf

3. RIPE Atlas: Internet data collection system. https://atlas.ripe.net/
4. RIPE Atlas: Statistics and network coverage. https://atlas.ripe.net/results/maps/

network-coverage/
5. Technical details behind a 400Gbps NTP amplification DDoS attack. https://goo.

gl/j7zWEp

http://www.map.meteoswiss.ch/map-doc/ftp-probleme.htm
http://www.map.meteoswiss.ch/map-doc/ftp-probleme.htm
https://www.broadband-forum.org/technical/download/TR-124.pdf
https://www.broadband-forum.org/technical/download/TR-124.pdf
https://atlas.ripe.net/
https://atlas.ripe.net/results/maps/network-coverage/
https://atlas.ripe.net/results/maps/network-coverage/
https://goo.gl/j7zWEp
https://goo.gl/j7zWEp

322 M. Backes et al.

6. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,
Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute.
In: Internet Measurement Conference (2006)

7. Beitollahi, H., Deconinck, G.: Analyzing well-known countermeasures against dis-
tributed denial of service attacks. Comput. Commun. 35, 1312–1332 (2012)

8. Durumeric, Z., Bailey, M., Halderman, J.A.: An internet-wide view of internet-wide
scanning. In: USENIX Security Symposium (2014)

9. Gregori, E., Improta, A., Lenzini, L., Rossi, L., Sani, L.: On the incompleteness of
the AS-level graph: a novel methodology for BGP route collector placement. In:
Internet Measurement Conference (2012)

10. Jin, C., Wang, H., Shin, K.G.: Hop-count filtering: an effective defense against
spoofed DDoS traffic. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security. ACM (2003)

11. Katz-Bassett, E., Madhyastha, H.V., Adhikari, V.K., Scott, C., Sherry, J., van
Wesep, P., Anderson, T.E., Krishnamurthy, A.: Reverse traceroute. In: USENIX
NSDI (2010)

12. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from hell? Reducing the
impact of amplification DDoS attacks. In: USENIX Security Symposium (2014)

13. Mao, Z.M., Rexford, J., Wang, J., Katz, R.H.: Towards an accurate AS-level tracer-
oute tool. In: Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication (2003)

14. Mirkovic, J., Reiher, P.L.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. Comput. Commun. Rev. 34, 39–53 (2004)

15. Mukaddam, A., Elhajj, I., Kayssi, A.I., Chehab, A.: IP spoofing detection using
modified hop count. In: International Conference on Advanced Information Net-
working and Applications (2014)

16. Oliveira, R.V., Pei, D., Willinger, W., Zhang, B., Zhang, L.: The (in)completeness
of the observed internet AS-level structure. IEEE/ACM Trans. Netw. 18(1), 109–
122 (2010)

17. Paxson, V.: An analysis of using reflectors for distributed denial-of-service attacks.
Comput. Commun. Rev. 31(3), 38–47 (2001)

18. Pepelnjak, I., Durand, J., Doering, G.: BGP operations and security. RFC 7454,
RFC Editor (2015). https://tools.ietf.org/html/rfc7454

19. Postel, J.: Internet protocol specification. RFC 791, RFC Editor (1981). https://
tools.ietf.org/html/rfc791

20. Postel, J.: Character generator protocol. RFC 864, RFC Editor (1983). https://
tools.ietf.org/html/rfc864

21. Rosen, E.C., Viswanathan, A., Callon, R.: Multiprotocol label switching architec-
ture. RFC 3031, RFC Editor, January 2001. http://tools.ietf.org/html/rfc3031

22. Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In:
NDSS (2014)

23. Ryba, F.J., Orlinski, M., Wählisch, M., Rossow, C., Schmidt, T.C.: Amplifica-
tion and DRDoS attack defense-a survey and new perspectives. arXiv preprint
arXiv:1505.07892 (2015)

24. Specht, S.M., Lee, R.B.: Distributed denial of service: taxonomies of attacks, tools,
and countermeasures. In: International Conference on Parallel and Distributed
Computing Systems (2004)

https://tools.ietf.org/html/rfc7454
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc864
https://tools.ietf.org/html/rfc864
http://tools.ietf.org/html/rfc3031
http://arxiv.org/abs/1505.07892
http://arXiv.org/abs/1505.07892

Systematization of Knowledge
and Experience Reports

A Look into 30 Years of Malware Development
from a Software Metrics Perspective

Alejandro Calleja1(B), Juan Tapiador1, and Juan Caballero2

1 Department of Computer Science, Universidad Carlos III de Madrid, Getafe, Spain
{accortin,jestevez}@inf.uc3m.es

2 IMDEA Software Institute, Madrid, Spain
juan.caballero@imdea.org

Abstract. During the last decades, the problem of malicious and
unwanted software (malware) has surged in numbers and sophistication.
Malware plays a key role in most of today’s cyber attacks and has con-
solidated as a commodity in the underground economy. In this work,
we analyze the evolution of malware since the early 1980s to date from
a software engineering perspective. We analyze the source code of 151
malware samples and obtain measures of their size, code quality, and
estimates of the development costs (effort, time, and number of people).
Our results suggest an exponential increment of nearly one order of mag-
nitude per decade in aspects such as size and estimated effort, with code
quality metrics similar to those of regular software. Overall, this supports
otherwise confirmed claims about the increasing complexity of malware
and its production progressively becoming an industry.

Keywords: Malware · Source code analysis · Software metrics

1 Introduction

The malware industry seems to be in better shape than ever. In their 2015 Inter-
net Security Threat Report [5], Symantec reports that the total number of known
malware in 2014 amounted to 1.7 billion, with 317 million (26 %) new samples
discovered just in the preceding year. This translates into nearly 1 million new
samples created every day. A recent statement by Panda Security [32] provides a
proportionally similar aggregate: out of the 304 million malware samples detected
by their engines throughout 2015, 84 million (27 %) were new. These impressive
figures can be partially explained by the adoption of reuse-oriented development
methodologies that make exceedingly easy for malware writers to produce new
samples, and also by the increasing use of packers with polymorphic capabilities.
Another key reason is the fact that over the last decade malware has become a
profitable industry, thereby acquiring the status of a commodity [13,20] in the
flourishing underground economy of cyber crime [35,37]. From a purely technical
point of view, malware has experienced a remarkable evolutionary process since
the 1980s, moving from simple file-infection viruses to stand-alone programs with
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 325–345, 2016.
DOI: 10.1007/978-3-319-45719-2 15

326 A. Calleja et al.

network propagation capabilities, support for distributed architectures based on
rich command and control protocols, and a variety of modules to execute mali-
cious actions in the victim. Malware writers have also rapidly adapted to new
platforms as soon as these acquired a substantial user base, such as the recent
case of smartphones [36].

The surge in number, sophistication, and repercussion of malware attacks
has gone hand in hand with much research, both industrial and academic, on
defense and analysis techniques. The majority of such investigations have focused
on binary analysis, since most malware samples distribute in this form. Only
very rarely researchers have access to the source code and can report insights
gained from its inspection. (Notable exceptions include the analysis of the source
code of 4 IRC bots by Barford and Yegneswaran [11] and the work of Kotov and
Massacci on 30 exploit kits [26].) One consequence of the lack of wide availability
of malware source code is a poor understanding of the malware development
process, its properties when looked at as a software artifact, and how these
properties have changed in the last decades.

In this paper, we present a study of the evolution of malware from a software
engineering perspective. Our analysis is based on a dataset composed of the
source code of 151 malware samples ranging from 1975 to 2015, including early
viruses, worms, trojans, botnets, and remote access trojans (RATs). We make
use of several metrics used in software engineering to quantify different aspects
of the source code of malware understood as a software artifact. Such metrics are
grouped into three main categories: (i) measures of size: number of source lines of
code (SLOC), number of source files, number of different programming languages
used, and number of function points (FP); (ii) estimates of the cost of developing
the sample: effort (man-months), required time, and number of programmers;
and (iii) measures of code quality: comment-to-code ratio, complexity of the
control flow logic, and maintainability of the code. We also use these metrics
to compare malware source code to a selection of benign programs. To the best
of our knowledge, our work is the first to explore malware evolution from this
perspective. We also believe that our dataset of malware source code is the
largest analyzed in the literature. The main findings of our work include:

1. We observe an exponential increase of roughly one order of magnitude per
decade in the number of source code files and SLOC and FP counts per
sample. Malware samples from the 1980s and 1990s contain just one or a few
source code files, are generally programmed in one language and have SLOC
counts of a few thousands at most. Contrarily, samples from the late 2000s and
later often contain hundreds of source code files spanning various languages,
with an overall SLOC count of tens, and even hundreds of thousands.

2. In terms of development costs, our estimates evidence that malware writing
has evolved from small projects of just one developer working no more than
1–2 months full time, to larger programming teams investing up to 6–8 months
and, in some cases, possibly more.

A Look into 30 Years of Malware Development 327

3. A comparison with selected benign software projects reveals that the largest
malware samples in our dataset present software metrics akin to those of
products such as Snort or Bash, but are still quite far from larger software
solutions.

4. The code quality metrics analyzed do not suggest significant differences
between malware and benign software. Malware has slightly higher values
of code complexity and also better maintainability, though the differences are
not remarkable.

The remaining of this paper is organized as follows. Section 2 provides an
overview of the software metrics used in this work. In Sect. 3 we describe our
dataset of malware source code. Section 4 contains the core results of this work
and Sect. 5 discusses the suitability of our approach, its limitations, and addi-
tional conclusions. Finally, Sect. 7 concludes the paper.

2 Software Metrics

This section provides an overview of the software metrics concepts used in this
work to quantify various aspects of malware source code. We first introduce the
two most widely used measures of software size: lines of source code (SLOC) and
function points (FP). We then introduce effort estimation metrics, specifically
the Constructive Cost Model (COCOMO), and also measures of source code
complexity and maintainability.

2.1 Measuring Software Size

The number of lines in the source code of a program (SLOC) constitutes the
most commonly used measure of its size. The number of physical SLOC refers
to a count of the number of lines in the source code of a program, excluding
comment and blank lines. Contrarily, logical SLOC counts take into account
language-specific aspects, such as terminating symbols and style or formatting
conventions, to deliver an estimate of the number of executable statements.
Both IEEE [23] and the Software Engineering Institute (SEI) [31] had provided
definitions and counting guidelines to obtain SLOC measures.

SLOC counts have a number of shortcomings [29] and can be easily misused.
Despite this, it has a long-standing tradition as the most popular sizing metric.
Furthermore, SLOC is an essential input for many estimation models that aim
at predicting the effort required to develop a system, its maintainability, the
expected number of bugs/defects, or the productivity of programmers.

Comparing size across different programming languages can give misleading
impressions of the actual programming effort: the more expressive the program-
ming language, the lower the size. An alternative metric to using SLOCs as the
estimated software size is to use a measure of its functionality. The best known of
such measures is the function-point count, initially proposed by Albrecht [7] and
later refined by Albrecht and Gaffney [8]. The function-point count refers to the

328 A. Calleja et al.

overall functionality of the software and is measured by estimating four program
features: external inputs and outputs, user interactions, external interfaces, and
files used. The overall count also involves various weights that account for the
possibly different complexity of each of the above elements. Thus, the so-called
unadjusted function-point count (UFC) is computed by simply multiplying each
count by the appropriate weight and summing up all values. The UFC can be
subsequently adjusted through various factors that are related to the complexity
of the whole system.

The expected size in SLOC of a software project can be estimated from
function-point counts through a process known as backfiring [25]. This con-
sists in the use of existing empirical tables that provide the average number
of SLOC per function point in different programming languages. Software Pro-
ductivity Research (SPR) [24] annually publishes such conversion ratios for the
most common programming languages in what is known as Programming Lan-
guages Tables (PLT), which are empirically obtained by analyzing thousands
of software projects. Table 1 shows the SLOC-to-function-point ratios provided
by PLT v8.2 for the languages most commonly observed in malware. Overall,
backfiring is useful as SLOC counts are not available early enough in the require-
ments phase for estimating purposes. Also, the resulting UFC measure is a more
normalized measure of the source code size.

Table 1. SLOC to function-point ratios for various programming languages.

Programming language SLOC/FP

ASP / ASP.Net 69
Assembly 119
Shell / DOS Batch 128
C 97
C# 54
C++ 50
HTML / CSS / XML / XSLT 34

Programming language SLOC/FP

Java 53
Javascript 47
PHP 67
Pascal 90
Python 24
SQL / make 21
Visual Basic 42

2.2 Effort Estimation: The Constructive Cost Model (COCOMO)

One of the core problems in software engineering is to make an accurate estimate
of the effort required to develop a software system. This is a complex issue that
has attracted much attention since the early 1970s, resulting in various techniques
that approach the problem from different perspectives [34]. A prominent class of
such techniques are the so-called algorithmic cost modeling methods, which are
based on mathematical formulae that provide cost figures using as input various
measures of the program’s size, organizational practices, and so on.

One of the best known algorithmic software cost estimation methods is the
Constructive Cost Model (COCOMO) [12]. COCOMO is an empirical model
derived from analyzing data collected from a large number of software projects.

A Look into 30 Years of Malware Development 329

These data were used to find, through basic regression, formulae linking the
size of the system, and project and team factors to the effort to develop it. As
in most algorithmic cost models, the number of lines of source code (SLOC)
in the delivered system is the basic metric used in cost estimation. Thus, the
basic COCOMO equation for the effort (in man-months) required to develop a
software system is

E = ab(KLOC)bb , (1)

where KLOC is the estimated number of SLOC expressed in thousands. The
development time (in months) is obtained from the effort as

D = cbE
db , (2)

and the number of people required is just

P =
E

D
. (3)

In the equations above, the coefficients ab, bb, cb, and db are empirical estimates
dependent on the type of project (see Table 2). COCOMO considers three types
of projects: (i) Organic projects (small programming team, good experience, and
flexible software requirements); Semi-detached projects (medium-sized teams,
mixed experience, and a combination of rigid and flexible requirements); and
(iii) Embedded projects (organic or semi-detached projects developed with tight
constraints).

Table 2. Basic COCOMO coefficients.

Software project ab bb cb db

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

The model described above is commonly known as Basic COCOMO and is
very convenient to obtain a quick estimate of costs. A further refinement is pro-
vided by the so-called Intermediate COCOMO. The main difference consists in
the addition of various multiplicative modifiers to the effort estimation (E) that
account for attributes of both the product and the programming process such as
the expected reliability, and the capability and experience of the programmers.
Since these are not known for malware, we will restrict ourselves to the Basic
COCOMO model.

2.3 Source Code Complexity and Maintainability

Software complexity metrics attempt to capture properties related to the inter-
actions between source code entities. Complexity is generally linked to main-
tainability, in the sense that higher levels of complexity might translate into

330 A. Calleja et al.

a higher risk of introducing unintentional interactions and, therefore, software
defects [27].

One of the earliest—and still most widely used—software complexity metric
is McCabe’s cyclomatic complexity [28], often denoted M . The cyclomatic com-
plexity of a piece of source code is computed from its control flow graph (CFG)
and measures the number of linearly independent paths within it; that is, the
number of paths that do not contain other paths within themselves. Thus, a
piece of code with no control flow statements has M = 1. A piece of code with
one single-condition IF statement would have M = 2, since there would be two
paths through the code depending on whether the IF condition evaluates to true
or false. Mathematically, the cyclomatic complexity of a program is given by

M = E − N + 2P, (4)

where E is the number of edges in the CFG, N the number of nodes, and P
the number of connected components. The term “cyclomatic” stems from the
connections between this metric and some results in graph theory and algebraic
topology, particularly the so-called cyclomatic number of a graph, which mea-
sures the dimension of the cycle space of a graph [16].

The cyclomatic complexity has various applications in the process of devel-
oping and analyzing software products. The most direct one is to limit the com-
plexity of the routines or modules that comprise the system. McCabe recom-
mended that programmers should limit each module to a maximum complexity
of 10, splitting it into smaller modules whenever its complexity exceeds this
value. The NIST Structured Testing Methodology [38] later adopted this prac-
tice and relaxed the figure up to 15, though only occasionally and if there are well
grounded reasons to do it. The cyclomatic complexity has also implications in
program testing because of its connection with the number of test cases that are
necessary to achieve thorough test coverage. Specifically, M is simultaneously:
(i) an upper bound for the number of test cases needed to achieve a complete
branch coverage (i.e., to execute all edges of the CFG); and (ii) a lower bound
for the number of paths through the CFG. Thus, a piece of code with high M
would have more pathways through the code and would therefore require higher
testing effort.

The cyclomatic complexity is also connected to another code metric called
the maintainability index (MI), introduced by Oman and Hagemeister in [30].
The MI is a value between 0 and 100 that measures how maintainable
(i.e., easy to understand, support, and change) the source code is, with high
values meaning better maintainability. One of the most common definitions of
the MI is given by

MI = 100
171 − 5.2 ln (V) − 0.23M − 16.2 ln (SLOC)

171
, (5)

where V is Halsteads average volume per module (another classic complexity met-
ric; see [21] for details), M is the average cyclomatic complexity per module, and
SLOC is the average number of source code lines per module. This is, for instance,

A Look into 30 Years of Malware Development 331

the definition used by Visual Studio, and does not take into account the comment-
to-code ratio as the original one proposed in [30]. As in the case of the COCOMO
estimators, Oman and Hagemeister arrived at this formula through statistical
regression over a dataset consisting of a large number of software projects tagged
with expert opinions. The MI has been included in Visual Studio since 2007, and
in the JSComplexity and Radon metrics for Javascript and Python. Although not
exempt from criticisms, its use was promoted by the Software Engineering Insti-
tute in their “C4 Software Technology Reference Guide” [33] as a potentially good
predictor of maintainability. As for its interpretation, there is no agreed upon safe
limits. For example, Visual Studio flags as suspicious modules with MI < 20.

3 Dataset

Our work is based on a dataset of malware source code collected by the authors
over several months in 2015. Collecting malware source code is a challenging
endeavor because malware is typically released in binary form. Only occasionally
its source code is released or leaked, with its availability being strongly biased
towards classical viruses and early specimens. When leaked, the source code may
be difficult to access in underground forums. These challenges make it impossible
to try to be complete. While we try to collect as many samples as possible, the
goal is to acquire representative examples of the malware ecosystem during the
last 30+ years, constrained to the limited availability.

Samples were obtained from a variety of sources, including virus collection sites
such as VX Heaven, code repositories such as GitHub, classical e-zines published
by historically prominent malware writing groups such as 29A, various malware
exchange forums available in the web, and through various P2P networks. We
expanded our list of sources by using a snowballing methodology, exploring pre-
viously unknown sources that were referenced in sites under examination.

Fig. 1. Distribution of malware source code samples in the dataset.

332 A. Calleja et al.

Our initial collection contained 210 different samples of malware source code.
Each sample was first quickly verified through manual inspection and then com-
piled, executed and, whenever possible, functionally tested. Approximately 30 %
of the obtained samples were discarded at this point, either because testing them
was unfeasible (e.g., due to nontrivial compilation errors or unavailability of a
proper testing environment), or simply because they turned out to be fake.

Table 3. Malware source code samples in the dataset.

Year Name Type
1975 ANIMAL T
1982 ElkCloner V
1986 Rushrour V
1986 V11 V
1987 Bvs V
1987 Numberone V
1988 MorrisWorm W
1989 AIDS V
1989 CIA V
1989 Eddie V
1990 Anthrax V
1990 Diamond V
1991 486 V
1991 808 V
1991 Badbrains V
1991 Demonhyak V
1991 Tormentor V
1992 ACME V
1992 Proto-t V
1992 Rat V
1992 Thunderbyte V
1993 Asexual V
1993 Beavis V
1993 DarkApocalypse V
1993 Nakedtruth V
1994 Batvir V
1994 Bluenine V
1994 Dichotomy V
1994 Digitisedparasite V
1995 242 V
1995 Bluelightening V
1995 RCE285 V
1996 Apocalyptic V
1996 Combat V
1996 Galicia V
1996 Jupiter V
1996 Mars V
1996 Staog V

Year Name Type
1997 CSV V
1997 Cabanas V
1997 Harrier V
1997 RedTeam V
1997 V6000 V
1998 Anaphylaxis W
1998 Ch0lera W
1998 Gift W
1998 Marburg V
1998 PGPMorf2 V
1998 Plague2000 W
1998 Shiver M
1998 Teocatl M
1999 Babylon V
1999 BeGemot V
1999 Demiurg V
1999 Fabi2 V
1999 IISW W
1999 Melissa M
1999 Nemesi V
1999 Prizzy V
1999 Rinim V
1999 RousSarcoma V
1999 YLANG V
1999 Yobe V
2000 Chainsaw W
2000 Dream V
2000 Energy W
2000 Examplo V
2000 ILOVEYOU W
2000 Icecubes W
2000 Milennium V
2000 Rammstein V
2000 Troodon W
2000 Tuareg V
2000 W2KInstaller V
2000 XTC W
2000 Zelda W

Year Name Type
2001 Anarxy W
2001 Ketamine V
2001 MW W
2001 Nicole V
2001 OU812 V
2001 Plexar V
2001 Rudra V
2001 Tapakan V
2002 DW V
2002 Efishnc V
2002 Gemini V
2002 Grifin W
2002 Junkmail V
2002 Lexotan V
2002 Omoikane V
2002 PieceByPiece W
2002 Ramlide V
2002 Simile V
2002 Solaris V
2002 Taichi V
2002 Vampiro V
2002 ZMist V
2003 Blaster W
2003 Mimail W
2003 Obsidian W
2003 Rainbow V
2003 Seraph V
2003 Tahorg V
2004 Beagle B
2004 Caribe W
2004 Jollyroger V
2004 Mydoom W
2004 Netsky W
2004 Pilif W
2004 Sasser W
2004 Shrug V
2005 Assiral W
2005 Blackhand V

Year Name Type
2005 Egypt V
2005 Eternity V
2005 Friendly V
2005 Gripb V
2005 Hidan V
2005 Kroshkaenot V
2005 Nanomites V
2005 Spieluhr T
2005 WRhRage W
2006 Gurdof W
2006 Kekule W
2006 Macbet W
2006 Ston W
2007 Antares V
2007 BO2K R
2007 GhostRAT R
2007 Zeus T
2008 BatzBack W
2008 Grum B
2009 Cairuh W
2009 Hexbot2 T
2010 Carberp T
2011 KINS T
2011 PC-RAT R
2012 AndroR R
2012 Dexter T
2013 Alina T
2013 Beetle V
2013 Pony2 T
2013 SharpBot R
2014 Dendroid R
2014 Gopnik B
2014 OmegaRAT R
2014 Rovnix T
2014 SpyNet R
2014 Tinba T
2015 Pupy R

A Look into 30 Years of Malware Development 333

The 151 successfully tested samples that comprise our final dataset have been
tagged with a year and a loose category. The year corresponds to their develop-
ment when stated by the source, otherwise with the year they were first spotted
in the wild. They are also tagged with a coarse-grained malware type: Virus
(V), Worm (W), MacroVirus (M), Trojan (T), Botnet (B), or RAT (R). We are
aware that this classification is rather imprecise. For instance, nearly all Botnets
and RATs include bots that can be easily considered as Trojans, Backdoors or
Spywares and, in some cases, show Worm features too. The same applies to some
of the more modern viruses, which also exhibit Worm-like propagation strate-
gies or behave like stand-alone Trojans. We chose not to use a more fine-grained
malware type because it is not essential to our study and, furthermore, such
classifications are problematic for many modern malware examples that feature
multiple capabilities.

Figure 1 shows the distribution by year of the final dataset of 151 samples.
Approximately 62 % of the samples (94) correspond to the period 1995–2005,
with the remaining equally distributed in the 2006–2015 (27) and 1985–1994
(28) periods, plus two samples from 1975 and 1982, respectively. The largest
category is Viruses (92 samples), followed by Worms (33 samples), Trojans
(11 samples), RATs (9 samples), MacroViruses (3 samples), and Botnets
(3 samples). A full listing of the 151 samples is provided in Table 3.

4 Analysis

This section describes our analysis over the malware source code dataset. It
first details source code analytics (Sect. 4.1), then it estimates development cost
(Sect. 4.2), next it discusses complexity and maintainability metrics (Sect. 4.3),
and finally compares malware to benign code (Sect. 4.4).

4.1 Source Code Analytics

We next discuss various statistics obtained from the source code of the malware
samples in our dataset.

Number of Source Code Files. Figure 2a shows the distribution over time of
the number of files comprising the source code of the different malware samples.
Except for a few exceptions, until the mid 1990s there is a prevalence of malicious
code consisting of just one file. Nearly all such samples are viruses written in
assembly that, as discussed later, rarely span more than 1,000 lines of code
(LOC). This follows a relatively common practice of the 1980s and 1990s when
writing short assembly programs.

From the late 1990s to date there is an exponential growth in the number
of files per malware sample. The code of viruses and worms developed in the
early 2000s is generally distributed across a reduced (<10) number of files, while
some Botnets and RATs from 2005 on comprise substantially more. For instance,
Back Orifice 2000, GhostRAT, and Zeus, all from 2007, contain 206, 201, and
249 source code files, respectively. After 2010, no sample comprises a single file.

334 A. Calleja et al.

Fig. 2. Source code analytics of the malware samples in our dataset. (a) Number of
files. (b) SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b)
and (d) the y-axis is shown in logarithmic scale.

Examples of this time period include KINS (2011), Rovnix (2014), and SpyNet
(2014), with 267, 276, and 324 files, respectively. This increase reveals a more
modular design, which also correlates with the use of higher-level programming
languages discussed later.

Simple least squares linear regression over the data points shown in Fig. 2a
yields a regression coefficient (slope) of 1.17. (Note that the y-axis is in loga-
rithmic scale and, therefore, such linear regression actually corresponds to an
exponential fit.) This means that the number of files has grown at an approxi-
mate yearly ratio of 17 %; or, equivalently, that it has doubled every 4.5 years.

Source Code Size. Figure 2d shows the distribution over time of the number
of physical source lines of code (SLOC) of all samples in the dataset. For this
we used cloc [1], an open-source tool that counts blank lines, comment lines,

A Look into 30 Years of Malware Development 335

and SLOC, and reports them broken down by programming language. The data
shown in Fig. 2d was obtained by simply aggregating the SLOC counts of all
source code files belonging to the same malware sample, irrespective of the pro-
gramming language in which they were written.

Again, the growth over the last 30 years is clearly exponential. Thus, up to the
mid 1990s viruses and early worms rarely exceeded 1,000 SLOC. Between 1997
and 2005 most samples contain several thousands SLOCs, with a few exceptions
above that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The
increase in SLOC count during this period correlates positively with the number
of source code files and the number of different programming languages used.
Finally, a significant number of samples from 2007 on exhibit SLOC counts in
the range of tens of thousands. For instance, GhostRAT (33,170), Zeus (61,752),
KINS (89,460), Pony2 (89,758), or SpyNet (179,682). Most of such samples cor-
respond to moderately complex malware projects whose output is more than
just one binary. Typical examples include Botnets or RATs featuring a web-
based C&C server, support libraries, and various types of bots/trojans. There
are exceptions, too. For instance, Point-of-Sale (POS) trojans such as Dexter
(2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

In this case the linear regression coefficient over the data points is 1.16, i.e.,
the number of SLOCs per malware has increased approximately 16 % per year;
or, equivalently, the figure doubles every 4.7 years, resulting in an increase of
nearly an order of magnitude each decade.

Function Points Estimates. We used the SLOC-to-function-point ratios pro-
vided by PLT v8.2 (see Table 1) in an attempt to use a more normalized measure
of source code size for the malware samples in our dataset. To do that, we used
such ratios in reverse order, i.e., to estimate function-point counts from SLOCs
rather than the other way round. In doing so we pursue: (i) to better aggregate
the various source code files of the same malware that are written in different
languages; and (ii) to provide a fairer comparison among the sizes of the samples.

As expected, there is a clear correlation between FP and SLOC counts and
the conclusions in terms of sustained growth are similar. Starting in 1990, there
is roughly an increase of one order of magnitude per decade. Thus, in the 1990s
most early viruses and worms contain just a few (<10) FPs. From 2000 to 2010
the FP count concentrates between 10 and 100, with Trojans, Botnets, and
RATs accounting for the higher counts. Since 2007 on, many samples exhibit FP
counts of 1,000 and higher; examples include Rovnix (2014), with FP = 1275.64,
KINS (2011), with FP= 1462.86, and SpyNet (2014), with FP= 2021.79. Linear
regression over the data points yields a coefficient of 1.19, i.e., FP counts per
malware has suffered an approximate growth of 19 % per year; or, equivalently,
the figure doubles every 4 years.

Density of Comments. Figure 2c shows the comments-to-code ratios for the
malware samples in the dataset. This is simply computed as the number of
comment lines divided by the SLOC. There is no clear pattern in the data,
which exhibit an average of 18.83 %, a standard deviation of 23.44 %, and a

336 A. Calleja et al.

median value of 12.05 %. There are a few notable outliers, though. For example,
W2KInstaller (2000) and OmegaRAT (2014) show ratios of 99.6 % and 139.1 %,
respectively. Conversely, some samples have an unusually low ratio of comments.
We ignore if they were originally developed in this way or, perhaps, comments
were cut off before leaking/releasing the code.

Programming Languages. Figure 3a shows the distribution over time of
the number of different languages used to develop each malware sample. This
includes not only compiled and interpreted languages such as assembly, C/C++,
Java, Pascal, PHP, Python, or Javascript, but also others used to construct
resources that are part of the final software package (e.g., HTML, XML, CSS)
and scripts used to build it (e.g., BAT or make files).

Figure 3b shows the usage of different programming languages to code mal-
ware over time extracted from our dataset. The pattern reveals the prevalent
use of assembly until the mid 2000s. From 2000 on C/C++ become increasingly
popular, as well as other “visual” development environments such as Visual
Basic and Delphi (Pascal). Botnets and RATs from 2005 on also make exten-
sive use of web interfaces and include numerous HTML/CSS elements, pieces of
Javascript, and also server-side functionality developed in PHP or Python. From
2012 to date the distribution of languages is approximately uniform, revealing
the heterogeneity of technologies used to develop modern malware.

Fig. 3. (a) Number of different programming languages per malware sample in the
dataset. (b) Use of programming languages in malware samples. The chart shows the
number of samples using a particular language each year, with darker colors represent-
ing higher number of samples.

4.2 Cost Estimation

In this section we show the COCOMO estimates for the effort, time, and team
size required to develop the malware samples in our dataset. One critical decision

A Look into 30 Years of Malware Development 337

Fig. 4. COCOMO cost estimators for the malware samples in the dataset. (a) Effort
(man-months). (b) Development time (months). (c) Team size (number of people).
(d) Selected examples with effort (E), development time (D), and number of people
(P). Note that in (a) and (b) the y-axis is shown in logarithmic scale.

here is selecting the type of software project (organic, semi-detached, or embed-
ded) for each sample. We decided to consider all samples as organic for two main
reasons. First, it is reasonable to assume that, with the exception of a few cases,
malware development has been led so far by small teams of experienced pro-
grammers. Additionally, we favor a conservative estimate of development efforts
which is achieved using the lowest COCOMO coefficients (i.e., those of organic
projects) and can thus be seen as a (estimated) lower bound of development
efforts.

Figure 4a shows the COCOMO estimation of effort required to develop the
malware samples. The evolution over time is clearly exponential, with values
roughly growing one order of magnitude each decade. While in the 1990s most
samples required approximately 1 man-month, this value rapidly escalates up

338 A. Calleja et al.

to 10–20 in the mid 2000s, and to 100s for a few samples of the last few years.
Linear regression confirms this, yielding a regression coefficient of 1.17; i.e., the
effort growth ratio per year is approximately 17 %; or, equivalently, it doubles
every 4.5 years.

The estimated time to develop the malware samples (Fig. 4b) experiences a
linear increase up to 2010, rising from 2–3 months in the 1900s to 7–10 months
in the late 2000s. The linear regression coefficient in this case is 0.395, which
translates into an additional month every 2.5 years. Note that a few samples
from the last 10 years report a considerable higher number of months, such as
Zeus (2007) or SpyNet (2014) with 20.15 and 30.86 months, respectively.

The amount of people required to develop each sample (Fig. 4c) grows simi-
larly. Most early viruses and worms require less than 1 person (full time). From
2000 on, the figure increases to 3–4 persons for some samples. Since 2010, a few
samples report person estimates substantially higher. For these data, the linear
regression coefficient is 0.234, which roughly translates into an additional team
member every 4 years.

Finally, the table in Fig. 4d provides some numerical examples for a selected
subset of samples. For additional details, we refer the reader to the full datasets1

with the raw data used in this paper.

4.3 Complexity and Maintainability

In this section we show the complexity and maintainability metrics obtained for
the samples in our dataset. To compute McCabe’s cyclomatic complexity, we
used the Universal Code Count (UCC) [6], a tool that provides various software
metrics from source code. While many other tools exist for measuring cyclomatic
complexity (e.g., Jhawk [3], Radon [4], or the metrics plugin for Eclipse [2]), these
have a strong bias towards a particular language or a small subset of them. Con-
trarily, UCC works over C/C++, C#, Java, SQL, Ada, Perl, ASP.NET, JSP, CSS,
HTML, XML, JavaScript, VB, PHP, VBScript, Bash, C Shell Script, Fortran,
Pascal, Ruby, and Python. Since our dataset contains source code written in
different languages, UCC best suits our analysis. Despite UCC’s wide support for
many languages, obtaining the cyclomatic measurements for each sample was
not possible. As suggested by Fig. 3b, a large fraction of our samples contain
a substantial amount of assembly code, which UCC does not support. Filtering
out samples that contain at least one source file in assembly left 44 samples for
analysis, i.e., approximately 33 % of the dataset.

Figure 5a shows the average cyclomatic complexity per function for each ana-
lyzed sample. Most of the samples have complexities between 2 and 5, with
values higher than that being very uncommon. Only DW (2002) exhibits an
average cyclomatic complexity of around 7. Two main conclusions can be drawn
from Fig. 5a (note that samples are temporarily ordered). First, even if there is
no clear evolution over time of the average complexity per function, there is a
slight decreasing trend. This might be a consequence of a more modular design,

1 Available at: http://www.seg.inf.uc3m.es/∼accortin/RAID 2016.html.

http://www.seg.inf.uc3m.es/~accortin/RAID_2016.html

A Look into 30 Years of Malware Development 339

with functions and class methods being designed with less complex control flow
logic structures. Second, a closer inspection at the full output of UCC reveals
that no function or method in the 44 samples exceeds McCabe’s recommended
complexity threshold of 10.

Fig. 5. (a) Average cyclomatic complexity per function and sample sorted by year.
(b) Maintainability index per sample sorted by year.

Using the metrics discussed throughout this section, we have also computed
an upper bound for the maintainability index MI provided by Eq. (5). Note
that we cannot estimate it exactly since we do not have the average Halstead’s
volume for each sample. Since this is a negative factor in Eq. (5), the actual
maintainability index would be lower than our estimates. Nevertheless, note that
such a factor contributes the lowest to MI, so we expect our figures to provide a
fair comparison among samples. Figure 5b shows the MI values for each sample
in the reduced dataset. As in the case of cyclomatic complexities, no clear trend
is observed. Values are generally high, with most samples having an MI higher
than 50. The most extreme values are those of Cairuh (MI = 30.05) and Hexbot2
(MI = 34.99) on one side of the spectrum, and Taichi (MI = 78.77), AndroRAT

340 A. Calleja et al.

(MI = 75.03), and Dendroid (74.47) on the other. All in all, these are reasonably
high values for MI.

4.4 Comparison with Regular Software

In order to better appreciate the significance of the figures presented throughout
this section, we next discuss how they compare to those of a selected number of
open source projects whose source code is freely available. To do this we selected
9 software packages belonging to different categories: 3 security products (the
IPTables firewall, the Snort IDS, and the ClamAV antivirus); a compiler (gcc);
a web server (Apache); a version control tool (Git); a numerical computation
suite (Octave); a graphic engine (Cocos2d-x); and a Unix shell (Bash). The code
was downloaded from the web page of each project. For each one of them we
then computed the metrics discussed above for malware samples. As in the case
of malware samples, we use the COCOMO coefficients for organic projects. The
results are shown in Table 4 in increasing order of SLOC count.

Table 4. Software metrics for various open source projects. E: COCOMO effort; D:
COCOMO development time; P: COCOMO team size; FP: function points; M: cyclo-
matic complexity; CR: comment-to-code ratio; MI: maintainability index.

Software Version Year SLOC E D P FP M CR MI

Snort 2.9.8.2 2016 46, 526 135.30 16.14 8.38 494.24 3.31 10.32 63.27

Bash 4.4 rc-1 2016 160, 890 497.81 26.47 18.81 2, 265.35 3.40 17.08 52.42

Apache 2.4.19 2016 280, 051 890.86 33.03 26.97 4, 520.10 3.02 23.42 61.56

IPtables 1.6.0 2015 319, 173 1, 021.97 34.80 29.37 3, 322.05 3.06 27.33 68.88

Git 2.8 2016 378, 246 1, 221.45 37.24 32.80 4, 996.44 3.37 12.15 41.84

Octave 4.0.1 2016 604, 398 1, 998.02 44.89 44.51 11, 365.09 2.52 27.69 52.42

ClamAV 0.99.1 2016 714, 085 2, 380.39 47.98 49.61 10, 669.97 2.79 33.57 63.87

Cocos2d-x 3.10 2016 851, 350 2, 863.02 51.47 55.63 16, 566.78 2.96 17.55 66.60

gcc 5.3 2015 6, 378, 290 2, 3721.97 114.95 206.37 90, 278.41 2.10 31.24 50.57

The first natural comparison refers to the size of the source code. Various
malware samples from 2007 on (e.g. Zeus, KINS, Pony2, or SpyNet) have SLOC
counts larger than those of Snort and Bash. This automatically translates,
according to the COCOMO model, into similar or greater development costs.
The comparison of function point counts is alike, with cases such as Rovnix and
KINS having an FP greater than 1000, or SpyNet, with an FP count comparable
to that of Bash. In general, only complex malware projects are comparable in
size and effort to these two software packages, and they are still far away from
the remaining ones.

In terms of comment-to-code ratio, the figures are very similar and there is no
noticeable difference. This seems to be the case for the cyclomatic complexity, too.
To further investigate this point, we computed the cyclomatic complexities at the
function level; i.e., for all functions of all samples in both datasets. The histograms
of the obtained values is shown in Fig. 6. Both distributions are very similar, with a

A Look into 30 Years of Malware Development 341

Fig. 6. Histograms of the cyclomatic complexity values computed at the function level
for both malware and regular software samples.

clear positive skewness. A Chi-squared and two-sample Kolgomorov-Smirnov tests
corroborate their similarity for a significance level of α = 0.05.

More differences appear in terms of maintainability. Up to 12 malware sam-
ples show MI values higher than the highest one for regular software—IPtables,
with MI = 68.88. In general, malware samples (particularly the most recent
ones) seem to have slightly higher maintainability indexes than regular soft-
ware. As discussed before, two notable exception are Cairuh and Hexbot2 with
surprisingly low values.

5 Discussion

We next discuss some aspects of the suitability of our approach, the potential
limitations of our results, and draw some general conclusions.

Suitability of Our Approach. Software metrics have a long-standing tradition
in software engineering and have been an important part of the discipline since
its early days. Still, they have been subject to much debate, largely because of
frequent misinterpretations (e.g., as performance indicators) and misuse (e.g.,
to drive management) [34]. In this work, our use of certain software metrics
pursues a different goal, namely to quantify how different properties of malware
as a software artifact have evolved over time. Thus, our focus here is not on the
accuracy of the absolute values (e.g., effort estimates given by COCOMO), but
rather on the relative comparison of values between malware samples, as well as
with benign programs, and the trends that the analysis suggests.

Limitations. Our analysis may suffer from several limitations. Perhaps the most
salient is the reduced number of samples in our dataset. However, as discussed in
Sect. 3, obtaining source code of malware is hard. Still, we discuss 151 samples,
which to the best of our knowledge is the largest dataset of malware source code

342 A. Calleja et al.

analyzed in the literature. While the exact coverage of our dataset cannot be
known, we believe it is fairly representative in terms of different types of malware
(one remarkable exception is ransomware, for which we were not able to find any
samples). Another limitation is selection bias. Collection is particularly difficult
for newest samples and more sophisticated samples (e.g., those used in targeted
attacks) have not become publicly available and thus escape our collection. We
believe those samples would emphasize the increasing complexity trends that we
observe.

Main Conclusions and Open Questions. In the last 30 years the complex-
ity of malware, considered as a software product, has increased considerably.
We observe increments of nearly one order of magnitude per decade in aspects
such as the number of source code files, source code lines, and function point
counts. One question is whether this trend will hold in time. If so, we could soon
see malware specimens with more than 1 million SLOC. On the other hand,
evolving into large pieces of software involves a higher amount of vulnerabilities
and defects. This has been already observed (and exploited), e.g., in [14,17]. In
addition, such evolution requires larger efforts and thus possibly larger develop-
ment teams. While we observe the trend we have not examined in detail those
development teams. For this, we could apply authorship attribution techniques
for source code [15,19]. More generally, the results shown in this paper pro-
vide a quantified evidence of how the malware development industry has been
progressively transforming into a fully fledged engineering.

6 Related Work

While malware typically propagates as binary code, some malware families have
distributed themselves as source code. Arce and Levy performed an analysis
of the Slapper worm source code [10], which upon compromising a host would
upload its source code, compile it using gcc, and run the compiled executable. In
2005, Holz [22] performed an analysis of the botnet landscape that describes how
the source code availability of the Agobot and SDBot families lead to numerous
variants of those families being created.

Barford and Yegneswaran [11] argue that we should develop a foundational
understanding of the mechanisms used by malware and that this can be achieved
by analyzing malware source code available on the Internet. They analyze the
source code of 4 IRC botnets (Agobot, SDBot, SpyBot, and GTBot) along 7
dimensions: botnet control mechanisms, host control mechanisms, propagation,
exploits, delivery mechanisms, obfuscation, and deception mechanisms.

Other works have explored the source code of exploit kits collected from
underground forums and markets. Exploit kits are software packages installed
on Web servers (called exploit servers) that try to compromise their visitors
by exploting vulnerabilities in Web browsers and their plugins. Different from
client malware, exploit kits are distributed as (possibly obfuscated) source code.
Kotov and Massacci [26] analyzed the source code of 30 exploit kits collected
from underground markets finding that they make use of a limited number of

A Look into 30 Years of Malware Development 343

vulnerabilities. They evaluated characteristics such as evasion, traffic statistics,
and exploit management. Allodi et al. [9] followed up on this research by building
a malware lab to experiment with the exploit kits. Eshete and Venkatakrishnan
describe WebWinnow [18] a detector for URLs hosting an exploit kit, which
uses features drawn from 40 exploit kits they installed in their lab. Eshete et al.
follow up this research line with EKHunter [17] a tool that given an exploit
kit finds vulnerabilities it may contain, and tries to automatically synthesize
exploits for them. EKHunter finds 180 in 16 exploit kits (out of 30 surveyed),
and synthesizes exploits for 6 of them. Exploitation of malicious software was
previously demonstrated by Caballero et al. [14] directly on the binary code of
malware samples installed in client machines.

7 Conclusion

In this paper, we have presented a study on the evolution of malware source
code over the last decades. Our focus on software metrics is an attempt to quan-
tify properties both of the code itself and its development process. The results
discussed throughout the paper provide a numerical evidence of the increase
in complexity suffered by malicious code in the last years and the unavoidable
transformation into an engineering discipline of the malware production process.

Acknowledgments. We are very grateful to the anonymous reviewers for constructive
feedback and insightful suggestions. This work was supported by the MINECO grant
TIN2013- 46469-R (SPINY: Security and Privacy in the Internet of You), the CAM
grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks), the Regional
Government of Madrid through the N-GREENS Software-CM project S2013/ICE-2731
and by the Spanish Government through the Dedetis Grant TIN2015-7013-R.

References

1. CLOC - count lines of code. http://github.com/AlDanial/cloc. Accessed 22 Sep
2015

2. Eclipse metrics plugin. https://marketplace.eclipse.org/content/eclipse-metrics.
Accessed 4 Apr 2016

3. Jhawk. http://www.virtualmachinery.com/jhawkprod.htm. Accessed 4 Apr 2016
4. Radon. https://pypi.python.org/pypi/radon. Accessed 4 Apr 2016
5. Symantec’s 2015 internet security threat report. https://www.symantec.com/

security response/publications/threatreport.jsp. Accessed 6 Apr 2016
6. Unified code counter. http://csse.usc.edu/ucc wp/. Accessed 4 Apr 2016
7. Albrecht, A.J.: Measuring Application Development Productivity. In: IBM Appli-

cation Development Symposium, pp. 83–92. IBM Press, October 1979
8. Albrecht, A.J., Gaffney, J.E.: Software function, source lines of code, and devel-

opment effort prediction: a software science validation. IEEE Trans. Softw. Eng.
9(6), 639–648 (1983)

9. Allodi, L., Kotov, V., Massacci, F.: MalwareLab: experimentation with cybercrime
attack tools. In: USENIX Workshop on Cyber Security Experimentation and Test,
Washington D.C., August 2013

http://github.com/AlDanial/cloc
https://marketplace.eclipse.org/content/eclipse-metrics
http://www.virtualmachinery.com/jhawkprod.htm
https://pypi.python.org/pypi/radon
https://www.symantec.com/security_response/publications/threatreport.jsp
https://www.symantec.com/security_response/publications/threatreport.jsp
http://csse.usc.edu/ucc_wp/

344 A. Calleja et al.

10. Arce, I., Levy, E.: An analysis of the slapper worm. IEEE Secur. Priv. 1(1), 82–87
(2003)

11. Barford, P., Yegneswaran, V.: An Inside Look at Botnets. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection. Advances in
Information Security, vol. 27, pp. 171–191. Springer, Heidelberg (2007)

12. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Upper Saddle River
(1981)

13. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the
commoditization of malware distribution. In: Proceedings of the 20th USENIX
Conference on Security, p. 13, SEC 2011. USENIX Association, Berkeley (2011)

14. Caballero, J., Poosankam, P., McCamant, S., Babic, D., Song, D.: Input generation
via decomposition and re-stitching: finding bugs in malware. In: ACM Conference
on Computer and Communications Security, Chicago, IL, October 2010

15. Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss, C., Yamaguchi, F.,
Greenstadt, R.: De-anonymizing programmers via code stylometry. In: USENIX
Security Symposium (2015)

16. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, New York (2012)

17. Eshete, B., Alhuzali, A., Monshizadeh, M., Porras, P., Venkatakrishnan, V.,
Yegneswaran, V.: EKHunter: a counter-offensive toolkit for exploit kit infiltration.
In: Network and Distributed System Security Symposium, February 2015

18. Eshete, B., Venkatakrishnan, V.N.: WebWinnow: leveraging exploit kit workflows
to detect malicious urls. In: ACM Conference on Data and Application Security
and Privacy (2014)

19. Frantzeskou, G., MacDonell, S., Stamatatos, E., Gritzalis, S.: Examining the sig-
nificance of high-level programming features in source code author classification.
J. Syst. Softw. 81(3), 447–460 (2008). http://dx.doi.org/10.1016/j.jss.2007.03.004

20. Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C.J., Levchenko, K.,
Mavrommatis, P., McCoy, D., Nappa, A., Pitsillidis, A., Provos, N., Rafique, M.Z.,
Rajab, M.A., Rossow, C., Thomas, K., Paxson, V., Savage, S., Voelker, G.M.:
Manufacturing compromise: the emergence of exploit-as-a-service. In: Proceedings
of the 2012 ACM Conference on Computer and Communications Security, pp.
821–832, CCS 2012. ACM, New York (2012)

21. Halstead, M.H.: Elements of Software Science (Operating and Programming Sys-
tems Series). Elsevier Science Inc., New York (1977)

22. Holz, T.: A short visit to the bot zoo. IEEE Secur. Priv. 3(3), 76–79 (2005)
23. IEEE: IEEE standard for software productivity metrics (IEEE std. 1045–1992).

Technical report (1992)
24. Jones, C.: Programming Languages Table, Version 8.2. Software Productivity

Research, Burlington (1996)
25. Jones, C.: Backfiring: converting lines-of-code to function points. Computer 28(11),

87–88 (1995)
26. Kotov, V., Massacci, F.: Anatomy of exploit kits. In: Jürjens, J., Livshits, B.,

Scandariato, R. (eds.) ESSoS 2013. LNCS, vol. 7781, pp. 181–196. Springer,
Heidelberg (2013)

27. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.)
EWSPT 1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)

28. McCabe, T.J.: A complexity measure. In: Proceedings of the 2nd International
Conference on Software Engineering, ICSE 1976, CA, USA, p. 407. IEEE Computer
Society Press, Los Alamitos (1976)

http://dx.doi.org/10.1016/j.jss.2007.03.004

A Look into 30 Years of Malware Development 345

29. Nguyen, V., Deeds-rubin, S., Tan, T., Boehm, B.: A SLOC counting standard. In:
COCOMO II Forum 2007 (2007)

30. Oman, P., Hagemeister, J.: Metrics for assessing a software system’s maintainabil-
ity. In: Proceedings of Conference on Software Maintenance, pp. 337–344 (1992)

31. Park, R.E.: Software size measurement: a framework for counting source state-
ments. Technical report CMU/SEI-92-TR- 20, ESC-TR-92-20, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,
September 1992

32. Security, P.: 27 % of all recorded malware appeared in 2015.
http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-
appeared-in-2015. Accessed 6 Apr 2016

33. Software Engineering Institute: C4 Software Technology Reference Guide - A Pro-
totype. Technical report CMU/SEI-97-HB-001, January 1997

34. Sommerville, I.: Software Engineering: (Update) (8th Edn.) (International Com-
puter Science). Addison-Wesley Longman Publishing Co. Inc., Boston (2006)

35. Stringhini, G., Hohlfeld, O., Kruegel, C., Vigna, G.: The harvester, the botmas-
ter, and the spammer: n the relations between the different actors in the spam
landscape. In: Proceedings of the 9th ACM Symposium on Information, Computer
and Communications Security, pp. 353–364. ASIA CCS 2014, NY, USA. ACM,
New York (2014)

36. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Ribagorda, A.: Evolution, detec-
tion and analysis of malware for smart devices. IEEE Commun. Surv. Tutorials
16(2), 961–987 (2014)

37. Thomas, K., Huang, D., Wang, D., Bursztein, E., Grier, C., Holt, T.J., Kruegel,
C., McCoy, D., Savage, S., Vigna, G.: Framing dependencies introduced by under-
ground commoditization. In: Workshop on the Economics of Information Security
(2015)

38. Watson, A.H., Mccabe, T.J., Wallace, D.R.: Special publication 500–235, struc-
tured testing: a software testing methodology using the cyclomatic complexity
metric. In: U.S. Department of Commerce/National Institute of Standards and
Technology (1996)

http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-in-2015
http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-in-2015

Small Changes, Big Changes: An Updated View
on the Android Permission System

Yury Zhauniarovich1(B) and Olga Gadyatskaya2(B)

1 Qatar Computing Research Institute, HBKU, Doha, Qatar
yzhauniarovich@qf.org.qa

2 SnT, University of Luxembourg, Luxembourg City, Luxembourg
olga.gadyatskaya@uni.lu

Abstract. Since the appearance of Android, its permission system was
central to many studies of Android security. For a long time, the descrip-
tion of the architecture provided by Enck et al. in [31] was immutably
used in various research papers. The introduction of highly anticipated
runtime permissions in Android 6.0 forced us to reconsider this model.
To our surprise, the permission system evolved with almost every release.
After analysis of 16 Android versions, we can confirm that the modifi-
cations, especially introduced in Android 6.0, considerably impact the
aptness of old conclusions and tools for newer releases. For instance,
since Android 6.0 some signature permissions, previously granted only
to apps signed with a platform certificate, can be granted to third-party
apps even if they are signed with a non-platform certificate; many per-
missions considered before as threatening are now granted by default. In
this paper, we review in detail the updated system, introduced changes,
and their security implications. We highlight some bizarre behaviors,
which may be of interest for developers and security researchers. We also
found a number of bugs during our analysis, and provided patches to
AOSP where possible.

Keywords: Android security · Permission system · Runtime permis-
sions · Compatibility challenges

1 Introduction

Nowadays, Android is the dominating smartphone operating system. It occupied
more than 80 % of the total smartphone market share in 2015 [20]. Furthermore,
Android is truly ubiquitous existing in the Auto, TV, and Wear flavors. More-
over, many other types of devices, e.g., cameras or game consoles, run tweaked
Android firmware [17]. Overall, more than 1.4 billion active devices are currently
powered by Android [14]. This huge user-base was achieved by Google thanks

We thank the anonymous reviewers for their comments that allowed to improve the paper. We are
also very grateful to William Enck for shepherding the paper and suggesting many improvements
to it. The work of Olga Gadyatskaya was supported by the Luxembourg National Research Fund
(C15/IS/10404933/COMMA).

c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 346–367, 2016.
DOI: 10.1007/978-3-319-45719-2 16

An Updated View on the Android Permission System 347

to, among all, frequent updates of the operating system that keep introducing
new features and improving performance.

Yet, the wide landscape of device types and platform versions gives rise to
compatibility challenges. While the latest devices are relatively well-updated,
others can be left behind, or even never updated after the release. For instance,
Google reported that 2.6 % of devices that had visited the Google Play Store in
March 2016 ran Android 2.3 released in 2011 [13]. At the same time, third-party
applications are typically updated frequently, yet some of them are unsupported
by the developers after a while. Therefore, there is a high fragmentation of the
eco-system, and many problems, including security ones, emerge due to discrep-
ancies in update cycles of the platform and apps.

The Android permission system regulating access of apps to device capabil-
ities and system components, such as telephony, file system, sensors, networks,
etc., is a crucial part of the Android security model. Not surprisingly, from
the beginning it was, and still is, central to many studies of Android security
(it is featured in [23,25,28,31,33,35,41,45,46,49,50,52,53], to mention a few).
However, only some of them acknowledged that the permission system was not
stable. Among those, an early investigation by Enck, Ongtang and McDaniel [31]
reported on the substantial shift introduced to the permission system across the
earliest Android releases. Since that time, the vast majority of Android studies
still rely on the same understanding introduced in this seminal paper.

The emergence of runtime permissions in Android 6.0 forced us to
take a closer look at the permission system design. In this paper we analyze the
changes in the permission system introduced in the last 6 years and provide an
updated view on the current architecture of the Android permission system since
its description in [31]. We reveal the core changes that need to be considered
during the security analysis, the main of which are the following:

– Runtime permissions. In Android 6.0, permissions are divided into install-
time and runtime. Normal and signature (with some exceptions) permissions
are permanently assigned upon the app installation, while dangerous permis-
sions are now granted at runtime, and the user may revoke them at any time.

– Runtime permissions are granted on the group basis. If an app requires
runtime permissions related to the same permission group, once one of them
is granted, others are granted as well. Instead of enabling more fine-grained
control of dangerous functionality, Android 6.0 does the opposite.

– Some signature permissions can be obtained by third-party appli-
cations. The Android community is used to consider signature permissions
to be install-time granted to apps that have the same digital signature as
the package declaring the permission. However, several new types of signature
permissions appeared in Android that can be obtained by third-party apps
not conforming to this condition.

– The signature|system protection level is deprecated. Currently, the
signature|system protection level is marked as deprecated and should not be
used neither for custom (third-party), nor for platform permissions.

348 Y. Zhauniarovich and O. Gadyatskaya

– Some dangerous permissions are now granted without user’s con-
sent. In Android 6.0, 22 permissions, previously considered as sensitive, are
granted by default and the user cannot revoke them in any way. For instance,
the INTERNET, BLUETOOTH, NFC permissions are now automatically granted at
app installation. Previously they had to be approved by the user.

Considering the aforementioned modifications, it is clear that the Android
community needs to update its view on the permission system and to evalu-
ate security implications of the changes. To address this need, in this paper we
present an updated security architecture of the system and important internal
details of its implementation. Furthermore, to assess the compatibility challenges
implications, we performed a thorough longitudinal study of the Android per-
mission system that yielded many interesting findings, e.g.,:

– Even though the signature|system protection level is deprecated, permissions
of this level still exist in the system. Moreover, 9 permissions of this type were
added in the Android 6.0 release itself. We have submitted to Google several
patches to fix this issue in Android Open Source Project (AOSP), and some
of them have already been merged into the master branch.

– The runtime permissions have backward compatibility issues. Developers that
expect their apps to run on older platform versions are still required to make a
runtime check for permissions. However, the permissions that did not exist on
some platform version are always denied (while they should not be required
at all). We have found 8 such permissions, e.g., ADD VOICEMAIL.

– Some non-dangerous permissions are assigned to permission groups,
although there is no reason for this. We found 8 such permissions, e.g.,
USE FINGERPRINT. We consider these to be coding nits that could be fixed
by Google developers.

Our findings emphasize considerable flaws that emerged due to the high
change rates in the permission system design. Considering the aforementioned
discrepancies in update cycles of platforms and apps, it is time for the security
community to re-evaluate the attack surface of the Android permission system.

Roadmap. Section 2 outlines the established view on the Android permission
system. Section 3 incrementally updates this view, while Sect. 4 gives internal
details of the permission system implementation. Section 5 presents our quan-
titative analysis of evolution in the permission system, and Sect. 6 presents the
key findings of our qualitative study. Finally, Sect. 7 discusses related work, and
Sect. 8 concludes the paper.

2 The Established View on the Permission System

By default, all Android apps are executed as low-privileged processes at the
Linux kernel level. Thus, every app has access only to a limited set of system
capabilities. At the same time, to be fully-functional an app should be able
to interact with other applications and obtain data from various system ser-
vices (e.g., location or telephony) running in other processes. To enable these

An Updated View on the Android Permission System 349

interactions, Android provides a special inter-component communication (ICC)
protocol called Binder. Certainly, these communications should not be arbitrary,
i.e., only approved interactions must be possible within the system. The Android
permission system provides such access control mechanism. Permissions, which
are unique security labels, are assigned to sensitive resources. Once an app is
granted with the permission, it receives access to the corresponding protected
object, otherwise interactions with the resource are prohibited.

A permission must be declared by the developer in the AndroidManifest.xml
file of the app (in the special permission tag) and assigned to the protected
resource (either in the manifest file or by performing corresponding checks in
the code). Once declared, other packages may ask for access to the object by
requesting the corresponding permission using the uses-permission tag of their
own AndroidManifest.xml file. Platform permissions are declared within the
Android operating system itself: either in the Android framework or in the pack-
ages supplied with the platform. Third-party app developers may also declare
their own custom permissions and use them to protect sensitive components of
their apps.

Upon declaration, any Android permission is assigned with a protection level.
It defines what apps can be granted with the corresponding permissions, and how
this process occurs. Starting with Android 0.9 [31], permissions were divided into
4 levels: normal, dangerous, signature and signature|system. According to the
established permission system view, the least sensitive normal permissions were
granted automatically to any app declaring these permissions, while more sensi-
tive dangerous permissions were granted only after user’s explicit consent during
app installation. If the user wanted to refuse even a single permission, the appli-
cation would not be installed on the device. Signature permissions were granted
only if packages declaring the permission and using it are signed with the same
certificate. Finally, permissions of the signature|system protection level acted like
signature permissions, but could be additionally granted to apps installed into
the system partition. Thus, prior to Android 6.0 all permissions were granted or
denied once and for all at the installation time.

A permission can belong to a permission group that clusters together secu-
rity labels according to particular functionality. Permission groups were mainly
introduced to simplify the presentation by grouping permissions together. Yet,
before Android 6.0 groups were not widely adopted in the “vanilla” Android,
although they were used in the Google Play client application.

This vision of the Android permission system migrated for a long time from
one research paper to another. In the meanwhile, the system did not stand still,
but continuously changed all that time. However, the modifications were not
that crucial, and remained mostly unnoticed.

3 New Android Permission System Overview

In Android 6.0, all permissions are divided into installation and runtime.
Roughly, this division occurs in the following way: normal, signature and signa-
ture|system permissions are permanently granted upon the app installation (yet,

350 Y. Zhauniarovich and O. Gadyatskaya

(a) (b) (c) (d)

Fig. 1. Screenshots: (a) Permission request during installation of legacy applications
in Android 6.0; (b) Screen to grant or revoke “appop” permission; (c) Separate screens
are developed for core permission groups to grant and revoke permissions; (d) List of
additional permissions.

with some exceptions considered further), while dangerous permissions are now
checked at runtime. The signature|system protection level is deprecated start-
ing Android 6.0 and should not be used [12]. However, our analysis of permissions
defined in the platform code shows that such permissions are still abundant (see
Sects. 5 and 6 for more details).

Previously, dangerous permissions were to be approved by the user in the
special screen shown during app installation. Once approved, the app could be
instantly used and the user did not deal with permissions anymore. In Android
6.0, the screen to grant runtime permissions is not shown (for apps targeting
API 23 and up). Instead, all runtime permissions after installation are in the
disabled state and must be approved by the user once the app needs access to
the protected functionality.

To support runtime permissions, special protected API calls were added to
PackageManager allowing to grant and revoke permissions dynamically. Addi-
tionally, new APIs were added allowing app developers to check at runtime if
permissions are granted and to request them if necessary [19]. Within the Set-
tings app, the users are provided with two screens to review, grant and revoke
runtime permissions: on the first screen permissions are grouped on per app
basis, on the second – per permission group.

Obviously, new applications must be forward compatible with the older
Android versions, because only a small fraction of devices runs the newest
Android (in April 2016 only 5 % of devices ran Android 6.x [13]). To ensure
compatibility, Google provided a special compatibility library that proxies the
calls for checking granted permissions (ContextCompat.checkSelfPermission).
However, this proxy call must still rely underneath on the permission check func-
tionality available in the previous releases, which, not surprisingly, is based on

An Updated View on the Android Permission System 351

the Context.checkPermission API call. In previous Android versions permis-
sions are granted upon installation, thus, the check will always pass, and new
runtime permission request functionality will not be called. However, we found
out that this functionality does not always work as expected (see Sect. 6).

Backward compatibility of legacy apps with the new version of Android is pro-
vided through the AppOps system allowing users to grant and revoke permissions
at runtime through a dedicated user interface within the Settings system appli-
cation. It shares the same interface with the runtime permission manager. This
hidden app permission manager unofficially appeared in Android 4.3. Unfortu-
nately, access to this component was suppressed in Android 4.4.2 and reappeared
only in Android 6.0. However, AppOps handles only platform permissions and,
thus, cannot enforce custom dangerous permissions declared by a developer.
Upon installation of a legacy app through the installer on device the user is
still presented with the “old” grant permission screen (see Fig. 1(a). The user
must agree with the presented permissions, or the app will not be installed. This
behavior differs from the one of the apps targeting Android 6.0, what results in
some user experience inconsistencies. We describe them in details in Sect. 6.

Runtime permissions are granted per permission groups, i.e., if one per-
mission from a group is granted or revoked, the same happens for all permissions
in this group. For instance, if an app is granted with the READ CONTACTS per-
mission, it automatically receives WRITE CONTACTS (if requested), because they
both belong to the CONTACTS permission group. Android 6.0 defines nine permis-
sion groups for dangerous permissions: CALENDAR, CAMERA, CONTACTS, LOCATION,
MICROPHONE, PHONE, SENSORS, SMS, STORAGE. While the app developers still have
to declare permissions from these groups individually, the end-users only grant or
revoke access per permission groups, and they are oblivious to which individual
permissions the app requests.

Before it was assumed that third-party applications cannot obtain any sig-
nature permission if they are not signed with the same certificate. Yet, in
Android 6.0 new permissions called appop were added. These signature per-
missions (PACKAGE USAGE STATS, WRITE SETTINGS and SYSTEM ALERT WINDOW)
can now be granted to third-party apps after an explicit user’s consent through
Settings.

We continue to explore the changes to the Android permission system and
their implications for security analysis in Sect. 6.

4 Permission System Implementation Details

The behavior of permissions is controlled through assigning special string values
to the attributes (android:protectionLevel and android:permissionFlags)
upon permission declaration in the AndroidManifest.xml file. During the instal-
lation of a package, these values are parsed influencing on the bits of two 32-bit
integer fields (protectionLevel and flags) of the PermissionInfo class. This
section reviews how the bits of these two fields affect the permissions behavior.

352 Y. Zhauniarovich and O. Gadyatskaya

016 FL
A

G
_P

R
IV

IL
EG

ED
FL

A
G

_D
EV

EL
O

PM
EN

T
FL

A
G

_A
PP

O
P

FL
A

G
_P

R
E2

3
FL

A
G

_I
N

ST
A

LL
ER

FL
A

G
_V

ER
IF

IE
R

FL
A

G
_P

R
EI

N
ST

A
LL

ED
MASK_FLAGS MASK_BASE

PROTECTION
LEVEL

...

(a)

03032 FL
A

G
_C

O
ST

S_
M

O
N

EY
FL

A
G

_H
ID

D
EN

FL
A

G
_I

N
ST

A
LL

ED

...
(b)

Fig. 2. “Protection Level” (a) and “Additional Flags” (b) field map.

4.1 Protection Level

Figure 2a shows a map of the lower 16 bits of the protectionLevel field (the
higher 16 bits are currently not in use). The lower 4 bits are used to specify
the protection level of a permission. The protection level value is determined by
applying bitwise AND operation to the protectionLevel field and the MASK BASE
constant. Since a permission can only have one protection level, its values have
sequential order, where the normal protection level is equal to 0, dangerous
is 1, signature – 2, and signature|system is equal to 3. Interestingly, although
signature|system level has a higher protection level value, signature permissions
are considered as more sensitive. If a permission protection level is not specified
in the manifest file, by default, signature protection level is used.

Protection level flags can be used only with signature permissions. Flags with
other protection levels will generate an error at the time of manifest parsing.
Protection level flags are masked with the MASK FLAGS constant.

The first flag FLAG PRIVILEGED enforces that only apps either signed with the
same certificate or installed into the special location can obtain the permission.
Until Android 4.4 all applications installed on the system image were granted
with these privileged permissions by default. This means that even unprivileged
system apps, e.g., Calculator, were able to obtain such permissions. To reduce
the attack surface, system apps were later divided into the ordinary and privi-
leged ones [9]. The ordinary system apps remain in the /system/app directory,
but are not granted with privileged permissions anymore. To obtain privileged
permissions an app must be installed into a separate /system/priv-app folder.
Besides setting this flag directly, the developer can achieve the same permission
behavior by setting the protection level to signature|system (deprecated since
Android 6.0).

In Android 4.1 [12], the development permissions (marked with the flag
FLAG DEVELOPMENT) were introduced. These permissions usually protect the
functionality required to perform development tasks, e.g., read system logs
(READ LOGS). An app can request these permissions, but they will not be auto-
matically granted. At runtime the user can grant and revoke these permissions
on demand by using special commands pm grant and pm revoke of the Android
shell [30].

An Updated View on the Android Permission System 353

FLAG APPOP was introduced in Android 5.0 [4], although explicitly it has
started to be used only with Android 6.0. This flag was added to allow selective
access to certain critical platform operations protected by signature permissions
to third-party apps, after an explicit approval from the user. As we mentioned,
typically, the signature protection level ensures that the corresponding platform
permission is automatically granted at install time to the apps signed with the
same certificate as the system image. Yet, this flag relaxes the requirement that
the protected functionality can be used only by the system components. However,
upon installation, access to the resources is disabled by default to third-party
apps. For every permission of this appop type there is a separate configuration
screen, where the user may explicitly grant or revoke access to these opera-
tions for system and third-party apps. E.g., Fig. 1b shows the screen for the
PACKAGE USAGE STATS permission. The flag name shows that the enforcement of
this type of permissions happens through the AppOps system.

FLAG PRE23, as the name suggests, indicates that the corresponding permis-
sion is automatically granted to apps targeting pre-6.0 Android (API levels less
than 23) versions [11]. For instance, the permission to draw a window over other
apps SYSTEM ALERT WINDOW before Android 6.0 had the dangerous level, and
thus was granted automatically upon installation. In Android 6.0 the protection
level of this permission was changed to signature. However, apps targeting pre-
vious API versions are not aware of this change. Thus, during their execution
an invocation of the functionality protected with this permission will generate
an error. FLAG PRE23 permits to overcome this issue by automatically granting
the permission with this flag set to apps targeting previous versions of Android.

The flags FLAG INSTALLER and FLAG VERIFIER introduced in Android 6.0 [5]
indicate that permissions are automatically granted to the packages set as the
required installer and verifier (see more in [30]). However, to use these permis-
sions the installer package must be installed on the system image, while the
verifier package must be additionally granted with the PACKAGE VERIFICATION
AGENT permission which has the signature|privileged protection level.

Finally, FLAG PREINSTALLED added in Android 6.0 [8] indicates that the per-
mission can be granted not only to the apps installed into the privileged folder,
but to any app installed in the system partition.

4.2 Permission Flags

Permission flags were introduced in Android 4.2 [3]. Internally, permission flags
are also represented as an integer 32-bit field which map is shown in Fig. 2b.
These flags are controlled through the android:permissionFlags attribute of
the permission tag. It should be noted that only the FLAG COSTS MONEY and
FLAG HIDDEN flags may be set through this attribute, while FLAG INSTALLED is
not accessible through a permission declaration.

The flag FLAG COSTS MONEY introduced in Android 4.1 [3] influences how
a permission with this flag set is presented to a user. These permissions are
marked with the “coins” sign displayed on the screen shown during app installa-
tion (in versions before Android 6.0). Interestingly, there are no restrictions on

354 Y. Zhauniarovich and O. Gadyatskaya

Table 1. Versions of the android platform used in our study

API level Branch Codename Release date (mm-dd-yyyy)

23 android-6.0.0 r1 Marshmallow 10-05-2015

22 android-5.1.0 r1 Lollipop 03-09-2015

21 android-5.0.1 r1 Lollipop 12-02-2014

19 android-4.4 r1 KitKat 10-31-2013

18 android-4.3 r1 Jelly Bean 07-24-2013

17 android-4.2 r1 Jelly Bean 11-13-2012

16 android-4.1.1 r1 Jelly Bean 07-11-2012

15 android-4.0.3 r1 Ice Cream Sandwich 12-16-2011

14 android-4.0.1 r1 Ice Cream Sandwich 10-21-2011

10 android-2.3.3 r1 Gingerbread 02-09-2011

9 android-2.3 r1 Gingerbread 12-06-2010

8 android-2.2 r1 Froyo 05-20-2010

7 android-2.1 r1 Eclair 01-12-2010

6 android-2.0.1 r1 Eclair 12-03-2009

5 android-2.0 r1 Eclair 10-26-2009

4 android-1.6 r1 Donut 09-15-2009

the usage of this flag, thus, even custom permissions could use it. Similarly, the
flag FLAG HIDDEN added in Android 6.0 [7] also influences presentation, making
a permission hidden from the user’s sight. This flag is used for the platform per-
missions that have become deprecated and removed from the system. However,
a developer may use this flag to conceal custom dangerous permissions.

The flag FLAG INSTALLED was introduced in Android 6.0 [10]. It is set by
the operating system itself. This flag shows that the permission has been actu-
ally installed into the system, and influences presentation of permissions. For
instance, if a permission has not been declared by an application but is requested
by another app, it will not be shown in the list of requested permissions.

5 Analysis of Permission Changes

To investigate empirically how the Android permission system evolved across
platform updates, we retrieved the source code of the Android platform for ver-
sions released from 2009 till 2015 that resulted in the API level change (the
latest release at the time of writing is Android Marshmallow). Table 1 overviews
the Android platform releases covered in our study.

We performed the analysis aiming at detection of odds in the permission sys-
tem. In our study we focus on the Android platform permissions, and we do not
cover custom permissions, which are defined by third-party applications to pro-
tect access to their resources. We divide platform permissions into 4 categories:

An Updated View on the Android Permission System 355

(a) (b)

Fig. 3. Number of permissions for every platform release: (a) for core permissions;
(b) for package permissions.

– sample – permissions that are declared by the sample apps shipped with the
platform source code (appeared from API 21).

– test – permissions that are declared in the manifest files of packages developed
for testing purposes;

– package – permissions that are declared in various packages that complement
the framework, and that are not of test or sample groups;

– core – permissions that are declared in the core Android manifest file located
in the frameworks/base/core/res folder;

The categories discussed above reflect the basic purposes why permissions are
used within AOSP [1]: some permissions (from the categories core and package)
are the “true” permissions used for access control, while others are auxiliary
utilized in example applications (sample) or for testing (test). We focus our
study on core and package permissions, because they are the ones that truly
influence the behavior of the operating system.

The study done by Wei et al. in 2012 revealed that the number of permissions
steadily increased with each Android release [49]. Our study, as of the beginning
of 2016, confirms that finding and shows that the total amount of permis-
sions declared within the Android platform continues to grow, reaching
314 in API 23 compared to 165 in API 15 (the last version analyzed by Wei
et al. [49]). Figure 3a and b illustrate the growth of the number of permissions
for core and package categories correspondingly. Obviously, the main contribu-
tor to the continuous increase are core permissions. The amount of the package
permissions fluctuates, although still showing the overall upward trend. These
plots also demonstrate the changes in the amounts of permissions of different
protection levels. Table 2 characterizes the changes between consequent API lev-
els. The data confirms that almost every Android API release (besides the API
6, 7, 10) introduced new permissions, as access to the new platform functionality
often needs to be guarded.

356 Y. Zhauniarovich and O. Gadyatskaya

Table 2. Permission changes in core and package categories

API level Amount of permission changes

Added Removed Type changed Protection level changed

Inc Dec Total

5 14 2 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 13 2 1 5 1 6

9 8 6 0 4 0 4

10 0 0 0 1 0 1

14 30 1 0 5 1 6

15 3 1 0 0 0 0

16 20 0 0 6 0 6

17 21 0 0 7 8 15

18 10 1 0 0 0 0

19 28 2 0 2 0 2

21 54 9 0 6 3 9

22 11 3 0 0 0 0

23 46 8 0 7 128 135

Interestingly, while the total amount of permissions increases with every new
Android release, the number of permissions with normal and dangerous levels,
which guard the functionality exposed to third-party applications, remains fairly
stable. Therefore, from the developer perspective, the cognitive load did not
increase much in terms of new permissions (however, the amount of compatibility
issues to be handled is still growing due to the fluctuations in permissions). At
the same time, security researchers, and platform and system app developers
have to cope with more and more permissions.

At the same time, permissions are not only added. Throughout the plat-
form evolution, many permissions were removed or changed their protection
level. We analyzed code commits to AOSP [1] and found the following reasons
why permissions are removed. Most of the package permissions were removed,
because either the corresponding packages were deleted from the system, or
the functionality of these packages became closed-source. Some permissions
became obsolete because the corresponding functionality was either provided to
all applications (e.g., the backup functionality protected with the BACKUP DATA
permission was made available to all apps in API 8) or merged with other
functionality, as in case of GRANT REVOKE PERMISSIONS (removed in API 23)
used to protect the runtime granting of development permissions. Interestingly,
while the permission READ OWNER DATA was removed in API 9, more than 5 years

An Updated View on the Android Permission System 357

ago, the current documentation still contains references to it1. Additionally,
permissions may be simply renamed (e.g., BROADCAST SCORE NETWORKS became
BROADCAST NETWORK PRIVILEGED). All these perturbations hinder understanding
of the permission system and its changes across Android releases.

According to Table 2, there was only 1 case of the category change: the
ACCESS CACHE FILESYSTEM permission in API 7 was in the package category,
while in API 8 its declaration was moved to the core Android Manifest file.

As for the protection level changes, Table 2 reports the number of permissions
that increased or decreased2 their protection level.

The overall trend in the table shows that, prior to Android 6.0, permissions
had a tendency to increase their protection level with the lapse of time. However,
the majority of protection level updates were related to changing the protection
level from signature to signature|system, what is actually not a restriction in con-
trol. Although internally signature|system permissions are assigned with a higher
value, in general the signature permissions are more restrictive, because they
allow the apps to obtain these permissions only if the declaring and requesting
packages are signed with the same certificate. Permissions of the signature|system
level can be also granted if the app is installed into the special system folder,
what allows vendors to use this functionality to vest pre-installed applications
with additional capabilities. For instance, the ability to shutdown the system
(protected with the SHUTDOWN permission) in API 14 was also given to vendor
apps. At the same time, other changes of protection level mostly aimed at limit-
ing the privileges of third-party apps. E.g., in API 16 the READ LOGS permission
allowing to read the system log that may contain sensitive data, changed level
from dangerous to signature|system.

Before API 23 there were not so many cases of decreases in the protection
level. These were mostly related to relaxing dangerous permissions in order to
avoid bothering the end-users with their approval. For instance, the WAKE LOCK
permission allowing an app to prevent the system from going into the sleep mode
changed its level from dangerous to normal in API 17.

There are permissions that changed their protection level several times. E.g.,
permission BATTERY STATS initially appeared as normal. In API 17 it became
dangerous, and in API 19 it emerged as a signature|system permission. Finally,
in API 23 it became a signature permission. Thus, during its life BATTERY STATS
has had all possible security levels.

The API level 23 introduced significant changes in protection levels
of permissions. Now, there are only a few dangerous permissions, as opposed to
all previous Android releases. Table 2 shows that the protection level decreased
for 128 permissions. The main reason for this change is deprecation of the signa-
ture|system protection level (104 permissions became signature). Moreover, the
shift to runtime permissions forced platform developers to reconsider the entries

1 http://developer.android.com/guide/topics/manifest/manifest-intro.html.
2 For this table we interpret the protection levels normal, dangerous, signature and
signature|system as an ordered set, where normal corresponds to the least critical
permissions and signature|system – to the most critical.

http://developer.android.com/guide/topics/manifest/manifest-intro.html

358 Y. Zhauniarovich and O. Gadyatskaya

in the dangerous set, leaving only the most critical ones that can be compre-
hended by users. Consequently, some dangerous permissions were transformed
into normal (22 cases). Section 6 discusses the effects of these changes.

Permission groups show more stable behavior with respect to changes. In
Android 1.6 (API 4) there were 11 groups. As permission groups were not widely
used, this number remained the same till API 17, when 19 new groups were
added. In API 18 one additional group appeared, resulting in 31 total. There
is not much information why this reorganization happened in these 2 consecu-
tive releases. However, this may be connected with the Google Play installer app
starting to cluster permissions according to their groups [18]. In Android 6.0 per-
mission groups were completely reconsidered once again. There are 4 new groups
added, while 26 were removed, resulting in 9 groups total. This radical change
happened because dangerous permissions are now granted on per-group basis.
Thus, the amount of groups was considerably reduced to avoid overwhelming
users with lots of permissions.

6 Key Findings

Ideally, the security critical components of a system should remain quite stable
to ensure easy security assessment. Unfortunately, this does not hold true in
case of the Android operating system. This section reports on our findings and
doubts inferred during the analysis of the evolution of the permission system.

6.1 Important Changes in API 23

(1) Runtime permissions. Undoubtedly, from the security perspective one
of the biggest changes in Android 6.0 is the introduction of runtime permis-
sions. Such a change requires efforts from both the OS designers and third-party
developers to ensure backward compatibility of old apps with the new platform
version, and forward compatibility of new apps with older platforms.

Backward compatibility of old apps with the new platform. Although
the intention was to make legacy (targeting the Android API levels before 23)
and new (API level 23) apps to behave in the same way, the differences are
quite substantial. First, during the installation of a legacy app the user must
agree with the requested permissions, or it will not be installed (see Fig. 1a),
while apps targeting API 23 will be installed silently. Second, after the installa-
tion all dangerous permissions of legacy apps will be in the granted state, while
runtime permissions of new apps will be disabled. Third, and most important,
in Android 6.0 only core permissions can granted and revoked to legacy apps,
while if an app targets API 23 it is also possible to adjust custom dangerous
permissions. Furthermore, some subtle differences require high attention from
developers. For instance, developers must ensure that the application, which
functionality is called, has been already granted with the permission to access
this functionality [43]. Additionally, in order to use an external library, which

An Updated View on the Android Permission System 359

requires access to the protected functionality, the developers must handle prop-
erly runtime permission requests [42].

Forward compatibility of new apps with older platforms. The new run-
time permission functionality has not come transparently for the application
developers. According to the new guidelines [19], before making an API call
protected with a permission, the app should ascertain that the appropriate per-
mission has been granted. If not, the developer must ask for the permission,
and the user can allow or deny it. Irrespectively of the user’s decision, both
cases must be handled by the developer (see Sect. 3). Unfortunately, the check
whether the permission has been granted does not always return the correct
result. We found out that if a developer runs an app on the older Android
version, which has not yet declared the requested permission, the permission
check returns that the permission is denied, while actually it is not required.
We made a script that automatically identifies the permissions producing this
unexpected behavior by extracting the list of runtime permissions in Android
6.0, and comparing it with the lists of dangerous permissions in the previous
versions. We found 8 such permissions added after API 4, namely USE SIP
(added in API 9); ADD VOICEMAIL (in API 14); WRITE CALL LOG, READ CALL LOG,
READ CELL BROADCASTS, READ EXTERNAL STORAGE (in API 16); BODY SENSORS
(in API 213); and READ TV LISTINGS (in API 23). These peculiarities are not
described in the Android documentation, although some developers have started
to experience problems4. At the same time, there is no bullet-proof solution how
to overcome this issue at the operating system level (it is possible to imple-
ment the corresponding check in apps themselves [44]). As previous versions of
Android are usually not supported (patches for older versions are rarely produced
and deployed), it is practically impossible to deploy patches on all devices run-
ning older versions of Android. Handling through patching the Android support
library is not a solution also, because developers may simply not use it in their
apps. Thus, the developers must consider these cases in their applications them-
selves. In any case, this issue must be at least specified in the documentation.

(2) Runtime permissions are granted per permission groups. Clearly,
this decision was made to reduce the amount of interruptions for asking permis-
sions at runtime and to facilitate user’s understanding of permissions [36]. At the
same time, experienced users are not given any option to control permissions in
a more fine-grained manner. Similar functionality introduced for the first time
in the Google Play client received negative feedback both from the users and
security analysts [18]. Moreover, this architectural decision implies that security
researchers have to consider permission groups in their analysis of apps.

We can remark here that for a long time security researchers have asked for
better and more fine-grained control over sensitive data and functionality on

3 This permission was added in API 20, which we did not analyze (API 20 was devel-
oped for wearable systems).

4 http://stackoverflow.com/questions/33482474/android-marshmallow-permission-
model-on-os-4-0-read-external-storage-permission.

http://stackoverflow.com/questions/33482474/android-marshmallow-permission-model-on-os-4-0-read-external-storage-permission
http://stackoverflow.com/questions/33482474/android-marshmallow-permission-model-on-os-4-0-read-external-storage-permission

360 Y. Zhauniarovich and O. Gadyatskaya

Android (e.g., [32,41,45], to mention just a few). Android 6.0 clearly moves in
the opposite direction. Arguably, the users often did not understand the impli-
cations of various dangerous permissions, and the reduced complexity of permis-
sions could be beneficial for some end-users [36]. Therefore, new evaluations and
studies of the system are required from the community.

(3) UID sharing. There was an attempt to change permission granting to on
per package basis. It failed, and permissions are still granted per UID [2]. This
creates an additional attack possibility for collaborative applications sharing the
same UID to access the functionality protected with runtime permissions. As we
explained in Sect. 3, in Android 6.0 the screen with the required runtime per-
missions is not shown to the user during app installation, but the user’s approval
for these permissions is requested at the runtime. Thus, the user finds out about
the required permissions only once they are requested. If two applications share
the same UID, then if a user grants a runtime permission to one app, the sec-
ond will be automatically granted with the same permission, and the user will
be unaware of this fact. For instance, the Microsoft Excel [15] and Microsoft
PowerPoint [16] apps share the same UID. Thus, if at runtime Microsoft Excel
is granted with READ EXTERNAL STORAGE permission, the Microsoft PowerPoint
app instantly receives the same permission even without user’s consent. Addi-
tionally, the apps will also receive rights to perform the actions protected with
the WRITE EXTERNAL STORAGE permission (if it is requested by the apps), because
both permissions belong to the same group. This is clearly not the behaviour the
user expects. The effort from the OS developers should be put into this direction.

(4) Signature permissions available to third-party apps. Before it was
assumed that third-party applications cannot obtain any signature permission
if they are not signed with the same certificate. However, this is not true any-
more, and any new security system for Android needs to take these permissions
into account. In our analysis we found 4 groups of exceptions that considerably
influence the security analysts. This change especially affects permission maps,
which considered before only dangerous and normal permissions as available for
third-party apps [23].

Appop permissions. Introduction of the appop permissions (with FLAG APPOP
set) entails quite substantial consequences. First of all, for every set of such
permissions a separate activity was added where the user can grant them
to an app. Currently, there are 3 different activities responsible for grant-
ing such permissions (an example is given in Fig. 1b): to grant the usage
access (PACKAGE USAGE STATS), draw over other apps (SYSTEM ALERT WINDOW),
and modify system settings (WRITE SETTINGS) privileges. Interestingly, these
activities are accessed through different configuration screens: the first one is
located under the “Security” settings, while the last two are on the “Config-
ure apps” screen. This design decision is inconvenient for the users who must
look in different locations to grant these permissions. Moreover, internally these
activities are represented as 3 different classes with the corresponding permis-
sions hardcoded within each class. Thus, if any new appop permission appears

An Updated View on the Android Permission System 361

in the future, this will require the OS developers to add a new class processing
this permission. In our study, we have also discovered one particular permission
CHANGE NETWORK STATE, which in Android 6.0 were an appop permission. How-
ever, with the release 6.0.1 (i.e., still within API 23) its protection level was
relaxed to normal.

Development permissions. These permissions (with FLAG DEVELOPMENT set),
although being of the signature protection level, can be granted to third-party
applications by using the pm grant shell command. While the code for granting
and revoking development permissions in Android 6.0 was merged with the one
handling runtime permissions, these groups are quite different. First, develop-
ment permissions are granted simultaneously to all system users, while runtime –
only to the current user. Second, they are not displayed in the user interface as
runtime permissions.

Pre-23 permissions. The permissions with FLAG PRE23 set are automatically
granted to all legacy (whose target API level is below 23) applications requesting
them.

Installer and verifier permissions. These signature permissions are auto-
matically granted to the apps marked as required installer and verifier.

(5) The deprecated signature|system protection level. Although the sig-
nature|system protection level is now deprecated, Fig. 3a and b show that there
are still many permissions using this deprecated value. What is even more con-
fusing, 9 new permissions of this level appeared in API 23. We attribute this
inconsistency to the lack of communication among the groups of developers
responsible for different modules. We have developed and submitted to AOSP [1]
patches to fix these issues. Currently, out of 9 submitted patches, 2 patches were
merged into the master branch, while 3 were verified and 5 were code-reviewed.

(6) Some dangerous permissions are now normal. In Android 6.0 the
amount of dangerous permissions was considerably reduced. For 22 dangerous
permissions the protection level was lowered to normal. Thus, the users now
do not have any control over functionality protected with these permissions:
normal permissions are not displayed and are automatically granted upon the
installation. At runtime, a user can neither check them nor revoke. For instance,
the INTERNET permission controlling the access of apps to the Internet, which
was widely used by malware [55] especially in combination with other permis-
sions [32], is now granted automatically.

From the security perspective, this is one of the most controversial changes,
because many permissions regarded before as sensitive are now granted auto-
matically. The fact that 22 permissions (including, e.g., NFC, BLUETOOTH,
WRITE PROFILE, MANAGE ACCOUNTS) have been demoted in the security level
emphasizes that the Android security architecture is far from being stable.

362 Y. Zhauniarovich and O. Gadyatskaya

6.2 Interesting Findings

(1) Protection level flags. Developers cannot use protection level flags in
their third-party apps. An application containing permission declaration with
protection level flags will not pass validation checks during the compilation. The
developers may only select one of the four main protection levels for their custom
permissions: (normal, dangerous, signature and signature|system). At the same
time, the validation check is performed only during application compilation.
During installation of an app similar checks are not fired, and it is possible
to add a protection level flag through app repackaging, e.g., using apktool5.
Clearly, the checks in IDEs should conform to the new permission specifications,
i.e., the signature|system protection flag should be removed, and there should
be a possibility for third-party application developers to assign protection level
flags to their custom permissions.

In Android 6.0 the protection level flag FLAG PREINSTALLED was added. Pre-
viously, all signature permissions were divided into privileged, which could be
obtained only if a system app was installed in the special folder, and others, which
could be obtained by apps signed with the same certificate. FLAG PREINSTALLED
relaxes this strict division, and permits all system apps to receive automatically
the permissions with this flag set.

(2) Additional flags. Currently there are no restrictions for a third-party
developer on assigning additional flags to custom permissions. For instance, it is
possible to declare a permission with FLAG COSTS MONEY set. As a result, on older
systems you will see the corresponding permission accompanied with a special
coins icon. Similarly, the usage of FLAG HIDDEN is also not restricted. This may
be used by a developer to conceal a permission from the list of app’s dangerous
permissions. While we cannot say if this functionality can be used with malicious
purposes, these edge cases violate the principle of least privilege.

Moreover, as mentioned in Sect. 4.2, 2 out of 3 flags can be set by a devel-
oper, while the third flag FLAG INSTALLED can be installed only by the operat-
ing system. Such behavior is considered as security anti-pattern, when publicly
accessible data is combined with private information.

(3) Hard-coded screens for granting permissions. Every permission group
defined in the core AndroidManifest.xml file has its own screen, where a user
grants and revokes permissions assigned to this group (see Fig. 1c for the entry
points to these screens). At the same time, permission groups defined in the
system or third-party packages do not have dedicated screens. The “Additional
permissions” screen collects all of them. There is no separation between groups
and single permissions on this screen. E.g., Fig. 1d shows that the permission
group (test permission group) and the single permission (test single permission)
are listed on the same screen along with other groups defined in system packages.
As we mentioned, the groups and single permissions will be displayed on this
screen only if the corresponding package targets API 23.

5 https://ibotpeaches.github.io/Apktool/.

https://ibotpeaches.github.io/Apktool/

An Updated View on the Android Permission System 363

(4) Permission groups. We mentioned that there is no restriction on adding
custom permissions to the system permission groups. If a custom permission has
the dangerous protection level, then, when an app requests this permission at
runtime, it is also granted with all permissions from the same group. At the
same time, if the protection level of a custom permission is not dangerous, the
remaining permissions from the group will not be automatically granted. Thus,
to our point of view, there is no reason to group permissions beside those with
the dangerous protection level. We analyzed system non-dangerous permissions
to detect if there are any assigned to groups. For the API level 23 we found 6 such
package permissions and 2 core permissions. For example, the USE FINGERPRINT
permission assigned to the SENSORS permission group has the normal protection
level, while ACCESS IMS CALL SERVICE belonging to the PHONE group has the
signature|system level. We do not see reasons for this assignment and expect
these issues to be fixed in the future Android releases.

(5) Permission declaration duplicates. During our analysis we found
that some permission declarations are duplicated even within AOSP.
The most frequent duplicates are declarations of INSTALL SHORTCUT and
UNINSTALL SHORTCUT permissions. These flags are declared both in the core and
package manifest files. Before API 19 there were no declarations of these per-
missions on the core level, but due to a bug they were added to the core man-
ifest file [6]. Interestingly, these permissions in the core and packages manifest
files have different protection levels: normal in the former case and danger-
ous in the latter. Additionally, while exploring this issue, we discovered that
in API 17 the declarations of two permissions (SET SCREEN COMPATIBILITY
and CHANGE CONFIGURATION) were duplicated even within the core file. This
shows that some classes and configuration files reached critical complexity within
AOSP. It is necessary either to refactor them, or to use extensively static ana-
lyzers to prevent these inconsistencies.

7 Related Work

Studies in the literature investigated many aspects of the Android permission
system [34,37]. Indeed, the permission system is a cornerstone of the Android
security model [31], while permission misuse is a great concern [27,51], and
permission request patterns in apps are widely used for pinpointing malicious
or dubious behavior (e.g., [21,28,46,52]). At the same time, Android develop-
ers require guidance for understanding permissions and using them correctly.
For example, [26,35] looked at permission enforcement in Android and have
shown that the principle of least privilege was often neglected by developers.
Many studies looked into improving the permission system design and proposing
more secure or more usable solutions (e.g., [29,41,45,54]), while some researchers
argued that finer granularity of permissions could be viable [38]. In absence of
a reliable documentation from Google, researchers had also to provide a means
of linking permissions to precise platform APIs that are protected with these

364 Y. Zhauniarovich and O. Gadyatskaya

permissions (a permission map) [23,24,26,35,40,48]. Outside the Android plat-
form, smartphone permission systems were explored in [22,39,47].

Wei et al. [49] have performed an early study of the permission system evolu-
tion in Android demonstrating that the permission system has become even more
complex over time from the user’s perspective (since its introduction in 2008 till
the study publication in 2012). [49] revealed that the principle of least privilege
was more and more violated with the time (the amount of overprivileged apps
had consistently grown). Moreover, the permission system had become more
complex: the total number of permissions had increased, and the amount of
dangerous permissions had grown.

Au et al. [23] performed another longitudinal study of Android permissions
with a focus on the sensitive API and permission changes spanning Android
versions 2.2 up to Android 4.0. This study showed that the number of docu-
mented APIs requiring permissions had grown significantly in Android 4.0, and
that many APIs changed their permission requirements over Android versions;
this is also consistent with our own findings. The difference of our study with
[23] is that we explore the changes in the permission system in the whole, while
Au et al. concentrated on relations between permissions and API calls.

The studies by Wei et al. [49] and Au et al. [23] were reported in 2012. Thus,
our study incrementally adds to theirs by surveying also more recent platform
versions. To the best of our knowledge, the new Android permission system
architecture, including runtime permissions, has not yet been extensively stud-
ied by the security research community. However, runtime permission requests
were previously suggested by security researchers [50], and the effect of dynamic
permission revocation on the Android apps has been empirically evaluated [33].

8 Conclusion

In this paper, we conducted a comprehensive study of the Android permission
system. Driven by the aspiration to understand new runtime permissions, we
discovered that the permission system has considerably evolved after its semi-
nal description in [31]. To help security researchers and Android developers to
understand better the new model and its implications, we presented an updated
view on the permission system. Besides giving the overview and intrinsic details
of the new design, we have shown its main changes during the last 6 years. At the
individual permission level we discovered and reported many issues that have
implications on the Android security state and research. These findings empha-
sise the dynamic complexity of the Android permission system that needs to be
taken into account by the community.

References

1. Android Open Source Project. http://source.android.com/. Accessed 31 Mar 2016
2. Commit 2af5708: Add per UID control to app ops. https://android.googlesource.

com/platform/frameworks/base/+/2af5708

http://source.android.com/
https://android.googlesource.com/platform/frameworks/base/+/2af5708
https://android.googlesource.com/platform/frameworks/base/+/2af5708

An Updated View on the Android Permission System 365

3. Commit 2ca2c87: More adjustments to permissions. https://android.googlesource.
com/platform/frameworks/base/+/2ca2c87

4. Commit 33f5ddd: Add permissions associated with app ops. https://android.
googlesource.com/platform/frameworks/base/+/33f5ddd

5. Commit 3e7d977: Grant installer and verifier install permissions robustly. https://
android.googlesource.com/platform/frameworks/base/+/3e7d977

6. Commit 4516798: Moving launcher permission to framework. https://android.
googlesource.com/platform/frameworks/base/+/4516798

7. Commit 6d2c0e5: Remove not needed contacts related permissions. https://
android.googlesource.com/platform/frameworks/base/+/6d2c0e5

8. Commit a90c8de: Add new “preinstalled” permission flag. https://android.
googlesource.com/platform/frameworks/base/+/a90c8de

9. Commit ccbf84f: Some system apps are more system than others. https://android.
googlesource.com/platform/frameworks/base/+/ccbf84f

10. Commit cfbfafe: Additional permissions aren’t properly disabled after toggling
them off. https://android.googlesource.com/platform/frameworks/base/+/cfbfafe

11. Commit de15eda: Scope WRITE SETTINGS and SYSTEM ALERT WINDOW
to an explicit toggle to enable in Settings. https://android.googlesource.com/
platform/frameworks/base/+/de15eda

12. Commit e639da7: New development permissions. https://android.googlesource.
com/platform/frameworks/base/+/e639da7

13. Dashboards. http://goo.gl/mFciT7. Accessed 31 Mar 2016
14. Google says Android has 1.4 billion active users. http://goo.gl/aUuUNw. Accessed

31 Mar 2016
15. Microsoft Excel. https://play.google.com/store/apps/details?id=com.microsoft.

office.excel. Accessed 31 Mar 2016
16. Microsoft PowerPoint. https://play.google.com/store/apps/details?id=com.

microsoft.office.powerpoint. Accessed 31 Mar 2016
17. Not just for phones and tablets: what other devices run Android? http://goo.gl/

kQ4Pi8. Accessed 31 Mar 2016
18. Play store permissions change opens door to rogue apps. http://goo.gl/nJCwoY.

Accessed 31 Mar 2016
19. Requesting permissions at run time. http://developer.android.com/training/

permissions/requesting.html
20. Smartphone OS market share, 2015 Q2. http://goo.gl/WQwfZO. Accessed 31 Mar

2016
21. Arp, D., Speizenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN: effective

and explainable detection of Android malware in your pocket. In: Proceedings of
NDSS (2014)

22. Au, K., Zhou, Y.F., Huang, Z., Gill, P., Lie, D.: Short paper: a look at smartphone
permission models. In: Proceedings of SPSM (2011)

23. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: PScout: analyzing the Android per-
mission specification. In: Proceedings of CCS (2012)

24. Backes, M., Bugiel, S., Derr, E., Weisgerber, S., McDaniel, P., Octeau, D.: On
demystifying the Android application framework: re-visiting Android permission
specification analysis. In: Poster Session of IEEE EuroS&P (2016)

25. Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A methodology
for empirical analysis of permission-based security models and its application to
Android. In: Proceedings of CCS (2010)

https://android.googlesource.com/platform/frameworks/base/+/2ca2c87
https://android.googlesource.com/platform/frameworks/base/+/2ca2c87
https://android.googlesource.com/platform/frameworks/base/+/33f5ddd
https://android.googlesource.com/platform/frameworks/base/+/33f5ddd
https://android.googlesource.com/platform/frameworks/base/+/3e7d977
https://android.googlesource.com/platform/frameworks/base/+/3e7d977
https://android.googlesource.com/platform/frameworks/base/+/4516798
https://android.googlesource.com/platform/frameworks/base/+/4516798
https://android.googlesource.com/platform/frameworks/base/+/6d2c0e5
https://android.googlesource.com/platform/frameworks/base/+/6d2c0e5
https://android.googlesource.com/platform/frameworks/base/+/a90c8de
https://android.googlesource.com/platform/frameworks/base/+/a90c8de
https://android.googlesource.com/platform/frameworks/base/+/ccbf84f
https://android.googlesource.com/platform/frameworks/base/+/ccbf84f
https://android.googlesource.com/platform/frameworks/base/+/cfbfafe
https://android.googlesource.com/platform/frameworks/base/+/de15eda
https://android.googlesource.com/platform/frameworks/base/+/de15eda
https://android.googlesource.com/platform/frameworks/base/+/e639da7
https://android.googlesource.com/platform/frameworks/base/+/e639da7
http://goo.gl/mFciT7
http://goo.gl/aUuUNw
https://play.google.com/store/apps/details?id=com.microsoft.office.excel
https://play.google.com/store/apps/details?id=com.microsoft.office.excel
https://play.google.com/store/apps/details?id=com.microsoft.office.powerpoint
https://play.google.com/store/apps/details?id=com.microsoft.office.powerpoint
http://goo.gl/kQ4Pi8
http://goo.gl/kQ4Pi8
http://goo.gl/nJCwoY
http://developer.android.com/training/permissions/requesting.html
http://developer.android.com/training/permissions/requesting.html
http://goo.gl/WQwfZO

366 Y. Zhauniarovich and O. Gadyatskaya

26. Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Automatically securing
permission-based software by reducing the attack surface: an application to
Android. In: Proceedings of ASE (2012)

27. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Reza-Sadeghi, A., Shastry, B.:
Towards taming privilege-escalation attacks on Android. In: Proceedings of NDSS
(2012)

28. Chen, K.Z., Johnson, N., D’Silva, V., Dai, S., MacNamara, K., Magrino, T., Wu,
E., Rinard, M., Song, D.: Contextual policy enforcement in Android applications
with permission event graphs. In: Proceedings of NDSS (2013)

29. Conti, M., Crispo, B., Fernandes, E., Zhauniarovich, Y.: CRêPE: a system for
enforcing fine-grained context-related policies on Android. IEEE Trans. Inf. Foren-
sics Secur. 7(5), 1426–1438 (2012)

30. Elenkov, N.: Android Security Internals: An In-Depth Guide to Android’s Security
Architecture, 1st edn. No Starch Press, San Francisco (2014)

31. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android security. IEEE
Secur. Priv. Mag. 7(1), 50–57 (2009)

32. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of CCS (2009)

33. Fang, Z., Han, W., Li, D., Guo, Z., Guo, D., Wang, X.S., Qian, Z., Chen, H.:
revDroid: code analysis of the side effects after dynamic permission revocation of
Android apps. In: Proceedings of ASIACCS (2016)

34. Fang, Z., Han, W., Li, Y.: Permission based Android security: issues and counter-
measures. Comput. Secur. 43, 205–218 (2014)

35. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of CCS (2011)

36. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android per-
missions: user attention, comprehension, and behavior. In: Proceedings of SOUPS
(2012)

37. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and enhancing Android’s
permission system. In: Proceedings of ESORICS (2013)

38. Fratantonio, Y., Bianchi, A., Robertson, W., Egele, M., Kruegel, C., Kirda, E.,
Vigna, G.: On the security and engineering implications of finer-grained access
controls for Android developers and users. In: Almgren, M., Gulisano, V., Maggi,
F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 282–303. Springer, Heidelberg (2015)

39. Gadyatskaya, O., Massacci, F., Zhauniarovich, Y.: Security in the firefox OS and
Tizen mobile platforms. IEEE Comput. 47(6), 57–63 (2014)

40. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: automatically detect-
ing potential privacy leaks in Android applications on a large scale. In: Katzen-
beisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.)
Trust 2012. LNCS, vol. 7344, pp. 291–307. Springer, Heidelberg (2012)

41. Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N., Foster, J.S., Mill-
stein, T.: Dr. Android and Mr. Hide: fine-grained permissions in Android applica-
tions. In: Proceedings of SPSM (2012)

42. Murphy, M.: Libraries and dangerous permissions. https://goo.gl/NJAjMx.
Accessed 25 June 2016

43. Murphy, M.: Runtime permissions, files, and ACTION SEND. https://goo.gl/
slhHoI. Accessed 25 June 2016

44. Murphy, M.: You cannot hold non-existent permissions. https://goo.gl/nyDjUj.
Accessed 25 June 2016

https://goo.gl/NJAjMx
https://goo.gl/slhHoI
https://goo.gl/slhHoI
https://goo.gl/nyDjUj

An Updated View on the Android Permission System 367

45. Nauman, M., Khan, S., Zhang, X.: Apex: extending Android permission model and
enforcement with user-defined runtime constraints. In: Proceedings of ASIACCS
(2010)

46. Pandita, R., Xiao, X., Wang, W., Enck, W., Xie, T.: WHYPER: towards automat-
ing risk assessment of mobile applications. In: Proceedings of USENIX Security
(2013)

47. Singh, K.: Practical context-aware permission control for hybrid mobile applica-
tions. In: Stolfo, S.J., Stavrou, A., Wright, C.V. (eds.) RAID 2013. LNCS, vol.
8145, pp. 307–327. Springer, Heidelberg (2013)

48. Vidas, T., Christin, N., Cranor, L.F.: Curbing Android permission creep. In: Pro-
ceedings of W2SP (2011)

49. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission evolution in the Android
ecosystem. In: Proceedings of ACSAC (2012)

50. Wijesekera, P., Baokar, A., Hosseini, A., Egelman, S., Wagner, D., Beznosov, K.:
Android permissions remystified: a field study on contextual integrity. In: Proceed-
ings of USENIX Security (2015)

51. Xing, L., Pan, X., Wang, R., Yuan, K., Wang, X.: Upgrading your Android, elevat-
ing my malware: privilege escalation through mobile OS updating. In: Proceedings
of S&P (2014)

52. Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X.S., Zang, B.:
Vetting undesirable behaviors in Android apps with permission use analysis. In:
Proceedings of CCS (2013)

53. Zhauniarovich, Y., Ahmad, M., Gadyatskaya, O., Crispo, B., Massacci, F.: Sta-
DynA: addressing the problem of dynamic code updates in the security analysis of
Android applications. In: Proceedings of CODASPY (2015)

54. Zhauniarovich, Y., Russello, G., Conti, M., Crispo, B., Fernandes, E.: MOSES: sup-
porting and enforcing security profiles on smartphones. IEEE Trans. Dependable
Secure Comput. 11(3), 211–223 (2014)

55. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution.
In: Proceedings of S&P (2012)

Who Gets the Boot? Analyzing Victimization
by DDoS-as-a-Service

Arman Noroozian1(B), Maciej Korczyński1, Carlos Hernandez Gañan1,
Daisuke Makita2,3, Katsunari Yoshioka2, and Michel van Eeten1

1 Delft University of Technology, Delft, Netherlands
a.noroozian@tudelft.nl

2 Yokohama National University, Yokohama, Japan
3 National Institute of Information and Communications Technology, Koganei, Japan

Abstract. A lot of research has been devoted to understanding the tech-
nical properties of amplification DDoS attacks and the emergence of the
DDoS-as-a-service economy, especially the so-called booters. Much less
is known about the consequences for victimization patterns. We profile
victims via data from amplification DDoS honeypots. We develop victim-
ization rates and present explanatory models capturing key determinants
of these rates. Our analysis demonstrates that the bulk of the attacks
are directed at users in access networks, not at hosting, and even less
at enterprise networks. We find that victimization in broadband ISPs is
highly proportional to the number of ISP subscribers and that certain
countries have significantly higher or lower victim rates which are only
partially explained by institutional factors such as ICT development. We
also find that victimization rate in hosting networks is proportional to the
number of hosted domains and number of routed IP addresses and that
content popularity has a minor impact on victimization rates. Finally,
we reflect on the implications of these findings for the wider trend of
commoditization in cybercrime.

1 Introduction

While Distributed Denial-of-Service (DDoS) attacks have been around for a long
time, the use of amplification techniques has transformed the criminal ecosystem.
These techniques now make up the bulk of the observed attack traffic [1,2]. This
shift is intimately related to another trend: the rise of DDoS-as-a-service, also
known as booters. Booters are a clear example of the so-called commoditization
of cybercrime [3]: criminal service providers bundling all the resources and tools
needed for an attack and offering them in an accessible way as a commodity
service to anyone willing to pay.

Several in-depth studies have illuminated the supply side of the market for
DDoS: the technical resources and techniques deployed by the criminal service
providers [2,4,5]. We have also learned quite a bit about the economics of booters
from publicly-leaked dumps of several operational databases containing informa-
tion about revenue and customers [6–8].
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 368–389, 2016.
DOI: 10.1007/978-3-319-45719-2 17

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 369

What is much less understood, however, is how the abundance and affordabil-
ity of DDoS-as-a-service has impacted victimization patterns. Who is bearing the
brunt of the lowered barriers for DDoS attacks? Existing studies have revealed
some basic distributions of victims across countries, Regional Internet Registries
(RIRs) and Autonomous Systems (ASes). They have pointed to end hosts, gam-
ing servers and hosting providers [1], but they lack a more in-depth investigation
and explanation of victimization patterns.

This paper addresses this knowledge gap and profiles the affected networks
and victims. It uses a dataset of 1, 115, 795 victim IP addresses captured over
the past two years (2014–2015) via several amplifier-honeypots [2]. From the
IP addresses, we infer certain properties of the victims and identify the factors
determining their distributions across networks and countries.

Since the existing work on amplifiers and booters has not focused on the
victims, the public understanding of them has been shaped by anecdotal news
articles and by industry reports compiled by DDoS mitigation providers. The
former focus on the more news-worthy cases, i.e., the attacks against high profile
targets. The latter are biased towards their own customer base, i.e., enterprises
purchasing DDoS protection services, as that is where the data is being collected.
As we demonstrate in this paper, neither provide a good understanding of the
ecosystem of commoditized DDoS attacks.

We summarize the main contributions of this paper as follows:

– We show that the bulk of the victims (62 %) are users in access networks, rather
than in hosting networks (26 %). Only a small fraction resides in enterprise
networks;

– We demonstrate that the victimization rate in access networks is highly pro-
portional to the number of broadband subscribers in those networks, sug-
gesting that the commoditization of attacks has led to a democratization of
victims;

– We find that certain countries have a significantly higher number of victims
per subscriber. This rate is weakly related to institutional factors such as infor-
mation and communication technologies (ICT) development, suggesting geo-
graphical network effects among attackers and victims increasing the uptake
of DDoS-as-a-service;

– We demonstrate that victimization in hosting networks is proportional to the
number of IP addresses and hosted domains, and also influenced by the pop-
ularity of the hosted content.

– Where we were able to specifically identify webhosting victims, we find that
they have barely any enterprises among them or other valuable targets. The
largest victim group are gaming-related sites, most notably around Minecraft,
suggesting that the commoditization of DDoS facilitates crime that is mostly
not profit driven.

In what follows we first present some background (Sect. 2) and the data col-
lection method (Sect. 3), we then discuss the distribution of victim IP addresses
over access, hosting and other networks (Sect. 4). Next we delve deeper into vic-
timization patterns in access networks (Sect. 5) and hosting networks (Sect. 6).

370 A. Noroozian et al.

We briefly explore whether attack duration is different across victim populations
(Sect. 7). After comparing our findings to related work, we summarize our con-
clusions on the consequences of DDoS-as-a-service and discuss the implications
for the wider issue of the commoditization of cybercrime.

2 Background

DDoS attacks have been associated with a range of motives. They can be profit-
driven – as in the case of extortion, disrupting competitors, or using it as a smoke
screen for committing financial fraud – or motivated by other objectives, such
as political protest, harassment, or gaining advantage in online gaming [1,3].

Amplification DDoS attacks now make up a considerable fraction of network-
layer DDoS incidents [9–11]. Attackers send requests to amplifiers – a.k.a. reflec-
tors – and spoof the source IP address, so that the amplifiers responses are
directed to the victim. A whole range of protocols can be abused for amplifica-
tion and millions of machines run these protocols which enables such attacks [12].

Most of the amplification attacks stem from booter services [2,7]. The price
for purchasing an amplified DDoS attack can be as low as $1, as the analysis
of some leaked booter databases demonstrates [7,13]. A purchase from a booter
would typically entail access to the service for a limited amount of time, tied to
different pricing tiers. Most attacks are very short, less than 10 min [7].

On the customer side of booter services, leaked databases have shown that
most customers of DDoS-as-a-service use it only once to attack a single target [7]
and only a small fraction of them hide their tracks via TOR or VPN. This might
indicate that their technical skills are limited or that they do not perceive a need
to hide. The users that do hide their tracks, tend to return for more and also
tend to launch more attacks [6]. The databases have also revealed that gamers
make up a specific and important customer group [6]. On the victim side, booter
databases contain the targeted IP addresses or URLs, but these sets are limited
in scope and volume. The top 100 most attacked sites were mostly game servers
and game forums [6].

Besides booter databases, NTP amplification attacks allow victim IPs to be
retrieved from the NTP servers. From this data, Czyz et al. [1] point to end hosts
and gaming servers to be common victims [1]. Amplification honeypots have also
collected victim IP addresses [2]. They have only been superficially analyzed, in
terms of the distribution over countries and IP address space. The U.S., China
and France were the most attacked countries. In this paper, we significantly
extend the analysis of honeypot data.

The only other systematic source of information comes from industry reports
by DDoS mitigation providers. Akamai points to gaming, software and the finan-
cial industry as the major victims [9], with a small fraction of victims belonging
to the telecom industry. Other reports suggest hosting as major victims [14].
These industry reports have specific limitations and biases, which we will return
to in Sect. 4.

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 371

3 Honeypot Data

The victim data used in this study was gathered via a set of amplifier honeypots
– dubbed AmpPots [2] – which have been deployed over the past two years
(2014–2015). They run services that are known to be misused for amplification
attacks: QotD (17/udp), CharGen (19/udp), DNS (53/udp), NTP (123/udp), SNMP
(161/udp) and SSDP (1900/udp). Each AmpPot uses real server software (in
‘proxy’ mode) to provide the aforementioned services except for SSDP in which
an emulated script is used instead. The responses of AmpPots are filtered in
order to prevent from contributing to actual attacks. More details of AmpPot
can be found in the previous study [2].

Table 1. Overview of deployed AmpPots.

AmpPot ID Deployed on IP Changes Notes

H01 2012-10-07 19 added QOTD, NTP, SNMP, SSDP on
2014-09-25. Discontinued on
2015-10-09

H02 2013-05-13 25 only DNS supported

H03 2014-05-13 9 added SNMP support on 2014-09-17

and SSDP on 2014-10-03 *

H04 2014-05-13 10 added SNMP, SSDP support on
2014-09-17 *

H05 2014-05-10 4 added SNMP, SSDP support on
2014-10-18 *

H06 2014-05-10 6 added SNMP, SSDP support on
2014-10-18 *

H07 2014-05-10 8 added SNMP, SSDP support on
2014-10-18 *

H08 2015-11-09 0 –**

Note:* Deployed with QOTD, CharGen, DNS and NTP support
Note:** Deployed with support for all protocols

In total 8 AmpPots were deployed on the Internet during the measure-
ment period of 2014–2015. Table 1 shows a summary of the operational time-
line and supported protocols of these devices. At the start of the measure-
ment period (2014-01-01), two AmpPots were operational and initially only
supported the CharGen and DNS protocols. With a sustained effort to moni-
tor more amplification attacks, more devices were gradually added with sup-
port for additional abused protocols. At the end of the measurement period
(2015-12-31) the deployed AmpPots collectively monitored 6 services except
for H02 which only supports DNS. All AmpPots are located at ISPs in Japan
and their IP addresses are dynamically assigned. Depending on the ISP, the IP
addresses changed every 5–30 weeks, on average.

372 A. Noroozian et al.

Fig. 1. Number of amplification attacks per protocol

AmpPots observe not only amplification attacks, but also scans from
researchers or attackers who search for vulnerable devices. To separate actual
attacks from scans, attacks are defined as a series of at least 100 consecutive
query packets that a single host sent to an AmpPot, where consecutive means
that there was no gap of more than 600 s between two packets. This definition is
in concord with the one used in [2]. We did, however, reduce the gap from 3600 s
to 600 s, in order to analyze attack duration with a more fine-grained approach.

Collectively, the AmpPots have monitored 1, 115, 795 unique victim IP
addresses from 92 countries and 15, 044 unique victim ASes. Figure 1 shows the
number of attacks per protocol during 2014 and 2015. As the figure demonstrates,
the total number of attacks has increased over time and protocols like DNS, NTP
and SSDP have been used more often to launch amplification attacks. During
the measurement period, the AmpPots have monitored 5, 726, 150 amplifica-
tion DDoS attacks in total: DNS (41.26 %), NTP (38.73 %), CharGen (11.32 %),
SSDP (8.01 %), SNMP (0.65 %), and QotD (0.01 %).

4 Victims of Amplification Attacks

Given our amplification attack data the first question we pursue is: In which
type of networks are victims concentrated?

To avoid confusion, we first define the main concepts. The term attack has
been defined and operationalized in the previous section. We use the term target
to refer to the entity (or entities) that the attacker intended to affect. This
may be a person, organization, service or machine. Since the data consists of IP
addresses, the attacker’s intention is not directly observable. For this reason, we
use the term victim to refer to the targeted IP addresses and the hosts residing
there. As DDoS attacks are also a cost to the networks in which the victims
reside, we refer to the Autonomous System (AS) that routes the traffic for the
victims as victim AS or victim network. To answer our question we looked up
the ASes of the victims and categorized them into three groups: broadband ISPs,
hosting providers, and other networks.

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 373

To reliably identify the broadband ISPs, we utilize a previously developed
mapping that identifies the ASes of broadband ISPs in 82 countries and that
has been used to study botnet mitigation in broadband ISPs [15]. The map-
ping accurately distinguishes between and provides labels for ASNs which have
been manually mapped to broadband ISPs, hosting, governmental, mobile ISP,
educational and other types of networks. In total, the mapping contains 2,050
labeled Autonomous Systems. The mapping is organized around ground truth
data in the form of a highly accurate commercial database; TeleGeography Glob-
alcomms [16], containing the broadband subscriber numbers of 211 countries.
Compared to machine learning approaches that map AS types [17], our mapping
is more accurate since it manually identifies access networks, and the complete-
ness of the mapping is verified with the Telegeography database.

To identify hosting providers, we take all the non-broadband ASes in our
data and apply a simple heuristic to them. First, we count the number of
unique second-level domains (2LDs) hosted within the ASes. For this we used
all observed domains in 2014 and 2015 in DNSDB, a large passive DNS (pDNS)
database generously provided to us by Farsight Security [18]. DNSDB is sourced
from more than 100 sensors located around the world, in addition to authorita-
tive DNS data from various top-level domain (TLD) zone operators. To illustrate:
in 2015 DNSDB observed 287M unique 2LDs, which map to 69M distinct IP
addresses.

We use the accurate AS labels mentioned above to identify a threshold for
the number of hosted domains per AS that most accurately separates the ASes
labeled as hosting from other types of ASes which may also host domains. Our
approach does mean that CDNs and others networks like Cloudflare also get
categorized as hosting. Based on the ROC curve constructed we identify this
threshold to be 2700 2LDS. Therefore we define as hosting any AS that has not
been previously identified as a broadband ISP and that hosts more than 2, 700
2LDs. This corresponds to a false-positive/true-positive rate of 0.17/0.74. This
accuracy is far from perfect, but better than available alternatives. We compared
it to machine learning approaches, such as CAIDA’s classification of ASes [17].
Using CAIDA’s Content label as an alternative means for classifying the hosting
providers results in a 0.04/0.32 false-positive/true-positive rate of classification.
This classification has a better false-positive rate, but this comes at the cost of a
highly reduced true-positive rate in comparison to our classification. Alternative
methods for identifying hosting providers have also been explored in [19]. They
are not directly comparable due to their organizational level classification rather
than AS level.

Finally, all ASes that have not been classified as broadband ISP or hosting
are labeled as other. Our labels and manual inspection show that this group
contains governmental and educational networks, mobile and cloud providers,
enterprises and more.

Having constructed our network classification, we can now examine the dis-
tribution of victims over these networks. Figure 2 plots the results.

It clearly shows that the majority of attacks and victim IPs are located in
broadband ISPs, even though they only constitute a small fraction of all ASes

374 A. Noroozian et al.

Fig. 2. Distribution of types, attacks and victim IPs

that have been attacked. More precisely, 48 % of the attacks and 62 % of the
victims are in access networks. In total, we observe victim IPs from 92 countries
in the attack data. We have detailed information on ISPs from 77 of these 92
countries. All identified ISPs in these 77 countries receive attacks, except for
5 countries (GB, US, JO, KE, LV) where at most 2 smaller ISPs are missing
from the attack data. This suggests that the whole global broadband market is
victimized by these attacks.

The second largest category is hosting: 41 % of attacks and 26 % of victims.
The remaining victim networks constitute only a small fraction of the attacks
and victims (11 % and 12 %, respectively).

This distribution of victims across broadband and hosting networks is dif-
ferent from earlier work by Czyz et al. [1]. They observed that the top 10 most
targeted networks consisted of eight hosting providers and two telecom compa-
nies and that access nodes made up around half of all victims. They did observe
already a trend that the portion of victims in access networks was increasing,
which seems to have continued after their measurement period. Our analysis
of the UDP ports used for the attacks largely agrees with that of [1]. The most
frequently attacked UDP ports by a large margin include ports 80 and 8080,
that are more likely to be open and accessible through firewalls. Other applica-
tion specific ports are also targeted such as (7000) for BitTorrent trackers and
CORBA management agent (1050).

We have triangulated our results with CAIDA’s mapping of ASes [17], which
classifies them as Content, Enterprise or Transit/Access. While these cate-
gories are different from ours, which means we cannot directly compare the exact
distributions, the CAIDA mapping also locates most victims in Transit/Access
networks, followed by Content and Enterprise. This is consistent with our
findings.

Networks are not homogeneous, of course. Broadband networks, for example,
can also contain hosting services. To probe deeper into the AS-level pattern, we
take a closer look at the IP addresses of victims in access and hosting networks.
We checked whether the addresses were associated with any domains in our
pDNS data. Domains are used for a variety of hosting services; websites, but
also for gaming servers, email servers, basically for any service where a human
readable name is more convenient than an IP address. The pDNS data found
that 95% of the victims in broadband networks have never been associated with
any domains in 2014 and 2015. This suggests that the bulk of the victims in these

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 375

networks are access nodes. The remaining 5% host on average 20.8 domains per
IP address (The median domain count is 1 and 75% of these victims host 3 or
less domains).

Since this categorization is dependent on the coverage of our pDNS data,
we have cross-checked our domain data with the Bing.com search engine. We
took a random sample of 1000 broadband victim IP addresses and queried Bing
(‘IP:<x.x.x.x>’) to see if any domains were associated with it. For 9% of the
cases, BING reports observing domains where our pDNS data did not observe
any. The opposite was true in 2% of the cases. This suggests that the pDNS
data gives a reasonably accurate picture.

In hosting networks, we found that 46.6% of the victim IPs have been associ-
ated with domains. This confirms earlier work that webhosting is just one among
many targets. Figure 3 summarizes the breakdown of the victim types and the
subsets which we analyze in more detail in subsequent sections.

Fig. 3. Breakdown victims

Our results substantially
differ from the victimization
analysis in the reports of
DDoS mitigation providers.
There are two types of indus-
try reports: based on traffic
data or based on customer
surveys. An example of the
former is Akamai’s State of
the Internet report [20]. It
identifies the gaming indus-
try as the largest victim of
DDoS attacks with 54% of

the attacks, followed by the software and technology industry (23 %) and finan-
cial industry (7 %). Only 4% of attacks map to the Internet and Telecom indus-
try. Another type of industry report is based on surveys among customers of
DDoS mitigation providers. A recent example is Arbor Networks’ WISR [10],
which surveys 287 different organizations of which 24% are ISPs and 5% host-
ing providers. Other industry reports [14] point to hosting as the main victim
however, this could be due to a focus on botnet-assisted DDoS attacks.

The mismatch between these reports and our findings is evident. We would
argue that when it comes to observing victimization, the industry analyses are
more biased than the honeypot data. Industry data is typically collected in the
networks of the customers of the DDoS mitigation providers. It is unlikely that
users in retail broadband networks are purchasing these kinds of services and thus
those victims are severely under-counted by the industry reports. The amplifier
data is much less biased towards certain types of victims. This strength does
come at the cost of a weakness: missing attacks that are not amplifier-based.
Earlier work suggests this is not a significant issue. Czyz et al. compared the
data captured by observing NTP amplifiers against industry measurements and
victim network data and they found that the patterns observed in the amplifier
data were consistent with the industry measurements [1].

376 A. Noroozian et al.

The contrast between our findings and industry reports are more than mea-
surement issues. They have significant theoretical implications for our under-
standing the DDoS ecosystem, a point to which we will return later in the paper.
We first turn to a more in-depth look at the victimization patterns in broadband
ISPs and hosting.

5 Victims in Broadband Providers

We have now established that the majority of victims reside in broadband
providers and that the majority of these victims are access nodes. In other words,
home routers are typically the most affected devices. It suggests that the actual
target is a regular home user behind that router. This brings us to the next
question: How are victims distributed over broadband networks?

A simple count of unique victim IP addresses over the whole measurement
period, does not give us a decent metric of victimization rates per ISP because
of DHCP churn. ISPs re-assign IP addresses to their users at varying rates,
where high rates lead to significant over-estimation of the number of victims.
One method to reduce the effect of churn is to use short measurement windows
[15,21]. For this reason, we count the unique number of IP addresses seen for
each day and then average those daily counts to get to victimization rates over
larger time frames. This results in a more accurate representation of the relative
victimization rate per ISP.

In Fig. 4, we have plotted the average daily number of victims against the
number of subscribers of those ISPs. The subscriber data is drawn from the
TeleGeography database discussed in the previous section [16]. The database
provides accurate worldwide subscriber numbers for ISPs from 77 countries that
appear in our attack data. It provides a more precise proxy for the number
of users in a network than technical network properties, like the number of
advertised IP addresses, can provide.

Fig. 4. Correlation access victims with ISP subscribers

As we can see, vic-
timization rates dif-
fer by several orders
of magnitude across
ISPs, but these differ-
ence are highly cor-
related with the size
of the customer base:
R2 = 0.60. As an
aside, the correlation
with the number of
IP addresses adver-
tised by each ISP also
shows a firm linear
relation, though a bit
weaker (R2 = 0.56).

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 377

In other words, the number of users is a strong predictor for the number of
observed victims. This is consistent with the earlier speculation that it is individ-
ual users that are being attacked, rather than services or devices. It also means
that, to some extent, victimization rates are uniform across ISPs. Whatever
motivations attackers may have, it seems they select targets somewhat evenly
across broadband networks.

Notwithstanding the effect of the size of the subscriber base, as captured by
the regression line, the figure also clearly shows that there is significant variation
around that line. That raises a new question: why do some ISPs have dispropor-
tionately more or fewer victims? We can use the victim rates of ISPs (i.e., the
daily average number of victim IP addresses divided by the number of ISP sub-
scribers) to further explain the variance among them. From the size-corrected
victim rates we can see that there are several orders of magnitude differences
among the most and least attacked ISPs. How can these differences be explained?

Fig. 5. Between and within country differences among ISPs

In Fig. 4, we have
color coded ISPs by
the country in which
they operate. To bet-
ter highlight between
and within country
relations, Fig. 5 plots
the distribution of
ISP victims per sub-
scriber in relation
to the country in
which they operate.
Two things become
apparent. First, in
many countries, ISP
victimization rates are remarkably clustered, compared to the overall variance
across countries. Second, ISPs in some countries are victimized less, accord-
ing to our metrics. In other words, there seem to be country-level effects at
work, in addition to network- and user-level effects. The plot shows that ISPs
in New Zealand, Australia, U.S., U.K. and France have disproportionately more
victims, while ISPs within countries such as China, Japan and Indonesia have
disproportionately fewer. It is important to note that almost all ISPs in the
77 countries are present in the data, so there is no selection bias at work in these
patterns.

The differences between countries might be explained by institutional charac-
teristics of the countries in which the ISPs operate. Two institutional differences
that we tested for are: (i) the development of the ICT infrastructure of each
country and (ii) the overall economic status of the country. In both cases we
expect to observe more victims in more developed countries, as more online
activity and better infrastructure might drive more motives and opportunities

378 A. Noroozian et al.

Fig. 6. Correlation of ISP victim rates with country level variables

for attacks – around online gaming, for example. The ICT development index
is a well established indicator ranging from 1 to 10 with higher values for more
developed countries. The index is provided by the ITU (the United Nations
International Telecommunications Union) and constructed from a set of inter-
nationally agreed-upon indicators. We also looked at the gross domestic product
at purchasing power parity (GDP PPP) per capita, to capture the economic
status of each country [22]. From the plots in Figs. 6a and b, it is clear that both
explanatory variables do correlate with ISP victim rates, but only weakly.

To consider the joint effect of the three explanatory factors that we have
examined so far, i.e., the number of ISP subscribers, ICT and GDP PPP indexes,
we construct several statistical models using negative binomial, generalized linear
model (GLM) regression. The models predict the number of victims per ISP
given a set of explanatory variables. A summary of these statistical models are
presented in Table 2.

Table 2. Negative binomial GLM regression models with ‘Loge’
link function for number of ISP victims

Dependent variable:

Victims per ISP

(1) (2) (3)

Subscribers 2.160∗∗∗ 1.996∗∗∗ 1.977∗∗∗

(log10) (0.079) (0.075) (0.074)

ICT Dev. Index 0.249∗∗∗

(2015) (0.034)

GDP PPP per Capita 0.030∗∗∗

(in $1000) (0.004)

Constant −5.880∗∗∗ −6.712∗∗∗ −5.705∗∗∗

(0.454) (0.468) (0.430)

Observations 304 300 291

Log Likelihood −2,255.880 −2,204.260 −2,128.202

θ 0.963∗∗∗ (0.070) 1.097∗∗∗ (0.082) 1.143∗∗∗ (0.087)

Akaike Inf. Crit 4,515.761 4,414.520 4,262.404

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Model1 only
includes the attack
surface size, Model2
adds the ICT devel-
opment index as
an additional fac-
tor and finally
Model3 adds the
GDP PPP per
capita. As expected,
Model1 demon-
strates the effect
of the size of the
subscriber popula-
tion – i.e., the
size of the ‘attack
surface’ – in cor-
respondence with

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 379

our earlier results (Fig. 4). The other two models demonstrate that in addition to
size, the two institutional country variables considerably contribute to the vari-
ation in the number of victims per ISP, however their effects are much smaller.
We interpret the results of Model2 as an example. While holding everything else
constant, increasing the number of subscribers by one unit (equivalent to mul-
tiplying the number of subscribers by 10 due to the log10 scale of the variable)
multiplies the number of victims per ISP by e1.996 = 7.36. Similarly, increasing
the ICT development index by one unit (while other factors are held constant)
multiplies the number of victims by e0.249 = 1.28. Model3 can be interpreted
in a similar fashion. Note that due to the correlation of ICT development and
GDP we do not include both variables in one model.

We have also examined other factors, such as ‘gaming popularity’ and ‘piracy’
which show weak correlations with victimization rates as well. Including these
in separate GLM models shows a significant small effect of online gaming as
captured by the average number of games owned per country on the Steam
online gaming platform. This could be indicative of a possibly weak relation with
online gaming and end-host victimization. However, further examination of the
variable indicates strong correlations with ICT development and GDP therefore
bearing little added information which the other factors did not already include
in our models.

Given that the institutional factors have a weak effect, it begs the question
of why, in the majority of the countries, ISP victim rates are closely clustered
together. More specifically, the ISPs of only 12 of the 77 countries are dispersed
by more than one order of magnitude (among them are Brazil, India, and China).
Even with quite similar infrastructure and economic conditions, the differences
among ISPs are larger between the countries than within them. This pattern
suggests that there are specific country-level factors at work, beyond the general
factors we examined.

We can only speculate why ISPs in a certain country are so clustered, but
one explanation is that attackers and victims are geographically concentrated
and that their interaction leads to network-effects. We know from the research
on booters that many of the customers are gamers [6]. Other studies have told
us that many of the victims are also related to gaming [1]. Combine this with
findings from online social network analysis, inside and outside of gaming, which
found that these online networks are shaped by geographical vicinity. In other
words, users in online networks tend to be friends or familiar with each other in
offline networks as well [23,24]. In other words, they are geographically close.

Jointly, these three factors might drive a geographically concentrated network
effect: some of the victims become attackers themselves, which is easy because
of the booter services. These new attackers, in turn, victimize others, and the
cycle continues. This pattern fits with anecdotal evidence from news reports. In
the Netherlands, for example, DDoS-ing became such a widespread phenomenon
among schoolkids [13], that even those who did not play online games started
to use booters, because everyone was doing it. One more technically skilled

380 A. Noroozian et al.

youngster said he quit DDoS-ing, as “it became too easy” and “even my sister
can do it” [25].

Overall, our findings reveal that the number of subscribers of ISPs is a very
strong predictor for the number of victims per ISP (see Fig. 4). This result sug-
gests that the chances of being victimized are surprisingly uniform across ISPs.
The accessibility of DDoS-as-a-service might have caused a democratization of
victims: everywhere there are now regular users deemed worthy of attack. This
is a far cry from the highly publicized attacks on high profile targets like govern-
ments and enterprises. Those are attacked too, of course, but the bulk is targeted
at regular netizens.

That being said, we do see significant variation in terms of victimization rates.
The country-level differences are partially explained by institutional factors and
partially by specific country-level effects. In the absence of direct evidence, we
speculated that the remaining variation might be driven by geographically con-
centrated network effects.

6 Hosting Providers

In this section we take a closer look at victims located in hosting provider
networks. As for ISPs, the main questions at this stage are: How are victims
distributed across different hosting ASes and Do some hosting providers have
disproportionately more victims than others?. Unlike broadband victims, we do
not expect the dynamic nature of IP allocation to significantly effect or lead
to a misrepresentation of the number of victims. Therefore we can examine the
distribution of victims over networks by simply counting the number of unique
victim IPs that we observe per AS.

As with broadband networks, we expect differences in customer base or net-
work size to correlate with the number of victims. To test this, we need to
estimate the size of the hosting providers. One approximation is to use the num-
ber of hosted second-level domains (2LDs) per each provider. Recall, however,
that we found that only 46.6% of the hosting victim IPs have been observed to
host domains. This implies that the number of domains will not be a very reli-
able approximation of the attack surface size. We can use the number of routed
IP addresses by each hosting provider as a second proxy for size. This metric,
however, is less able to account for shared hosting (several 2LDs sharing the
same IP address). As we will see below, using both proxies in combination gives
the best results.

Figures 7a and b plot the number of unique victim IPs per hosting provider
against the number of routed IP addresses and hosted 2LDs of the provider
respectively. Both figures demonstrate a moderate effect of attack surface size
on the number of victims, but size does not appear to explain a large portion of
the variance as indicated by the relatively lower R2 values. This simply means
that only a small part of the variation among hosting ASes is explainable purely
through the attack surface size. We can see that some hosting ASes are dispro-
portionately attacked more (data points far above the regression line) or less

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 381

Fig. 7. Correlation hosting victim counts with size estimates.

(data points far below the regression line) in relation to their size. This sig-
nals that attacks on hosting providers are also quite strongly driven by other
explanatory factors. The question to consider then is what additional factors can
explain the variation that we observe after the size effect has been corrected for?
As before correcting for size effects can be achieved through dividing the number
of victims per provider by the size estimate of the provider.

One possible non-size related explanatory factor that we consider is related to
the popularity of the hosted content. The expectation here is that more popular
content is more likely to be attacked. In our analysis we use the list of top
1 million Alexa ranking domains as a proxy for the popularity of the hosted
content [26]. Given the 2LDs that we have identified per hosting provider, we
use the median ranking of the subset of top 1M Alexa ranked domains as an
indicator of popularity. Note that in our analysis we use reversed rankings: the
most popular Alexa domain has the rank of 1, 000, 000.

A second possible factor that we consider is the type of hosting service that
is offered. We expect that dedicated hosting is more likely to be attacked in
comparison to shared hosting and other similar cheaper services offered by host-
ing providers. We use the number of IP addresses that have been used by the
hosting provider to host all of its 2LDs as an indicator of the type of hosting.
This indicator combined with size estimates (routed IPs and hosted 2LDs) cap-
tures the spread/density of domains per available IP address. A lower density of
domains per IP is an indication for more dedicated services to their customers,
while higher densities are indicators of shared hosting.

Our analysis of these non size-related factors demonstrates a weak correlation
with the number of victims per provider after correcting for size effects. For the
sake of brevity we do not include the details and instead move on to consider
the joint effect of all explanatory factors.

382 A. Noroozian et al.

Table 3. Negative Binomial GLM regression models with
‘Loge’ link function for number of Hosting Victims

Dependent variable:

Victims per Hosting Provider

(1) (2) (3)

f1: Routed IPs 1.198∗∗∗ 0.507

(log10) (0.040) (0.354)

f2: Hosted Domains 1.237∗∗∗ 1.050∗∗∗
(log10) (0.050) (0.243)

f3: IPs with Domains −0.415

(log10) (0.427)

f4: Median Alexa Rank 0.305∗∗∗
(log10) (0.075)

f1 × f2 −0.338∗∗∗
(Interaction term) (0.088)

f1 × f3 0.266∗∗∗
(Interaction term) (0.044)

f2 × f3 0.198∗∗
(Interaction term) (0.084)

Constant −1.120∗∗∗ −0.988∗∗∗ −3.859∗∗∗
(0.177) (0.215) (1.093)

Observations 2,203 2,203 2,203

Log Likelihood −10,594.160 −10,703.310 −10,192.260

θ 0.421∗∗∗ (0.011) 0.393∗∗∗ (0.010) 0.546∗∗∗ (0.014)

Akaike Inf. Crit 21,192.330 21,410.620 20,400.520

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In a similar fash-
ion to what we did
for broadband vic-
tims, we construct
several statistical
models of the num-
ber of victims per
hosting provider
using negative bino-
mial GLM regres-
sion. A summary of
these models is pre-
sented in Table 3.
They clearly demon-
strate that for larger
attack surfaces there
are more victims.

Model3 uses all
variables to explain
the variance in vic-
timization of hosting
providers. Due to the unavoidable correlations between these variables we include
interaction terms which control for the covariance between them. The model
demonstrates that when considered jointly, the number of hosted 2LDs and the
popularity of content have a significant effect on the number of victims per host-
ing provider. As expected, the size-related factor has the largest effect while
the popularity of content as represented by the median Alexa rank is mod-
erately affecting the victim numbers. It also suggests that there is not enough
evidence to support the hypothesis that the density of domains or type of hosting
has a significant effect on victim numbers. Due to the inclusion of interaction
terms, Model3’s results need to be interpreted in a slightly different manner.
The more complex and improved model (as indicated by the improved log like-
lihood) suggests that while holding all other factors constant, increasing the
‘Hosted Domains’ variable by one unit (equivalent to multiplying the number of
hosted 2LDs by 10 due to the log10 scale of the variable) multiplies the num-
ber of victims by e1.050−0.338+0.198 = 2.48. Increasing the ‘Median Alexa Rank’
variable by one unit (equivalent to multiplying the median Alexa rank of the
content by 10 due to the logarithmic scale) multiplies the number of victims by
e0.305 = 1.35. Finally, note that in Model3 the number of routed IPs is not a
significantly contributing factor. This does not negate the size effect as observed
in Model1 and simply means that when considered jointly with the other factors
the number of routed IPs does not add more information to the model that has
not been already captured by the other included factors. Based on these results
we can conclude that in addition to size factors which have the strongest effect

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 383

on the number of victims per hosting provider the popularity of content also
weakly contributes to this number.

To get a better sense of the actual victims, we have taken a closer look at some
of the hosting victims that are associated with domain names. Many IP addresses
are associated with multiple domains, obscuring the target and potential motive
of the attackers. However, a subset of around 23,855 IP addresses are associated
with just a single domain name according to our passive DNS data. We took a
random sample of 1 % of this set (238 domains) and checked all of them manually
to assess what type of website was being attacked. Of the 238 domains, 107 no
longer showed any content. Most of them could no longer be resolved, others ran
into connection issues or were replaced by parking pages. Given that the victim
data was collected over two years, some degree of ‘link rot’ is to be expected,
though this decay of domains is much higher than those found in other studies
(e.g. [27]), suggesting that a lot of the victims had a somewhat fleeting presence
on the web, rather than being well-established businesses or organizations.

Of the 132 sites that offered content, 55 sites (42 %) were directly related to
gaming. Of these, 27 were associated with a single game: Minecraft (17), followed
by Counterstrike (6) and Runescape (4). The remaining 77 sites (58 %) were
highly heterogeneous, including but not limited to a few large stores, an airline,
two football clubs, two schools, two escort services, one porn site, several hobby
forums, a casino, a nature conservancy, and Twitpic, owned by Twitter since
late 2014. In short: motives for DDoS attacks are highly varied, though gaming-
related feuds are the most dominant of motives. In the Minecraft community
specifically, DDoS attacks seem to be part of the culture.

We can summarize our results with respect to hosting providers as follows.
Hosting providers constitute the second largest group of victims in the amplifica-
tion honeypot data. Some providers are attacked disproportionately more than
others. This can be partially explained by the size of their attack surface. Fur-
thermore, hosting popular content increases the number of victims. Finally, in
agreement to what others have also found we see a large victimization of gaming
related resources within the hosting providers.

7 Attack Duration

In previous sections we have examined the question of who gets attacked more,
whether that is disproportionate and if some factors can explain the variance
among victim counts. We can also approach the question of who gets attacked
more from the view point of time. That is, rather than looking at victim counts
we can also approach the question as who gets attacked longer and possibly why?

To answer these questions, we take all victim IP addresses and measure
the intervals under which they were continuously attacked. These intervals are
calculated regardless of which AmpPot or protocol was used to attack the victim
IP. The resulting interval lengths are defined as the attack duration. Note that
here, we have merged attacks that are closer than 600 s apart and consider them
as one continuous attack on the victim. Given these durations, the primary

384 A. Noroozian et al.

Fig. 8. Distribution of attack durations for various victim types.

question is whether the distribution of these durations differs per victim type.
These distributions are shown in Fig. 8.

The median attack duration for broadband ISPs, hosting and the other types
of victims are 272, 285 and 300 s, respectively. One surprising observation is the
frequency of relatively short attack durations. The majority of attacks are shorter
than 286 s long. For attacks longer than 300 s, we observe similar distributions
of attack durations for all three types of victims. Interestingly, we observe an
increased number of attacks that last around 5, 10, 20, 60, or 120 min. The trend
suggests that, in general, the attacks are largely originated from booter services
and are most possibly driven by attackers’ capabilities rather than victim types
(see Fig. 8).

To further compare the differences in durations for different victim types,
we use a well established statistical technique that is commonly referred to as
survival analysis. The technique is used to answer questions about the proportion
of a population that will survive past a certain point of time on a measurement
timeline and at what rate the individuals ‘survive’ or ‘die’. In our case, the event
that we analyze is the ‘end of an attack ’ on a victim IP. Figure 9 demonstrates
our survival analysis results. We use the Kaplan-Meier estimator to approximate
the survival function [28], measuring the probability of an attack exceeding a
certain duration for various victim types.

A log-rank comparison of the survival probabilities indicates a significant dif-
ference at a 0.99 confidence level between attack durations on different victim
types. The log-rank chi-square statistic comparison between broadband/host-
ing, broadband/other and hosting/other are equal to 2,131.8, 3,493.4, and 739.3
respectively. These results indicate a significant difference among the attack
durations per victim type, however in terms of magnitude, the differences seem
to be quite small (see Fig. 9).

We can also compare the survival rates of each victim type using the Cox
proportional hazards model. The Cox model does not depend on distributional
assumptions of survival time and allows to estimate the hazard ratio defined as
the relative risk based on a comparison of event rates. The hazard ratios show
that relative to hosting providers, attacks end 14 % faster for broadband victims
while 3 % slower for the other type of victims. While the results demonstrate
that attacks are statistically shorter on broadband ISP victims the magnitudes
of the differences are not large enough to have significant implications.

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 385

Fig. 9. Survival analysis of attack durations

To conclude, all victim types experience attacks ranging from short lived
attacks in the order of several seconds to long attacks which last several days.
In other words, there is no significant variance among the duration of attacks on
victims of different types.

We have further manually analyzed victim IP addresses of the 100 longest
attacks of which 98 lasted more than 24 h. They were launched against 87 unique
IP addresses and 46 unique ASes. Interestingly, we do not observe any domains
historically hosted on as many as 41 IP addresses (47 attacks). Of these, 6 IP
addresses were directly related to gaming, including two victims against which
the attacks lasted more than 16 days. Of the remaining 46 unique IP addresses,
which were identified to be hosting some content, 17 were mapped to just a
single domain name in passive DNS data. Of these, we have identified 6 victim
IP addresses that hosted websites which provide torrent files to facilitate P2P
file sharing, 4 websites related to gaming, 2 chat websites, one Internet banking
website, and one TorGuard VPN website. By manual analysis of 15 IP addresses
for which we observed 2 or 3 domains, we have further identified three victim
IP addresses that mapped mainly to torrent, gaming, and TorGuard websites,
respectively. The remaining 14 victim IP addresses mapped to more than 3
domains; 4 among them appeared to be used for shared web hosting and they
mapped to 51, 346, 614, and 931 domains. To conclude, our manual analysis
reveals that not only gaming but also torrent sharing-related IP addresses are
among long-duration attacked victims.

8 Related Work

Much research has been devoted to analyzing the technical properties of ampli-
fication DDoS attacks: which protocols can me misused and how; how large the
population of vulnerable reflectors is; how difficult or easy it is to find and mis-
use these reflectors; and how they could be mitigated [1,12,29,30]. We know
for example that many UDP based protocols are prone to be misused (NTP,
DNS, SNMP and Chargen) and we know what their amplification factors are [12].
We also know how large the populations of vulnerable devices running these

386 A. Noroozian et al.

protocols are [1,5,12] and what kind of a threat they pose. Darknet and honey-
pot traffic reveals how perpetrators are actively scanning for such devices in the
wild [1,2,12,31]. Some have even attempted attacking their own infrastructure in
order to asses the potential damage of booters and surprisingly find their damage
to be much smaller than the spectacular cases reported in the news [13]. Others
have examined the motives behind the provision of booter services through inter-
views [32]. Analysis of trends also reveals how over time specific protocols rise
and fall out of popularity among attackers and how remediation and intervention
has affected the landscape [1,8].

Earlier work on amplification DDoS attacks have focused less on studying
the victims. The most in-depth understanding comes from the special case of
NTP attacks, which allows probing the amplifier for victim IP addresses. Czyz
et al. [1] provided the most comprehensive overview. The analysis of the smaller
subset of victims from leaked booter databases [6,7] also point towards gaming-
related victims. We corroborate earlier findings, especially [1,8], that many of
the victims are end hosts and gaming-related resources, but we also expand
on this and show that the distributions have shifted. Moreover, we provide a
wholly novel contribution by developing victimization rates and providing an
explanatory analysis of key determinants behind victimization patterns.

Finally, part of what we know about victims is based on industry reports
from DDoS mitigation providers [9–11,14]. These mostly provide information
on the type of industry that is affected most by DDoS attacks and point to
the gaming industry and software industry as main victims. Our results paint a
rather different picture, agreeing only with those reports in that many victims
are gaming-related. Industry reports seems to be vulnerable to biases related to
the fact that data collection often takes place in networks of the customers of
DDoS mitigation providers.

9 Discussion and Implications

This study has presented the first in-depth look at victimization patterns of
DDoS amplification attacks - and thus of the booter services that drive the
bulk of these attacks. We found that broadband networks harbored most of the
victims (62 %), followed by hosting networks (26 %). Educational, governmental
and enterprise networks make up just a small fraction of the victim population
(12 %), contrary to industry reports and news items about high-profile attacks.

The population of victims is predictably distributed across broadband and
hosting networks. To a large extent, the size of the user population drives the
victimization rate – in broadband around 60 % of the variance in victim counts
can be explained from just the number of subscribers of the provider. Further
explanatory factors are ICT development and GDP per capita. We also see
significant differences among countries, however, that are not explained by these
institutional factors. Remarkably, within most countries, ISP victimization rates
are clustered together. This implies there are specific country-level effects at
play, perhaps the result of geographically concentrated network effects among
attackers and victims.

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 387

In hosting provider networks, the size effect is also visible, though less pro-
nounced. The popularity of content, as measured by Alexa rankings, had a small
effect. When we looked at victims IP addresses associated with a single domain,
we found that 42 % of the sites we could identify were related to gaming, most
notably to Minecraft.

Attack duration did not differ significantly across the victim populations.
When we examined the 100 longest attacks, 98 of which lasted more than 24 h,
we found, again, mostly gaming-related content rather than high-profile targets.

What do these findings mean for the consequences of the so-called commodi-
tization of DDoS attacks? Rather than going after high-value targets, DDoS-as-
s-service has invited attackers to go after regular users. With the commoditi-
zation of attacks, victimhood has democratized. And so has criminality, in all
likelihood. Assuming that the users are targeted by someone that actually knows
them, rather than by a random stranger, our findings imply that the attacker
population has also broadened. In short, booters have indeed drawn more attack-
ers into the DDoS ecosystem, as the commoditization theory suggests, and this
has led to a an expansion of victims among regular users, who now make up the
bulk of all victims.

Overall, the fact that most victims are regular users suggests that profit
is not a dominant motive anymore, assuming it ever was. The commoditization
provided by booters has enabled attacks for as little as one U.S. dollar. This type
of cybercrime is priced in the same range as, or even below, many entertainment
products. It is now cost-effective to pursue many more motives than profit, even
very frivolous ones – like harassing your schoolmates during Minecraft games
or online chats. Many of the new attackers probably do not see themselves as
cybercriminals. Everyone is doing it, and they are not making any money from it.

The fact that attack patterns are so proportional to the number of users
might seem unsurprising, but it has far-reaching implications. Rather than a
phenomenon of motivated attackers with specific objectives and targets, DDoS
has become a cultural phenomenon. The closest parallel to the observed pattern
seems to be wide-spread use of torrents and file lockers to download copyright-
infringing materials. This suggests a new route of action for fighting the DDoS
problem: rather than using criminal law to go after motivated attackers, a better
approach might be what criminologists call situational crime prevention [3]. It
shifts the focus from identifying and penalizing attackers to taking away the
opportunities that trigger crime. It can draw on a much broader mix of measures,
often based on civil rather than criminal law. It can range from soft measures,
such as awareness campaigns for youngsters, to harder ones, like the takedown
of booter accounts by providers such as PayPal [8].

What are the implications of our findings for the wider commoditization
of cybercrime? Should we expect an influx of attackers and an expansion of
victims in other criminal markets as well? Not per se. As Florencio and Herley
have argued, cybercrime is often harder than it looks and it scales less well than
one would assume at first glance [33,34]. Indeed, in many markets, we do not see
the rapid expansion of crime that effective commoditization would cause. This
can be explained by the fact that many of these service models do not supply

388 A. Noroozian et al.

complete criminal value chains. Take fraud using banking Trojans for example. It
is one thing to buy malware-as-a-service and distribute it via pay-per-install, but
that doesn’t mean one can successfully execute online banking fraud. There are
bottlenecks elsewhere, especially in the use of money mules and other cash-out
channels. Mules-as-a-service did not manage to solve this bottleneck yet.

We see the predicted effects of commoditization in DDoS attacks, because
here the booter provides the value chain end-to-end. In other forms of cybercrime
this seems much harder or even impossible, though some might come close,
like ransomware-as-a-service using bitcoin. And indeed, we did recently see an
explosion of ransomware attacks. We can only hope that for many other forms
of cybercrime, bottlenecks will remain resistant to successful commoditization.

Acknowledgements. This work has been enabled through the support of NWO Pr.
Nr. CYBSEC.12.003/628.001.003, SIDN, the Dutch National Cyber Security Center
and Beatriu Pinos BP-A-214. We would like to thank Dr. Paul Vixie and Farsight
Security for providing our pDNS data. In addition we would like to acknowledge the
support of the MEXT (Program for Promoting Reform of National Universities) and
PRACTICE (Proactive Response Against Cyber-attacks Through International Col-
laborative Exchange) programs.

References

1. Czyz, J., Kallitsis, M., Papadopoulos, C., Bailey, M.: Taming the 800 Pound
Gorilla: the rise and decline of NTP DDoS attacks. In: Proceedings of ACM IMC,
pp. 435–448 (2014)

2. Krämer, L., Krupp, J., Makita, D., Nishizoe, T., Koide, T., Yoshioka, K., Rossow,
C.: AmpPot: monitoring and defending against amplification DDoS attacks. In:
Bos, H., et al. (eds.) Raid 2015. LNCS, vol. 9404, pp. 615–636. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-26362-5 28

3. Thomas, K., Yuxing, D., David, H., Holt, T.J., Kruegel, C., Mccoy, D., Bursztein,
E., Grier, C., Savage, S., Vigna, G.: Framing dependencies introduced by under-
ground commoditization. In: WEIS (2015)

4. Santanna, J.J., Sperotto, A.: Characterizing and mitigating the DDoS-as-a-Service
phenomenon. In: Sperotto, A., Doyen, G., Latré, S., Charalambides, M., Stiller, B.
(eds.) AIMS 2014. LNCS, vol. 8508, pp. 74–78. Springer, Heidelberg (2014)

5. Kuhrer, M., Hupperich, T., Bushart, J., Rossow, C., Holz, T.: Going wild: large-
scale classification of open DNS resolvers categories and subject descriptors. In:
Proceedings of ACM IMC (2015)

6. Karami, M., Mccoy, D.: Understanding the emerging threat of DDoS-As-a-Service.
In: Proceedings of Usenix LEET, pp. 2–5 (2013)

7. Santanna, J.J., Durban, R., Sperotto, A., Pras, A.: Inside booters: an analysis on
operational databases. In: Proceedings of IFIP/IEEE IM, pp. 432–440 (2015)

8. Karami, M., Park, Y., McCoy, D.: Stress testing the booters: understanding and
undermining the business of DDoS services. In: Proceedings of WWW (2016)

9. Akamai: State of the Internet / Security Q4. Technical report Akamai (2014).
https://www.stateoftheinternet.com/

10. Arbor Networks: Worldwide infrastructure security report volume X. Techni-
cal report (2015). https://www.arbornetworks.com/insight-into-the-global-threat-
landscape

http://dx.doi.org/10.1007/978-3-319-26362-5_28
https://www.stateoftheinternet.com/
https://www.arbornetworks.com/insight-into-the-global-threat-landscape
https://www.arbornetworks.com/insight-into-the-global-threat-landscape

Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service 389

11. Incapsula: DDoS global threat landscape report. Technical report (2015). http://
lp.incapsula.com/ddos-report-2015.html

12. Rossow, C.: Amplification Hell: revisiting network protocols for DDoS abuse. In:
Proceedings of NDSS, pp. 23–26 (2014)

13. Santanna, J., Van Rijswijk-deij, R., Hofstede, R., Sperotto, A.: Booters - an analy-
sis of DDoS-as-a-Service attacks. In: Proceedings of IFIP/IEEE IM (2015)

14. Kaspersky: Statistics on botnet assisted DDoS attacks (2015). https://securelist.
com/blog/research/70071/statistics-on-botnet-assisted-ddos-attacks-in-q1-2015/

15. Asghari, H., van Eeten, M.J.G., Bauer, J.M.: Economics of fighting botnets: lessons
from a decade of mitigation. IEEE Secur. Priv. 13(5), 16–23 (2015)

16. TeleGeography: Telegeography globalcomms data. http://shop.telegeography.com/
products/globalcomms-database

17. CAIDA: AS classification. http://www.caida.org/data/as-classification/
18. Farsight Security: DNSDB. https://www.dnsdb.info
19. Tajalizadehkhoob, S., Korczynski, M., Noroozian, A., Ganan, C., van Eeten, M.:

Apples, oranges and hosting providers: heterogeneity and security in the hosting
market. In: Proceedings of IEEE/IFIP NOMS, pp. 289–297 (2016)

20. Akamai: State of the internet/security Q4. Technical report (2015). https://
www.stateoftheinternet.com/downloads/pdfs/q4-2015-securityreport-ddos-stats-
trends-analysis-infographic.pdf

21. Asghari, H., Ciere, M., Van Eeten, M.J.G.: Post-Mortem of a Zombie: conficker
cleanup after six years. In: USENIX Security (2015)

22. PRB. Population Reference Bureau - Gross Domestic Product. http://www.prb.
org/DataFinder/Topic/Rankings.aspx?ind=260

23. Ledbetter, A.M., Kuznekoff, J.H.: More than a game: friendship relational main-
tenance and attitudes toward Xbox LIVE communication. Commun. Res. 39(2),
269–290 (2012)

24. Allamanis, M., Scellato, S., Mascolo, C.: Evolution of a location-based online social
network. In: Proceedings of ACM IMC, p. 145. ACM Press, New York (2012)

25. Schravese, F., Born, A.: Lekker thuis providers platleggen (2015). http://www.nrc.
nl/handelsblad/2015/10/17/lekker-thuis-providers-platleggen-1545974

26. Alexa: Alexa top 1M ranked sites (2015). http://s3.amazonaws.com/alexa-static/
top-1m.csv.zip

27. Zittrain, J., Albert, K., Lessig, L.: Perma: scoping and addressing the problem
of link and reference rot in legal citations. Legal Inform. Manage. 14(02), 88–99
(2014)

28. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.
J. Am. Statist. Assoc. 53(282), 457–481 (1958)

29. Kuhrer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from Hell? Reducing the
impact of amplification DDoS attacks. In: USENIX Security, pp. 111–125 (2014)

30. Kuhrer, M., Hupperich, T., Rossow, C., Thorsten Holz, G.: Horst: Hell of a hand-
shake: abusing TCP for reflective amplification DDoS attacks. In: Proceedings of
USENIX WOOT (2014)

31. Durumeric, Z., Bailey, M., Halderman, J.A.: An internet-wide view of internet-wide
scanning. In: USENIX Security, pp. 65–78 (2014)

32. Hutchings, A., Clayton, R.: Exploring the provision of online booter services. In:
Deviant Behavior, pp. 1–16 (2016)

33. Florencio, D., Herley, C.: Where do all the attacks go? In: Economics of Information
Security and Privacy III, pp. 13–33 (2013)

34. Florencio, D., Herley, C.: Is everything we know about password- stealing wrong?
IEEE Secur. Priv. Mag. 10(6), 63–69 (2012)

http://lp.incapsula.com/ddos-report-2015.html
http://lp.incapsula.com/ddos-report-2015.html
https://securelist.com/blog/research/70071/statistics-on-botnet-assisted-ddos-attacks-in-q1-2015/
https://securelist.com/blog/research/70071/statistics-on-botnet-assisted-ddos-attacks-in-q1-2015/
http://shop.telegeography.com/products/globalcomms-database
http://shop.telegeography.com/products/globalcomms-database
http://www.caida.org/data/as-classification/
https://www.dnsdb.info
https://www.stateoftheinternet.com/downloads/pdfs/q4-2015-securityreport-ddos-stats-trends-analysis-infographic.pdf
https://www.stateoftheinternet.com/downloads/pdfs/q4-2015-securityreport-ddos-stats-trends-analysis-infographic.pdf
https://www.stateoftheinternet.com/downloads/pdfs/q4-2015-securityreport-ddos-stats-trends-analysis-infographic.pdf
http://www.prb.org/DataFinder/Topic/Rankings.aspx?ind=260
http://www.prb.org/DataFinder/Topic/Rankings.aspx?ind=260
http://www.nrc.nl/handelsblad/2015/10/17/lekker-thuis-providers-platleggen-1545974
http://www.nrc.nl/handelsblad/2015/10/17/lekker-thuis-providers-platleggen-1545974
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

Web and Mobile Security

Uses and Abuses of Server-Side Requests

Giancarlo Pellegrino1(B), Onur Catakoglu2, Davide Balzarotti2,
and Christian Rossow1

1 CISPA, Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{gpellegrino,crossow}@cispa.saarland

2 Eurecom, Biot, France
{onur.catakoglu,davide.balzarotti}@eurecom.fr

Abstract. More and more web applications rely on server-side requests
(SSRs) to fetch resources (such as images or even entire webpages) from
user-provided URLs. As for many other web-related technologies, devel-
opers were very quick to adopt SSRs, even before their consequences for
security were fully understood. In fact, while SSRs are simple to add from
an engineering point of view, in this paper we show that—if not properly
implemented—this technology can have several subtle consequences for
security, posing severe threats to service providers, their users, and the
Internet community as a whole.

To shed some light on the risks of this communication pattern, we
present the first extensive study of the security implication of SSRs.
We propose a classification and four new attack scenarios that describe
different ways in which SSRs can be abused to perform malicious activi-
ties. We then present an automated scanner we developed to probe web
applications to identify possible SSR misuses. Using our tool, we tested
68 popular web applications and find that the majority can be abused
to perform malicious activities, ranging from server-side code execution
to amplification DoS attacks. Finally, we distill our findings into eight
pitfalls and mitigations to help developers to implement SSRs in a more
secure way.

1 Introduction

Web applications have evolved from purely client-to-server patterns to an inter-
twined network of multiple web services. As a consequence, an increasing num-
ber of web applications retrieve external resources provided by other web ser-
vices, often steered by user inputs. For example, social networks regularly fetch
pages to display image and video previews of links posted by users, online cal-
endars can import remote iCal data, web mail clients fetch emails from user-
provided inboxes, and online image editors retrieve images from user-provided
URLs. Such service-to-service communication is also integrated into business
web applications and is at the core of several web-based protocols (e.g., OpenID
and SAML) and Cashier-as-a-Service web applications (e.g., online stores using
PayPal Express Checkout).

c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 393–414, 2016.
DOI: 10.1007/978-3-319-45719-2 18

394 G. Pellegrino et al.

To support service-to-service communication, web applications rely on
server-side requests (SSRs), which are HTTP requests generated by a server
towards another web service. SSRs are often used to avoid passing relay mes-
sages between different services via the user, or to allow complex services to per-
form requests outside the boundaries of the same origin policy. Unfortunately,
although the communication between web services is not new, we noticed an
alarming lack of information and understanding regarding the threats and the
security implications of this communication pattern. For example, when a user
posts a URL to a social network, the server-side web application automatically
fetches the content from the URL to display a visual preview of the page. How-
ever, giving the user the freedom to choose the URL means that she can control
the destination and potentially also the content of SSRs. This communication
pattern is getting more and more common to improve user experience and pro-
vide advanced features in a wide range of applications. Unfortunately, as is often
the case for emerging web technologies, developers are often too quick to jump
on the bandwagon without fully understanding the risks for security. In fact,
as we present in this paper, SSRs are difficult to get right and, if not prop-
erly implemented, they can be abused to conduct malicious actions against the
service itself, its users, or even third-party web applications.

Existing work in this field focuses on Server-Side Request Forgery (SSRF),
a family of software vulnerabilities that allow an attacker to misuse SSRs to
perform port scans [15,27] and buffer overflows [22]. However, this is only the
tip of the iceberg of the possible security flaws that affect this communication
pattern. Unfortunately, to date, we still lack a complete picture of the threats
posed by SSRs.

To shed some light on the risks of this communication pattern, in this paper
we present the first extensive assessment of the security implications of SSRs.
We first present a classification to propose a common terminology for future
research in the field. Our classification groups SSRs according to the level of
control the attacker has, the role played by the vulnerable systems, and the
potential attack targets. We then apply our classification to introduce four attack
scenarios in which seemingly innocuous services can be composed together to
form sophisticated attacks. For example, we show how popular services can be
abused to distribute links to phishing pages—bypassing existing URL blacklists
and reputation services.

In order to understand how widespread the problem is and what the most
common mistakes are, we propose a tool called günther and use it to analyze
68 web applications that accept user-provided URLs. We found weaknesses and
security risks in 52 of them. Finally, to help developers to take more informed
decisions and reduce the risks associated with this delicate communication pat-
tern, we distilled our findings in a list of eight security-related recommendations.
To summarize, this paper makes the following contributions:

– We propose a new classification to classify SSRs;
– We present four new attack scenarios in which SSRs can be used to mount

sophisticated Denial-of-Service (DoS) attacks, deliver malware, and bypass

Uses and Abuses of Server-Side Requests 395

client-side countermeasures. We show that SSRFs are only one of the possible
security flaws introduced by SSRs.

– We discuss the results of the experiments we conducted on 68 web services,
54 of which we found to be affected by at least one security flaw.

– We present a clear set of mitigations to help developers to implement SSRs in
a more secure way.

2 Background

In this section, we present the SSR communication pattern, and we elaborate on
its use in modern web applications. Then, we present an overview of the threat
models, and finally, we present the current understanding of the security risks.

2.1 Server-Side Request Communication Pattern

The SSR pattern is shown in Fig. 1a. It involves three entities: a client C, an
SSR service S, and an external server ES. The protocol starts when C sends an
HTTP request req(urlES) to S containing a user-specified urlES . The position
of urlES in the HTTP request is application-specific, e.g., it could be inserted in
the query string, in the POST data, or even in the resource field of the HTTP
request. S extracts the URL and initiates a connection to fetch the corresponding
resource resES from the remote server ES. Depending on the use of SSR, S can
forward the resource resES back to C (i.e., resS = resES), or return the result
of a transformation (i.e., resS = f(resES)). For instance, S can embed resES

into resS , or simply return an identifier of the retrieved resource.

Fig. 1. SSR pattern and risks

396 G. Pellegrino et al.

Use Cases—SSRs are widely used in web applications. For example, social
networks use SSRs to retrieve user-provided URLs and share them on the user’s
page. SSRs are also common in business applications, such as web office suites,
in which they are used to include online resources (e.g., pictures) in documents.
The list also includes online development tools, news aggregators, and image
processing applications. Online development tools help developers, for example,
to validate documents such as XML or JSON objects, or allow developers to
test their web application with different browsers. SSRs are also at the core
of news aggregators, which retrieve news from newspapers or RSS documents.
Another use of SSRs is in web-based security protocols, such as the OpenID
authentication protocol [8]. In OpenID, a client wants to be authenticated at
the service provider (SP) by using her own credentials at the identity provider
(IdP). OpenID allows the two providers to communicate either indirectly, i.e.,
by using the client’s browser as a relay agent, or directly via SSRs. In this case,
the SP acts as an HTTP client and initiates the connection with the IdP, which
in turn acts as an HTTP server. SSRs are also used in other web-based security
protocols, such as SAML SSO.

Server- vs. Client-Side Requests—The counterparts of SSRs are client-side
requests (CSRs) in which C retrieves a resource at ES and sends it to S. How-
ever, replacing SSRs with CSRs may not be practical, secure, or efficient.

Practicality : CSRs can be implemented with cross-origin requests (CORs) in
which a resource in the domain of ES is transmitted to S. These requests are
subject to the same-origin policy (SOP for CORs) and the cross-origin resource
sharing mechanism [26] (CORS). The former forbids accessing resources in a
domain (i.e., ES) of a different origin from the request (i.e., S). These requests
can be relaxed with CORS; however, CORS assumes a pre-established agree-
ment between two different domain origins to allow requests from one to access
resources of the other. This solution is often not practical because each service
needs to keep and maintain a whitelist of domains that can access their services,
and developers may not be able to modify the whitelist of third-party services.
This has spurred the development of techniques to circumvent these obstacles,
e.g., to bypass SOP for CORs (often considered to be security flaws, such as
JSONP), or using the more flexible SSR paradigm.

Security : In protocols like OpenID, the involved parties do not agree on shared
secrets such as cryptographic keys. Instead, they generate or exchange keys dur-
ing the protocol run. In contrast to SSRs, CSRs may expose keys to attackers,
thus endangering the validity of the authentication process.

Efficiency : CSRs may introduce additional costs. For example, social networks
and online tools for developers may need to retrieve several resources to create
a synthesis of the web page or to analyze its content. For each resource, an SSR
service will issue one request and one response. With CSRs, on the other hand,
the number of messages can double: The first request-response pair retrieves the
resource from ES, while the second pair uploads the resource to S for further
processing.

Uses and Abuses of Server-Side Requests 397

2.2 Security Risks and Threat Models

While SSR is a useful communication pattern which enables service-to-service
communication, if not properly implemented it can be abused to perform a wide
range of malicious activities, such as:

R1 SSRs can be abused as stepping stones to attack ES, for instance by perform-
ing denial-of-service attacks against Internet-facing services. Other attacks
can be against services of S’s private network.

R1 S may accept untrusted URLs which reference local resources, e.g., files
hosted by S. For example, this attack can be used to exfiltrate system con-
figuration files, passwords, and databases.

R2 SSRs introduce a new level of indirection between web browsers and the
origin of resources. As a result, browsers may no longer be able to determine
the real origin of a page, thus leaving users exposed to malicious content
such as malware.

R3 Vulnerabilities in S can be exploited with incoming responses from ES.
Responses may be processed to generate resS for C. An adversarial ES can
potentially craft malicious messages resES with the purpose of exploiting
vulnerabilities in S.

These risks are shown in Fig. 1b (for R1 and R2), Fig. 1c (for R3), and Fig. 1d
(for R4). Figure 1b corresponds to the initial threat model proposed by Polyakov
et al. [22]. The entities of Polyakov’s model are an attacker C, an SSR service
S, a service ES, the file system of S, and a firewall. C aims to access ES or
the local file system of S. However, ES is protected by a firewall that blocks
direct access from the Internet. S is exposed both to the Internet and to the local
network. If not carefully implemented, an attacker can abuse SSRs performed
by S to access internal servers that are in S’s network, i.e., R1, or even retrieve
files from S (e.g., via the file:// protocol), i.e., R2.

Unfortunately, Polyakov’s threat model is not complete as it neglects C as a
possible victim (i.e., R3) and it considers only a fraction of the attack surface
of S, thus ignoring other threats (i.e., R4). In this paper, we propose a more
complete threat model that also incorporates new attacks in which SSRs are
abused to target C (see Fig. 1c) and S (see Fig. 1d). In Fig. 1c, ES hosts malicious
content and C is an honest client that adopts URL-based countermeasures to
protect the user from malicious content (such as filtering mechanisms like Google
Safe Browsing). The attacker targets C by tricking the user into visiting the
malicious page ES, possibly abusing an innocent but vulnerable S. While C may
believe she is visiting a well-reputed service S, in fact, S may just act as a proxy
for malicious content hosted at ES, effectively circumventing any reputation-
based mechanisms deployed by C. In Fig. 1d, the attacker is C, whereas ES
hosts malicious content. The attacker submits the URL of the malicious content
to S, which fetches resES and processes it. For example, if S implements poor
resource validation mechanisms, it may be susceptible to resource exhaustion
attacks via specially-crafted resources.

398 G. Pellegrino et al.

2.3 Awareness of the Security Risks

A closer look in the academic and non-academic literature and developer best
practices (e.g., design patterns, coding rules, and API documentation) shows
that (i) SSRs have received no attention by academic literature and (ii) exist-
ing non-academic works focus exclusively on Polyakov’s threat model and thus
neglect threats against C and S. In addition, despite the popularity of the attacks
in Polyakov’s threat model, there is a lack of documentation describing proper
ways to implement SSR services and attack countermeasures. As a result, devel-
opers may develop vulnerable SSR services that can be abused by attackers.

3 SSR Classification

Despite anecdotal evidence, to date there is no systematic study of the SSR
communication pattern. Therefore, we introduce a classification that proposes a
common terminology for us and for future researchers. Our classification (Fig. 2)
includes and supersedes pre-existing categorizations, classifying SSRs according
to four different directions: flaws, attacker control, S’s behavior, and victims. To
the best of our knowledge, this is the most extensive existing classification of
SSRs.

The four dimensions of our classification are not mutually exclusive. In fact,
services often play multiple roles and may suffer from multiple flaws. For this
reason, our classification cannot be considered a taxonomy. Furthermore, our
classification is based on the current knowledge of SSR abuse which may change.
However, while target and control dimensions covers all possible combinations,
flaw and behavior dimensions are an enumeration and thus may be incomplete.
As the popularity of the SSR pattern increases, new types of vulnerabilities and
behaviors can be detected. Nevertheless, new discoveries can be used to extend
both flaws and behaviors dimensions. In the rest of this section, we describe each
category in more detail.

* +

* +

* +

* +

* +

Fig. 2. SSRs classification

Uses and Abuses of Server-Side Requests 399

3.1 Flaw-Based Classification

The first classification is based on the type of flaw of S. A flaw can occur when
S accepts and processes inputs from C, and when S accepts and processes the
resource resES . This classification includes known vulnerabilities, i.e., forgery
and information disclosure vulnerabilities of the CWE database and OnSec clas-
sification. Additionally, we extend it with a new class of vulnerabilities called
insufficient security policy enforcement.

Insufficient Security Policy Enforcement—An HTTP conversation between
the browser of C and ES can involve different security policies. For exam-
ple, C may use URL-based reputation lists to avoid visiting malicious pages.
Similarly, the server may restrict access to its resources, e.g., by using the
Access-Control-Allow-Origin header (ACAO, for short). The problems arise
when S acts as an intermediary and it fails to enforce the aforementioned poli-
cies. We distinguish two types of this flaw, according to which side of the security
policy is not being enforced. However, as SSRs are used to bypass the SOP for
CORs, SSR services suffer by design from the server-side variant of this flaw.
For this reason, we focus on client-side security policies. While this flaw is not
a vulnerability per se, as we will see in Sect. 4.1, insufficient client-side security
policy enforcement is the root cause of a class of attacks targeting C that we
call Web Origin Laundering attacks.

Forgery—SSR forgeries occur when S does not properly validate the user
input that is used to generate the SSR, e.g., XML documents, PDF files, and
URLs. SSR forgeries encompass all the currently known SSRF vulnerabilities.
More specifically, this regroups and reorganizes flaws from Common Weak-
nesses Enumeration (CWE-113, CWE-661, CWE-829) [25], OnSec [16], and
Polyakov et al. [22] which were exploited in documented attacks, i.e., against
SAP NetWeaver [22], Google+ [1,27], and Facebook [27]. Our classification also
includes the TCPDF bug1. Besides these vulnerabilities, our classification intro-
duces the class of improper URL validation vulnerabilities, which supersedes the
improperly-called class of SSRF flaws (CWE-918). This group of flaws occurs
when S does not validate user-provided URLs, e.g., rejecting URLs with unex-
pected URL schemes (e.g., file://), blacklisted domains, or invalid characters.
Then, our classification considers two special cases of improper URL validation,
i.e., improper enforcement of expected destination and improper neutralization
of CRLF in HTTP headers (CWE-113). Improper enforcement of expected des-
tination occurs when S does not sufficiently validate that the URL refers to an
expected destination [25]. Improper neutralization of CRLF in HTTP headers
occurs when software fails to remove the CR and LF characters from input data,
such that an attacker can inject HTTP headers or smuggle HTTP requests.

Information Gathering—A service S can unintentionally disclose sensitive
information of ES to an attacker. This class of vulnerabilities includes SSR vul-
nerabilities of the 2xx group of the CWE catalog, i.e., (i) improper neutralization

1 See bug #1005, http://sourceforge.net/projects/tcpdf/files/CHANGELOG.TXT.

http://sourceforge.net/projects/tcpdf/files/CHANGELOG.TXT

400 G. Pellegrino et al.

of error messages and (ii) side channels. The former type occurs when S reveals
information about exceptional behavior of ES in resS . For example, S may
return an error message to C detailing the reasons why ES is not reachable or
the target resource is not available. Side channels occur when S unwillingly leaks
information about ES. A typical side channel can be caused by a noticeable dif-
ference in the response time between req(urlES) and resS or by the variation in
the type and size of the responses.

3.2 Behavior-Based Classification

SSRs can also be classified according to the behavior of S. We observed seven
distinct behaviors that capture the way a service can be abused. While some of
these may seem legitimate in isolation, we will show that their combination can
lead to sophisticated attacks.

Proxy—S acts as a proxy when it returns resES to C. We distinguish proxy
services as transparent (when resES is forwarded to C without any modification)
or non-transparent (when, for example, resES is embedded inside resS).

Open Origin Policy—An open origin policy service (OOP) always returns the
least restrictive ACAO:* header, ignoring the actual value (if any) that is set by
ES. OOP services allow bypassing SOP for CORs (if ES did not include the
ACAO header) and any cross-origin resource sharing policy.

Storage—A storage service can be used to store and retrieve resources. That
is, S fetches resES from ES and stores the resource locally. Then, S returns an
ID to C for the resource that can be later used to retrieve resES .

Amplifier—An amplifier service can increase the number of SSRs and/or the
amount of data sent in SSRs as compared to CSRs. We designate amplifiers as
request amplifiers (when they increase the number of requests) or data amplifiers
(when they increase the size of each request or response).

Bridge—A bridge service connects different layers of a protocol stack and allows
S to send packets to non-HTTP services. With reference to Fig. 1a, when S
processes a crafted URL, instead of generating an HTTP request, it opens a
TCP connection and sends raw data to ES. This behavior is often the result of
forgery vulnerabilities, e.g., improper URL validation.

Interpreter—An interpreter service uses HTTP clients capable of interpreting
JavaScript code. For instance, S can be used to control the different parts of a
more complex attack, or to perform any computations on the attacker’s behalf.

Probe—A probe service can be used to collect information about an external
service ES. Information can be leaked to C over side channels. Depending on
the information leaked, probe services can be used to perform port scanning,
host discovery, or application fingerprinting. This type of service is the result of
two flaws: forgery, i.e., accepting custom TCP ports, and information gathering.

Uses and Abuses of Server-Side Requests 401

3.3 Control-Based Classification

The third SSRs classification is according to the control an attacker has on the
content of SSRs and responses generated by S. In particular, we distinguish the
control over the destination and the content of SSRs. The destination consists of
the domain or IP address of the server, the HTTP Host header, and the path of
the HTTP request, whereas the content of a request covers the request parame-
ters and the body. This classification supersedes Polyakov’s classification [22] as
we add control over the response. For the response, we consider only the content,
i.e., the body of the HTTP response resS .

3.4 Target-Based Classification

Finally, we examine who can be the target of an SSR-based attack. We distin-
guish between attacks against the client C, the SSR service S, and the remote
service ES. Most of the vulnerabilities discovered by prior work target ES, such
as the vulnerabilities on Facebook and Google services [27], the XXE on SAP
NetWeaver [22], and the vulnerability of DB4Web (CVE-2002-1484) which all
allowed attacks against third-party services. We extend this threat model with
attacks against the client, such as the Web Origin Laundering attack. In addi-
tion, we define S as a potential target, e.g., of resource exhaustion attacks.

Table 1. Mapping between attacks and the four angles of our classification: flaw,
behavior, control, and target.

4 Attacks

We now instantiate our classification and present seven attacks. Attacks are
divided into four categories: browser countermeasure evasions (Sect. 4.1), DoS
attacks (Sect. 4.2), reconnaissance (Sect. 4.3), and bridging attacks (Sect. 4.4).
Only the last two were previously known. The mapping between attacks and
our classification (including the root cause flaw) is shown in Table 1. As opposed
to the known exploitations of SSRF [12,15,16,22,27], two out of seven attacks
actually target C—an insight that should bring additional attention to SSR
abuse.

402 G. Pellegrino et al.

4.1 Web Origin Laundering

Fig. 3. The Web Origin Laundering attack.

Web browsers implement var-
ious URL-based defenses to
protect users and data from
attacks, such as Google Safe
Browsing [9], NoScript [13],
or AdBlock [6]. These mecha-
nisms make security decisions
based on requested URLs, e.g.,
limit the scope of JavaScript
programs or even deny the
JavaScript execution. Web origin laundering is an attack which hides resource
origins, thus bypassing URL-based defenses, leaving users exposed. With refer-
ence to our threat model, this is an attack against C, i.e., risk R3. First, C
requests a resource of ES via S. Note that the victim’s browser is not aware of
the fact that the request of step 1 contains the URL of a resource of ES. Then,
S fetches the resource from ES and returns it to C (steps 2–4). Finally, the web
browser verifies the origin of the resource to enforce security mechanisms. Unfor-
tunately, the browser will falsely assume that S is the origin, possibly leading
to a wrong decision in the security checks. We now preset two instances of this
attack to bypass browser countermeasures.

Attack 1.1—With reference to Fig. 3, the attacker prepares a URL that is
distributed to C. For example, the URL refers to a proxy service to fetch mali-
cious content hosted by ES, e.g., http://ssr.com/?url=host.com/mal.html. The
attacker sends this URL to C, e.g., via phishing email, or linking it in forums
and social networks. The victim clicks on the URL and, as a result, her browser
verifies whether the URL is blacklisted. As ssr.com is not blacklisted, C sends
message 1 to S. S extracts the URL from the parameter url, and fetches the
malicious content at host.com/mal.html. Finally, it returns the malicious con-
tent to C. We have successfully performed this attack, bypassing the Google
Safe Browsing mechanism as implemented by Google Chrome 43.0.2357.130 and
Mozilla Firefox 39.0. In these attacks, we have used two proxy services to relay
known phishing pages, drive-by download pages, and other malicious content
including malware binaries (i.e., EICAR Standard Anti-Virus Test File and
Virus.Win32.Virut).

Researchers have recently found criminals using a similar technique to dis-
tribute links to phishing pages. The attacker distributes a Google URL that
redirected to the malicious target2. However, browser countermeasures can dis-
cover the attempt to redirect the user to a malicious domain and then block the
attack. Furthermore, this attack is limited only to pages indexed by Google. Our
attack does not rely on redirect but instead on SSRs which hide the true origin
of the malicious content. Finally, an additional confirmation of the severity of

2 See https://isc.sans.edu/diary/How+Malware+Campaigns+Employ+Google+
Redirects+and+Analytics/19843.

http://ssr.com/?url=host.com/mal.html
https://isc.sans.edu/diary/How+Malware+Campaigns+Employ+Google+Redirects+and+Analytics/19843
https://isc.sans.edu/diary/How+Malware+Campaigns+Employ+Google+Redirects+and+Analytics/19843

Uses and Abuses of Server-Side Requests 403

this threat was provided in a recent NoScript bypass attack based on a SSRF
vulnerability in the content delivery network of Akamai3.

Attack 1.2 (Escaping Content Dispositions)—Attack 1.1 can be blocked
by the Content-Disposition response header of S. This header suggests to a
browser not to display the returned resource to the user. We will discuss the use
of this header in Sect. 6. However, even in presence of the content disposition
header, it is still possible to deliver and display malicious content to the user.
Consider the following JavaScript code embedded in a malicious web page hosted
by a third-party service:
1 var malware = " h t t p :// h o s t . com / mal . h t m l " ;

2 var cor = new XMLHttpRequest () ;

3 cor . onreadystatechange=function () {
4 var ct = this . getResponseHeader (" content - type ")

5 window . l o c a t i o n = " d a t a : " + ct " , " + encodeURIComponent (cor . responseText) ;

6 }
7 cor . open (" GET " , " h t t p :// ssr . com /? url = " + encodeURIComponent (malware) , fa l se) ;

8 cor . send () ;

The URL of the malicious resource, i.e., urlES , is in the variable malware (Line
1) which is retrieved with an asynchronous request (Lines 2 and 7–8). Note that
the URL used in the Ajax request is of the SSR service S (line 7). If the attacker
directly used the value in malware (line 8), the attempt to reach a malicious
server RE would be detected (e.g., by Google Safe Browsing). Then, once the
malicious resource is fetched, the JavaScript program transforms it into a data
URL. Such URL does not point to a resource, but instead contains the resource
within the URL itself. Finally, the browser is directed to the data URL (line 5)
and the malicious content is displayed to the user. We have developed proofs
of concept of these attacks and bypassed the Google Safe Browsing mechanism
of Chrome and Firefox. To this end, we used a proxy service which returned
the Content-Disposition response header. Similarly to the previous attack,
we used URLs of real phishing pages and binaries of actual malware.

4.2 Denial of Service

We now present three scenarios in which SSR is abused to perform DoS attacks
against S. We group these attacks into two categories: domain blacklisting and
resource exhaustion.

Attack 2.1 (DoS via Domain Blacklisting)— As discussed before, browsers
prevent users from visiting websites that are known to host malicious content.
An attacker may be able to poison these blacklists to block benign sites that
expose a proxy behavior by using the web origin laundering technique. To this
end, the attacker prepares a URL for the proxy service that contains the URL
of a malicious page, and submits it to the blacklist operator (e.g., to Google in
the case of Safe Browsing) to initiate a scan. Since the malicious content seems
to originate from the proxy service, once the URL is detected as malicious, the
proxy itself gets blacklisted. To avoid to disrupt the operations of SSR services,
3 See https://www.blackhat.com/us-15/briefings.html.

https://www.blackhat.com/us-15/briefings.html

404 G. Pellegrino et al.

Fig. 4. DoS with data amplier Fig. 5. DoS against data amplifier

we did not test this attack in practice. With reference to our threat model, this
is an attack against S, i.e., risk R4.

Attack 2.2 (DoS with Data Amplifier): In this second scenario, an attacker
can target any Internet-facing service and flood it with HTTP requests. The
general idea is to use an interpreter service as coordinator to amplify number
and size of requests by using data amplifier services via CORs. In order to
bypass SOP for CORs, this attack uses the web origin laundering presented in
Sect. 4.1 whenever the interpreter needs to send a request towards another service
role. Figure 4 shows an example involving the attacker, an interpreter, and an
amplifier service. The attacker (C) submits the URL of the JavaScript program
to the interpreter service (S, step 1). The interpreter fetches and executes a
malicious program (steps 2 and 3) that performs two operations: enlistment
and attack. The enlistment consists in re-submitting the URL of the JavaScript
programs to the interpreter service. This will increase the number of instances
of JavaScript programs participating in the attack. In the attack phase, the
JavaScript code instructs the web service to send many HTTP requests to the
victim (ES). Browsers, such as used by S, can generate about 3,000 requests
per second using the XMLHttpRequest API [21]. One can further increase the
attack impact by using data amplifier services that receive compressed requests
and submit the decompressed data to the victim (step 6). Data amplifiers allow
about a 1:1000 ratio between the data sent to the amplifier and the data sent to
the victim [20].

For ethical reasons we did not perform any resource exhaustion DoS attacks.
Instead, we manually verified that the building blocks of this attack are offered
by the services involved in the attack. More specifically, we verified that
(i) interpreters offer the features needed for the attacks (e.g., XMLHttpRequest
API or Image API), (ii) chains and combinations of SSR services can be created,
and (iii) the composition of the services can be invoked by interpreters. With
reference to our threat model, this is an attack against ES, i.e., risk R1.

Attack 2.3 (DoS against Data Amplifier)—A similar setup of Attack 2.2
can also be used to attack the data amplifier, by keeping it busy with decom-
pression tasks (see Fig. 5). In this case, the attack also requires a storage service
to store attacker-controlled compressed data. The interpreter, again controlled
by a malicious program, will request the storage service to fetch the compressed

Uses and Abuses of Server-Side Requests 405

resource from the web server of the attacker (steps 4–6). Then, the storage service
returns an ID of the resource to the interpreter (step 7). Finally, the interpreter
will send many compressed requests to the victim that trigger the victim to
fetch resources from the storage (step 8, 8’, . . .). The victim is not only forced
to decompress the requests, but it also has to continuously fetch compressed
resources from the storage service and decompress them, easily leading to mem-
ory exhaustion. Similarly for Attack 2.2, we did not perform the attack but we
verified that the building blocks of this attack are offered by the services involved
in the attack. With reference to our threat model, this is an attack against S,
i.e., risk R4.

4.3 Network Reconnaissance

Fig. 6. Port scanning with probe services

Network reconnaissance is a
previously-known family of attacks
(i.e., risk R1) which entails
attacks that gather information
about a network, server, or ser-
vice. We distinguish between port
scanning, host discovery, and
application fingerprinting. Recon-
naissance is the main documented
attack exploiting SSRF [15,24].
While classical attacks require connecting directly to the victim, probe ser-
vices can be used to offer anonymity and even allow access to private networks
across firewall boundaries. Figure 6 shows this attack with a probe service S.
The attacker prepares a request for S which contains the URL with the host or
service to be scanned. For example, if the attacker would like to probe an SSH
service, she can submit the URL http://target.com:22. As a result, S connects
to the URL (an SSH server) and responds to the attacker, potentially leaking
information about the status of the target service. In our example, S tries to
interpret the response of the target as an HTTP response, and returns the rea-
son for the failure (e.g., reporting that a given SSH server banner is not a valid
HTTP message). If S does not leak information about the target, as we will
show, an attacker can use side channels to determine the state of a TCP port,
the availability of a resource, or the reachability of a host.

4.4 Protocol Bridging Attacks

Protocol bridging is a previously-known family of attacks. The service S often
supports different URL schemes, including ftp, gopher, and dict. In particu-
lar, the gopher scheme allows the attacker to send arbitrary data over the TCP
connection, by using the following URL: gopher://target.com:port/payload. If
a service does not properly validate the schemes of user-provided URLs, SSRs

http://target.com:22
https://www.gopher://target.com:port/payload

406 G. Pellegrino et al.

can be used to send arbitrary data (i.e., payload) over TCP connections to non-
HTTP network services—effectively acting as a bridge between different proto-
cols. In the past, this technique has been used to connect to remote procedure
calls (RPC) services and exploit buffer overflow vulnerabilities [22], but it could
be used for many other malicious purposes, such as to send spam messages to
an SMTP server. With reference to our threat model, this is an attack against
ES, i.e., risk R1. A variation of this attack involves the file URL scheme to
retrieve files in S’s filesystem (e.g., by sending file:///etc/passwd to a bridge
service S). In one incident, such an attack allowed access to system files (e.g.,
passwd) of Google servers [1]. According to our threat model, this is an attack
against local resources of S, i.e., risk R2.

5 Case Studies and Analysis

Table 2. Mapping between tests and classifica-
tion.

In an attempt to investigate the
prevalence of SSR attacks, we
analyzed 68 services taken from
seven web application classes,
i.e., social networks, business
web applications (e.g., spread-
sheet and calendar web appli-
cations), software development
tools, online image processing,
OpenID service providers, RSS
readers, and online web screen-
shot tools. For each category,
we selected the most popu-
lar web applications prioritized
by Google search ranks. About
60 % of our case studies are among the top 50,000 web sites, including six of the
top 10 web sites on Alexa.

The goal of our analysis is to study real SSR services and map them to our
classification. To aid our analysis, we developed günther, a novel open-source
black-box testing tool4 that reveals SSR flaws and service behaviors. günther
takes as input a description of url(reqES), possibly enriched with session data
(i.e., session cookies). Then, günther generates a list of requests to probe the
service. günther consists of a tester and a monitor component. The tester probes
S whereas the monitor dynamically spawns servers to receive SSRs originated
by the service. With reference to Fig. 1a, the tester and the monitor play the
roles of C and S, respectively. The current version of günther supports the
tests in Table 2, i.e., (T1) URL validation and validation bypass via HTTP 3xx
redirection, (T2) proxy behavior, (T3) response header analysis, (T4) HTTP
client analysis, and (T5) side channel analysis. These tests are mapped to flaws
and behaviors as shown in Table 2.
4 The tool is freely available here: https://github.com/tgianko/guenther.

https://github.com/tgianko/guenther

Uses and Abuses of Server-Side Requests 407

We ran günther against the 68 services in our dataset. The experiment results
are shown in Table 3. We anonymized each service in Table 3a by replacing its
domain name with an identifier (column ID) because not all of them have been
fixed. To improve readability, we have grouped services with the same flaws and
behaviors in the same row. Our experiments revealed at least one service for each
flaw and service behavior. In total, 50 out of 68 services suffer from one of the
flaws in our classification. All these services are either proxy, open origin policy,
probe, or bridge services. One also behaves as an amplifier and four can act as
interpreters and therefore can be abused to coordinate other attacks. Then, ten
services (14.7 %) implement weak forms of URL validation that günther suc-
cessfully bypassed via HTTP 3xx redirections. Finally, only 14 services (20.6 %)
in our experiments are not affected by SSR-based vulnerabilities.

6 Mitigations

After discussing the vast potential and impact of SSRs, we will now discuss
eight mitigations and pitfalls. From our experiments on the case studies, and
reviewing the state of the art on the mitigation side, we extracted a list of
seven mitigations. Finally, as none of the observed ones are sufficient to block
Attack 1.2, we propose an additional mitigation to enforce URL-based browser
countermeasures.

(M1) Monitoring—Monitoring is a mitigation technique which aims at detect-
ing suspicious activity at service runtime. The owner of S5 reported to us that
they rely on a sophisticated monitoring technique to detect the SSR abuse tar-
geting C (R3 in Fig. 1c). Unfortunately, the use of monitoring to detect this
type of abuse has two shortcomings which make it insufficient as a general solu-
tion. First, a complex infrastructure and a considerable amount of resources are
required to support monitoring, especially for popular services that serve a large
number of users. Second, while monitoring SSRs may successfully mitigate large-
scale abuses, it is often ineffective for detecting low-volume attacks. For example,
the advent of APT-based attacks has changed the distribution from large-scale
to a targeted distribution in which only a single user or organization is attacked.
For these reasons, we believe that monitoring should be complemented with
further preventive guidelines.

(M2) Avoid Acting as a Proxy or Wrap Response—Among our case stud-
ies, three services can be abused as transparent proxy to serve malicious content
to a client. However, we are not aware of intended use cases for transparent
proxies, and thus services should be explicitly designed to avoid this behavior.
For example, S can use a JSON envelope to wrap resES , which prevents a web
browser from interpreting the resource resES and thus blocks the Web Origin
Laundering Attack 1.1. Services S12, S59, and S60 use custom JSON data struc-
tures to wrap resES , i.e., they behaved as non-transparent proxies. However,
this countermeasure alone is not sufficient to also block Attack 1.2. As this sec-
ond attack uses malicious JavaScript to retrieve resES , the JavaScript program

408 G. Pellegrino et al.

Table 3. Results of our Experimental Analysis

can unpack resES and then encode it as inline data (i.e., via the data URI
scheme). Attack 1.2 can partially be mitigated by enforcing URL-based browser
countermeasures, such as Google Safe Browsing, at S (see M8).

(M3) Perform Proper URL Validation—S should validate urlES before
fetching the target resource. Table 3b shows how our case studies validate user-
provided URLs. The vast majority accept URLs containing an IP address (60
services) and/or a port number (55 services). None of these behaviors can be
considered a vulnerability per se. Some applications rejected URLs with IP
addresses, probably as an attempt to block attackers who may try to access local
machines in the company intranet. However, it is important to understand that
this countermeasure is often insufficient, as attackers can still address any IP by
pointing an attacker-controlled domain to a local IP address (DNS rebinding).

Uses and Abuses of Server-Side Requests 409

Moreover, we found weak forms of URL validation that can be circumvented.
URL validation of ten services can be bypassed with HTTP redirections (last
column in Table 3b). This is critical, because it shows how the service developers
attempted to mitigate the problem, but were not aware of all the details of this
security threat. Worse, while few of the 68 services accept URLs with the Dict
(four services) or Gopher schemes (three services), redirection helps to bypass
an additional four cases for each scheme. These bridges are a severe threat, as
they give full control of a TCP socket and enable attackers to communicate with
non-HTTP network services.

URL validation that protects against rebinding can be implemented in HTTP
libraries. To the best of our knowledge, SafeCurl [14] is the only HTTP library
that provides these countermeasures for PHP services. Developers using other
programming languages or headless browsers need to implement the above mech-
anisms on their own.

(M4) Content Disposition—The content disposition header is used to sug-
gest that a browser should not display a resource inline [7]. This header has been
proposed in the past to fix Reflected File Download attacks [11]. An SSR service
that uses this header can block the Web Origin Laundering Attack 1.1. In fact,
as the resource is not shown to the user inline, phishing attacks are prevented.
In our experiments, services S5 and S9 use the content disposition header. While
Content-Disposition mitigates Attack 1.1, it does not protect from Attack 1.2.
Content-Disposition alone does not solve the root cause of the insufficient secu-
rity policy enforcement flaw, but instead raises the difficulty for an attacker to
abuse SSRs. To mitigate Attack 1.2, see M8.

(M5) Limit Resource Usage—DoS attacks of Sect. 4.2 are the result of a
combination of services: interpreters to orchestrate the attack, amplifiers to
amplify the size and number of requests, and OOP services to chain SSRs ser-
vices. This mitigation targets the first two services (for the OOP services, see
instead M6). Table 3c shows that 10 % of our case studies use browsers with full
JavaScript support, including JavaScript APIs that can be used to orchestrate
DoS attacks. In particular, seven services support the Image API, five services
support the XMLHttpRequest API, and two services support the Web Worker
API. These APIs can be abused to turn a seemingly innocuous web browser into
a weaponized HTTP-based bot that can generate thousands of HTTP requests
per second [10,21]. To avoid this abuse, interpreter services need to limit the
request rate. Another source of resource exhaustion is data compression. With
reference to Table 3c, data compression is supported by most tested services, and
one also supports HTTP request decompression. Decompressing HTTP requests
is not a standardized behavior, but instead is a web server-specific feature [20].
We are not aware of the reasons to support this feature, and we would recom-
mend disabling it. Unlike this particular case, HTTP response compression is
standardized and a more common feature. Also in this case, we would recom-
mend disabling data compression. If this is not possible, then developers should

410 G. Pellegrino et al.

verify that their services limit the resources used when decompressing incom-
ing messages (see [20] for guidelines toward a secure implementation of data
decompression).

(M6) Remove Open Access Control Policies for CORs—As OOP services
can be accessed via CORs from any domain, they can be used by interpreters
to chain SSR services in order to mount the attack. Among our case studies,
four services use the header ACAO: *, which is bad practice in the presence of
our threat model. The other 64 services omit ACAO headers, thus effectively
blocking cross-origin requests. Another effective countermeasure to block this
attack is to limit the access to SSR services to CORs from trusted origins.

(M7) Limit Information Leakage—72 % of the services can be used as probes
to perform network reconnaissance. This makes this role the most widespread
behavior among the applications we tested. All probe services of Table 3a allow,
with different degrees of granularity, network reconnaissance via response time
analysis and response code. Information leaks can be solved by making S’s behav-
ior independent from the success of the SSR. For example, S can enforce a con-
stant response time (i.e., a fixed delay between C’s request and the response sent
to C). We observed this behavior for 15 services that do not allow distinguishing
the port state, seven services that do not leak information about the host avail-
ability, and 24 services that do not disclose the availability of an HTTP resource.
However, enforcing a constant time introduces undesired delays, thus making it
unsustainable for scenarios in which responsiveness is important. In these cases,
S may deploy weaker security measures which can limit network reconnaissance
attacks. This can be achieved, for example, by accepting URLs only with selected
TCP ports with mitigation M3, or by rate-limiting the requests.

(M8) Enforce URL-Based Browser Countermeasures—None of the mit-
igations we obseved in the wild (M1-7) can solve Web Origin Laundering Attack
1.2. The root cause of this attack is that S allows one to retrieve and serve
malicious content, and hide the true origin of the malicious content with S’s
domain.

To block Web Origin Laundering Attack 1.2, we propose that SSR services
should implement the same countermeasures deployed by browsers in order to
block harmful and unwanted content, e.g., Google Safe Browsing. Once the client
submits the URL to S, S validates the URL using the Google Safe Browsing pro-
tocol. If the URL is malicious, then S refuses to retrieve it. While this approach
at least partially mitigates the distribution of malicious content, it does not fix
the problem if web browsers implement custom security policies, e.g., NoScript
or AdBlock custom domain blacklists. In conclusion, a general solution to Web
Origin Laundering Attack 1.2 is still lacking.

7 Developers Feedback

We responsibly disclosed all vulnerabilities to the respective developers. In most
of the cases, developers reacted to our first reports. If developers were unrespon-
sive for over a month, we tried a second time and then alerted the US CERT. Our

Uses and Abuses of Server-Side Requests 411

disclosure resulted in a variety of responses from developers, strongly related to
the type of flaw of our classification.

Forgery—75 % of such vulnerabilities have been fixed by now. Six vendors (i.e.,
S1, S14, S15, S35, S46, and S64) patched their services, while two vendors (S12
and S41) were unresponsive. The high number of fixes may be due to a partial
awareness of the security risks of forgery vulnerabilities: forgery is the first doc-
umented SSR flaw, and developers deploy countermeasures against forgery, i.e.,
URL validation (e.g., 64 services reject URLs with non-HTTP schemes, 13 with
TCP ports, and eight with IPs). However, the fact that countermeasures can be
bypassed with HTTP redirections indicates that the complete exploitation space
of SSR flaws is not entirely understood.

Information Gathering—The disclosure of these vulnerabilities revealed a
more fragmented situation. Five services patched the problem, while the vast
majority ignored the issue or did not respond to our report. An interpretation of
these results is in the rejected reports. In three cases, developers did not want to
modify S as they are using monitoring to prevent abuses (i.e., S3, S5, and S59).
The use of monitoring suggests prudence and a general attention to security-
related issues. However, the choice of monitoring over a patch in S may indicate
that developers rate this risk a low priority. Other developers (S7, S60, and S62)
consider this flaw not to be a security risk at all.

Enforcement of Security Policies—Out of four affected services, S15 has
been shut down and S2 has partially solved the flaw by adding the content
disposition header into the response. Developers of S16 reported having fixed the
flaw, but the patch did not solve the problem. Lastly, developers of S5 rejected
our report because they use monitoring to prevent abuses. As discussed in Sect. 6,
monitoring may work for large-scale abuses, but potentially still misses individual
exploitations.

8 Related Work

In this section, we review SSR literature according to four thematic groups.
First, we review academic literature with a focus on vulnerability analysis and
detection. Then, we review known SSR-based attacks against popular web appli-
cations. Third, we present current attempts to classify and categorize existing
SSR threats. Finally, we survey existing tools to detect SSR vulnerabilities.

Vulnerability Analyses and Detection—Web vulnerabilities have been
extensively studied from different angles, e.g., categorization and prioritiza-
tion [17,23], impact and trends [18], detection techniques [2,19] and effective-
ness [4], and defense mechanisms [3]. While existing works focused largely on
classical, yet severe, vulnerabilities, to the best of our knowledge, no scientific
work has studied the SSR communication pattern.

Attacks and Classifications—The vast majority of security incidents are
described in reports and whitepapers. These attacks are SSR forgery attacks

412 G. Pellegrino et al.

and were brought to the community’s attention by Polyakov et al. [22] and
Walikar [27]. Polyakov et al. [22] described an XXE vulnerability in SAP
NetWeaver whereas Walikar [27] described an insufficient input validation vul-
nerability in popular social networks. Other exploitations of SSR forgery vul-
nerabilities were reported by Almroth et al. [1], in which they retrieve local
resources in Google services. All these attacks are included in Polyakov’s threat
model. With respect to the current knowledge about SSR-based attacks, our
paper presents five previously-unknown SSR-based attacks, i.e., two Web Origin
Laundering attacks and three DoS attacks.

Following the initial incidents, the community started classifying and catego-
rizing known SSR-based vulnerabilities. All efforts focused on SSR forgery (e.g.,
CWE [25] and OnSec [16]). However, current knowledge on SSR vulnerabilities
is sparse, disjoint, and incomplete. While the CWE database includes some SSR-
related vulnerabilities, they are mainly isolated entries which are not correlated
to each other. As a result, developers cannot identify all possible flaws that can
affect an SSR service. Furthermore, as we have shown, there are other attacks
targeting C and S which do not rely on forgery but instead abuse improper
enforcement of security policies.

Detection Tools—Existing detection tools target only SSRF vulnerabilities.
They are available in the form of proof-of-concept scripts (e.g., the SSRF
bible [16]) or as testing tools. A proprietary tool that can find SSRF vulner-
abilities is Acunetix WVS version 9 with AcuMonitor5. However, this tool is not
freely available and we were not able to inspect it. Existing public tools offer
limited detection power (only SSRF) which make them inapplicable to the pur-
pose of this paper. Ussrfuzzer [28] fuzzes HTTP requests with URLs to detect
SSRs, however, it does not perform any security test. In contrast, the OWASP
Skanda [5] tool can detect information disclosure flaws, in particular leaks of
TCP port status. However, it cannot be used to detect other types of leakage,
e.g., web application fingerprint, nor other vulnerabilities or security related fea-
tures. For all these reasons, we developed günther, a first comprehensive SSR
testing tool, that we plan to release to the public.

9 Conclusion

To the best of our knowledge, this is the first comprehensive study of the security
of SSRs. We presented a classification of SSRs based on the type of flaw, the
level of control of the messages, the behavior of the vulnerable services, and the
potential attack targets. Furthermore, we unveiled previously-unknown exploita-
tions techniques in which a combination of seemingly innocuous services can be
used to mount sophisticated attacks targeting both users and servers on the
Internet. We also presented experiments on 68 popular web applications. Our
experiments showed that the majority of the web applications can be abused
to perform malicious activities, ranging from server-side code execution to DoS

5 See http://www.acunetix.com/vulnerability-scanner/.

http://www.acunetix.com/vulnerability-scanner/

Uses and Abuses of Server-Side Requests 413

attacks. We also presented eight mitigations to help developers to implement
SSRs in a more secure way.

Acknowledgments. This work was supported by the German Federal Ministry of
Education and Research (BMBF) through funding for the Center for IT-Security, Pri-
vacy and Accountability (CISPA) and for the BMBF project 13N13250.

References

1. Almroth, F., Karlsson, M.: How we got read access on Googles production
servers. http://blog.detectify.com/post/82370846588/how-we-got-read-access-on-
googles-production

2. Balzarotti, D., Cova, M., Felmetsger, V.V., Vigna, G.: Multi-module vulnerability
analysis of web-based applications. In: ACM CCS 2007 (2007)

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: ACM CCS 2008 (2008)

4. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the art:Automated black-
box web application vulnerability testing. In: IEEE S&P 2010 (2010)

5. Chauhan, J.: OWASP SKANDA - SSRF Exploitation framework.
http://www.chmag.in/article/may2013/owasp-skanda-%E2%80%93-ssrf-exploita
tion-framework

6. Eyeo GmbH: Adblock plus. https://adblockplus.org/
7. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-

Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. In: RFC 2616 (Draft Standard).
Request for Comments. Internet Engineering Task Force (1999). http://www.ietf.
org/rfc/rfc2616.txt

8. Fitzpatrick, B., Recordon, D., Hardt, D., Hoyt, J.: OpenID authentication 2.0 -
Final. http://openid.net/specs/openid-authentication-2 0.html

9. Google Inc.: Safe browsing API. https://developers.google.com/safe%2Dbrowsing/
10. Grossman, J., Johansen, M.: Million browser botnet. https://media.blackhat.com/

us%2D13/us%2D13%2DGrossman%2DMillion%2DBrowsed%2DBotnet.pdf
11. Hafif, O.: Reflected file download a new web attack vector. https://drive.google.

com/file/d/0B0KLoHg gR XQnV4RVhlNl96MHM/view
12. Heiland, D.: Web portals gateway to information or a hole in our

perimeter defenses. http://www.shmoocon.org/2008/presentations/Web+portals,
+gateway+to+information.ppt

13. InformAction: NoScript. https://noscript.net/
14. Jack Whitton: SafeCurl. https://github.com/fin1te/safecurl
15. Kulkarni, P.: SSRF/XSPA bug in https://www.coinbase.com 06, http://www.

prajalkulkarni.com/2013/06/ssrfxspa
16. ONsec Lab: SSRF Bible, Cheatsheet. https://docs.google.com/document/d/

1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM
17. OWASP: The OWASP top 10 project. https://www.owasp.org/index.php/

Category:OWASP Top Ten Project
18. Payet, P., Doupé, A., Kruegel, C., Vigna, G.: Ears in the wild: large-scale analysis

of execution after redirect vulnerabilities. In: ACM SAC 2013 (2013)
19. Pellegrino, G., Balzarotti, D.: Toward black-box detection of logic flaws in web

applications. In: NDSS 2014 (2014)

http://blog.detectify.com/post/82370846588/how-we-got-read-access-on-googles-production
http://blog.detectify.com/post/82370846588/how-we-got-read-access-on-googles-production
http://www.chmag.in/article/may2013/owasp-skanda-%E2%80%93-ssrf-exploitation-framework
http://www.chmag.in/article/may2013/owasp-skanda-%E2%80%93-ssrf-exploitation-framework
https://adblockplus.org/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://openid.net/specs/openid-authentication-2_0.html
https://developers.google.com/safe%2Dbrowsing/
https://media.blackhat.com/us%2D13/us%2D13%2DGrossman%2DMillion%2DBrowsed%2DBotnet.pdf
https://media.blackhat.com/us%2D13/us%2D13%2DGrossman%2DMillion%2DBrowsed%2DBotnet.pdf
https://drive.google.com/file/d/0B0KLoHg_gR_XQnV4RVhlNl96MHM/view
https://drive.google.com/file/d/0B0KLoHg_gR_XQnV4RVhlNl96MHM/view
http://www.shmoocon.org/2008/presentations/Web+portals,+gateway+to+information.ppt
http://www.shmoocon.org/2008/presentations/Web+portals,+gateway+to+information.ppt
https://noscript.net/
https://github.com/fin1te/safecurl
https://www.coinbase.com
http://www.prajalkulkarni.com/2013/06/ssrfxspa
http://www.prajalkulkarni.com/2013/06/ssrfxspa
https://docs.google.com/document/d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM
https://docs.google.com/document/d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

414 G. Pellegrino et al.

20. Pellegrino, G., Balzarotti, D., Winter, S., Suri, N.: In the compression Hornet’s
Nest: a security study of data compression in network services. In: USENIX Secu-
rity 2015 (2015)

21. Pellegrino, G., Rossow, C., Ryba, F.J., Schmidt, T.C., Wählisch, M.: Cashing out
the great Cannon? On browser-based DDoS attacks and Economics. In: USENIX
WOOT 2015 (2015)

22. Polyakov, A., Chastukjin, D., Tyurin, A.: SSRF vs. business-
critical applications. Part 1: XXE Tunnelling in SAP
NetWeaver. http://erpscan.com/wp%2Dcontent/uploads/2012/08/
SSRF%2Dvs%2DBusinness%2Dcritical%2Dapplications%2Dwhitepaper.pdf

23. SANS Institute: Critical security controls for effective cyber defense. https://www.
sans.org/media/critical-security-controls/CSC-5.pdf

24. Santese, A.: Yahoo! SSRF/XSPA vulnerability, 06. http://hacksecproject.com/
yahoo%2Dssrfxspa%2Dvulnerability/

25. The MITRE Corporation: Common weakness enumeration. http://cwe.mitre.org/
26. van Kesteren, A.: Cross-origin resource sharing - W3C Recommendation, 16 Jan-

uary 2014. http://www.w3.org/TR/cors/
27. Walikar, R.A.: Cross site port attacks - XSPA. http://www.riyazwalikar.com/

2012/11/cross%2Dsite%2Dport%2Dattacks%2Dxspa%2Dpart%2D1.html
28. Zaitov, E.: Universal SSRF fuzzer. https://github.com/kyprizel/ussrfuzzer

http://erpscan.com/wp%2Dcontent/uploads/2012/08/SSRF%2Dvs%2DBusinness%2Dcritical%2Dapplications%2Dwhitepaper.pdf
http://erpscan.com/wp%2Dcontent/uploads/2012/08/SSRF%2Dvs%2DBusinness%2Dcritical%2Dapplications%2Dwhitepaper.pdf
https://www.sans.org/media/critical-security-controls/CSC-5.pdf
https://www.sans.org/media/critical-security-controls/CSC-5.pdf
http://hacksecproject.com/yahoo%2Dssrfxspa%2Dvulnerability/
http://hacksecproject.com/yahoo%2Dssrfxspa%2Dvulnerability/
http://cwe.mitre.org/
http://www.w3.org/TR/cors/
http://www.riyazwalikar.com/2012/11/cross%2Dsite%2Dport%2Dattacks%2Dxspa%2Dpart%2D1.html
http://www.riyazwalikar.com/2012/11/cross%2Dsite%2Dport%2Dattacks%2Dxspa%2Dpart%2D1.html
https://github.com/kyprizel/ussrfuzzer

Identifying Extension-Based Ad Injection
via Fine-Grained Web Content Provenance

Sajjad Arshad(B), Amin Kharraz, and William Robertson

Northeastern University, Boston, USA
{arshad,mkharraz,wkr}@ccs.neu.edu

Abstract. Extensions provide useful additional functionality for web
browsers, but are also an increasingly popular vector for attacks. Due
to the high degree of privilege extensions can hold, extensions have
been abused to inject advertisements into web pages that divert rev-
enue from content publishers and potentially expose users to malware.
Users are often unaware of such practices, believing the modifications
to the page originate from publishers. Additionally, automated identifi-
cation of unwanted third-party modifications is fundamentally difficult,
as users are the ultimate arbiters of whether content is undesired in the
absence of outright malice.

To resolve this dilemma, we present a fine-grained approach to track-
ing the provenance of web content at the level of individual DOM ele-
ments. In conjunction with visual indicators, provenance information can
be used to reliably determine the source of content modifications, distin-
guishing publisher content from content that originates from third par-
ties such as extensions. We describe a prototype implementation of the
approach called OriginTracer for Chromium, and evaluate its effec-
tiveness, usability, and performance overhead through a user study and
automated experiments. The results demonstrate a statistically signifi-
cant improvement in the ability of users to identify unwanted third-party
content such as injected ads with modest performance overhead.

Keywords: Web security · Ad injection · Browser extension

1 Introduction

Browser extensions enhance browsers with additional useful capabilities that are
not necessarily maintained or supported by the browser vendor. Instead, this
code is typically written by third parties and can perform a wide range of tasks,
from simple changes in the appearance of web pages to sophisticated tasks such as
fine-grained filtering of content. To achieve these capabilities, browser extensions
possess more privilege than other third-party code that runs in the browser.
For instance, extensions can access cross-domain content, and perform network
requests that are not subject to the same origin policy. Because these extensive
capabilities allow a comparatively greater degree of control over the browser,
they provide a unique opportunity to attack users and their data, the underlying
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 415–436, 2016.
DOI: 10.1007/978-3-319-45719-2 19

416 S. Arshad et al.

system, and even the Internet at large. For this reason, newer browser extension
frameworks such as Chromium’s have integrated least privilege separation via
isolated worlds and a fine-grained permissions system to restrict the capabilities
of third-party extensions [7].

However, extension security frameworks are not a panacea. In practice, their
effectiveness is degraded by over-privilege and a lack of understanding of the
threats posed by highly-privileged extensions on the part of users [18]. Indeed,
despite the existence of extension security frameworks, it has recently been shown
that extension-based advertisement injection has become a popular and lucrative
technique for dishonest parties to monetize user web browsing. These extensions
simply inject or replace ads in web pages when users visit a website, thus creating
or diverting an existing revenue stream to the third party. Users often are not
aware of these incidents and, even if this behavior is noticed, it can be difficult
to identify the responsible party.

While ad injection cannot necessarily be categorized as an outright malicious
activity on its own, it is highly likely that many users in fact do not want or
expect browser extensions to inject advertisements or other content into Web
pages. Moreover, it can have a significant impact on the security and privacy
of both users as well as website publishers. For example, recent studies have
shown that ad-injecting extensions not only serve ads from ad networks other
than the ones with which the website publishers intended, but they also attempt
to trick users into installing malware by inserting rogue elements into the web
page [46,48].

To address this problem, several automatic approaches have been proposed to
detect malicious behaviors (e.g., ad injection) in browser extensions [26,28,48]. In
addition, centralized distribution points such as Chrome Web Store and Mozilla
Add-ons are using semi-automated techniques for review of extension behavior
to detect misbehaving extensions. However, there is no guarantee that analyzing
the extensions for a limited period of time leads to revealing the ad injection
behaviors. Finally, a client-side detection methodology has been proposed in
[46] that reports any deviation from a legitimate DOM structure as potential
ad injections. However, this approach requires a priori knowledge of a legitimate
DOM structure as well as cooperation from content publishers.

Although ad injection can therefore potentially pose significant risks, this
issue is not as clear-cut as it might first seem. Some users might legitimately
want the third-party content injected by the extensions they install, even includ-
ing injected advertisements. This creates a fundamental dilemma for automated
techniques that aim to identify clearly malicious or unwanted content injec-
tion, since such techniques cannot intuit user intent and desires in a fully auto-
matic way.

To resolve this dilemma, we present OriginTracer, an in-browser approach
to highlight extension-based content modification of web pages. OriginTracer
monitors the execution of browser extensions to detect content modifications
such as the injection of advertisements. Content modifications are visually high-
lighted in the context of the web page in order to (i) notify users of the presence

Identifying Extension-Based Ad Injection 417

of modified content, and (ii) inform users of the source of the modifications. With
this information, users can then make an informed decision as to whether they
actually want these content modifications from specific extensions, or whether
they would rather uninstall the extensions that violate their expectations.

OriginTracer assists users in detecting content injection by distinguishing
injected or modified DOM elements from genuine page elements. This is per-
formed by annotating web page DOM elements with a provenance label set that
indicates the principal(s) responsible for adding or modifying that element, both
while the page is loading from the publisher as well as during normal script and
extension execution. These annotations serve as trustworthy, fine-grained prove-
nance indicators for web page content. OriginTracer can be easily integrated
into any browser in order to inform users of extension-based content modifica-
tion. Since, OriginTracer identifies all types of content injections, it is able
to highlight all injected advertisements regardless of their types (e.g., flash ads,
banner ads, and text ads).

We implemented a prototype of OriginTracer as a set of modifications to
the Chromium browser, and evaluated its effectiveness by conducting a user
study. The user study reveals that OriginTracer produced a significantly
greater awareness of third-party content modification, and did not detract from
the users’ browsing experience. Our results also suggests that OriginTracer
can be used as a complementary system to ad blocking systems such as Adblock
Plus [2] and Ghostery [4].

To summarize, the main contributions of this paper are:

– We introduce a novel in-browser approach to provenance tracking for web
content at the granularity of DOM elements, and present a semantics for
provenance propagation due to script and extension execution. The approach
leverages a high-fidelity in-browser vantage point that allows it to construct
a precise provenance label set for each DOM element introduced into a web
page.

– We implement a prototype called OriginTracer that uses content prove-
nance to identify and highlight third-party content injection – e.g., unwanted
advertisements – by extensions to notify users of their presence and the orig-
inating principal.

– We evaluate the effectiveness, usability, and performance of our prototype,
and show that it is able to significantly assist users in identifying ad injection
by extensions in the wild without degrading browser performance or the user
experience.

2 Background and Motivation

In the following, we introduce background information on browser extensions,
present an overview of advertisement injection as a canonical example of ques-
tionable content modification, and motivate our approach in this context.

418 S. Arshad et al.

2.1 Browser Extensions

Browser extensions are programs that extend the functionality of a web browser.
Today, extensions are typically implemented using a combination of HTML,
CSS, and JavaScript written against a browser-specific extension API. These
APIs expose the ability to modify the browser user interface in controlled ways,
manipulate HTTP headers, and modify web page content through the document
object model (DOM) API. An extension ecosystem is provided by almost all
major browser vendors; for instance, Google and Mozilla both host centralized
repositories of extensions that users can download at the Chrome Web Store and
Mozilla Add-ons sites, respectively.

2.2 Advertisement Injection

As web advertising grew in popularity, those in a position to modify web con-
tent such as ISPs and browser extension authors realized that profit could be
realized by injecting or replacing ads in web pages. For instance, some ISPs
began to tamper with HTTP traffic in transit, injecting DOM elements into
HTML documents that added ISP’s advertisements into pages visited by their
customers [10,30]. In a similar fashion, browser extensions started modifying
pages to inject DOM elements in order to show ads to users without necessarily
obtaining the user’s prior consent. Ad injection has evolved to become a common
form of unrequested third-party content injection on today’s web [37].

Fig. 1. Overview of advertisement injection. (1) The user accesses the publisher’s site.
(2) An ad-injecting browser extension adds DOM elements to display ads to the user,
and optionally removes existing ads. (3) Ad revenue is diverted from the publisher.
(4) Ad impressions, clicks, and conversions are instead directed to the extension’s ad
network. (5) Ad revenue flows to the extension author.

Identifying Extension-Based Ad Injection 419

These practices have several effects on both publishers and users. On one
hand, ad injection diverts revenue from the publisher to the third party respon-
sible for the ad injection. If advertisements are the primary source of income
for a publisher, this can have a significant effect on their bottom line. If the
injected ads contain or reference undesired content (e.g., adult or political top-
ics), ad injection can also harm the reputation of the publisher from the user’s
perspective. If the content injection is also malicious in nature, the publisher’s
reputation can be further harmed in addition to exposing users to security risks
due to malware, phishing, and other threats. Prior work has shown that users
exposed to ad injection are more likely to be exposed to “malvertising” and tra-
ditional malware [46,48]. Figure 1 gives an overview of ad injection’s effect on
the normal ad delivery process, while Fig. 3 shows an instance of ad injection on
amazon.com.

2.3 Motivation

Recently, there have been efforts by browser vendors to remove ad-injecting
extensions from their repositories [1]. Although semi-automated central
approaches have been successful in identifying ad-injecting extensions, decep-
tive extensions can simply hide their ad injection behaviors during the short
period of analysis time. In addition, finding web pages that trigger ad injection
is a non-trivial task, and they can miss some ad-injecting extensions. Moreover,
there are extensions that are not provided through the web stores, and users
can get them from local marketplaces, which may not examined the extensions
properly. Hence, we believe that there is a need for a protection tool to combat
ad injection on the client side in addition to centralized examination by browser
vendors.

Table 1. Five popular Chrome extensions that modify web pages as part of their
benign functionality.

Extension No. of users Injected element

Adblock plus 10,000,000+ <iframe>

Google translate 6,000,000+ <div>

Tampermonkey 5,800,000+

Evernote web clipper 4,300,000+ <iframe>

Google dictionary 3,000,000+ <div>

Furthermore, automatically determining whether third-party content modi-
fication – such as that due to ad injection – should be allowed is not straightfor-
ward. Benign extensions extensively modify web pages as part of their normal
functionality. To substantiate this, we examined five popular Chrome extensions
as of the time of writing; these are listed in Table 1. Each of these extensions are

420 S. Arshad et al.

available for all major browsers, and all modify web pages (e.g., inject elements)
to implement their functionality. Therefore, automated approaches based on this
criterion run a high risk of false positives when attempting to identify malicious
or undesirable extensions.

Moreover, it is not enough to identify that advertisements, for instance, have
been injected by a third party. This is because some users might legitimately
desire the content that is being added to web pages by the extensions they
install. To wit, it is primarily for this reason that a recent purge of extensions
from the Chrome Web Store did not encompass the entirety of the extensions
that were identified as suspicious in a previous study, as the third-party con-
tent modification could not be clearly considered as malicious [46]. Instead, we
claim that users themselves are best positioned to make the determination as
to whether third-party content modification is desired or not. An approach that
proceeds from this observation would provide sufficient, easily comprehensible
information to users in order to allow an informed choice as to whether con-
tent is desirable or should be blocked. It should be noted that defending against
drive-by downloads and general malware is not the focus of this paper. Rather,
the goal is to highlight injected ads to increase likelihood that user will make an
informed choice to not click on them.

We envision that OriginTracer could be used as a complementary app-
roach to existing techniques such as central approaches used by browser vendors.
Also, browser vendors can benefit from using our system in addition to end users
to detect the content modifications by extensions in a more precise and reliable
way. In the following sections, we present design and implementation of our
system.

3 Web Content Provenance

In this section, we describe an in-browser approach for identifying third-party
content modifications in web browsers. The approach adds fine-grained prove-
nance tracking to the browser, at the level of individual DOM elements. Prove-
nance information is used in two ways: (i) to distinguish between content that
originates from the web page publisher and content injected by an unassociated
third party, and (ii) to indicate which third party (e.g., extension) is respon-
sible for content modifications using provenance indicators. By integrating the
approach directly into the browser, we guarantee the trustworthiness of both
the provenance information and the visual indicators. That is, as the browser is
already part of the trusted computing base (TCB) in the web security model, we
leverage this as the appropriate layer to compute precise, fine-grained provenance
information. Similarly, the browser holds sufficient information to ensure that
provenance indicators cannot be tampered with or occluded by malicious exten-
sions. While we consider malicious or exploited browser plug-ins such as Flash
Player outside our threat model, we note that modern browsers take great pains
to isolate plug-ins in least privilege protection domains. We report separately on
the implementation of the approach in Sect. 4.

Identifying Extension-Based Ad Injection 421

In the following, we present our approach to tracking and propagating content
provenance, and then discuss provenance indicators and remediation strategies.

3.1 Content Provenance

Web pages are composed of HTML that references resources such as stylesheets,
scripts, images, plug-ins such as Flash objects, or even other web pages loaded
inside frames. The document object model (DOM) is a natural structural rep-
resentation of a web page that can be manipulated through a standard API,
and serves as a suitable basis for provenance tracking. In particular, our system
tracks the provenance of each element e contained in a DOM. Provenance for a
DOM element is recorded as a set of labels � ∈ P (L), where the set of all labels
L corresponds to a generalization of standard web origins to include extensions.
That is, instead of the classic origin 3-tuple of 〈scheme, host, port〉, we record

L = 〈S, I, P,X〉
S = {scheme} ∪ {“extension”}
I = {host} ∪ {extension-identifier}
P = {port} ∪ {null}
X = {0, 1, 2, . . .}

In other words, a label is a 4-tuple that consists of a normal network scheme or
extension, a network host or a unique extension identifier, a port or the special null
value, and an index used to impose a global total order on labels as described
below. While browsers use different extension identifiers, including randomly-
generated identifiers, the exact representation used is unimportant so long as
there is a one-to-one mapping between extensions and identifiers and their use
is locally consistent within the browser. An overview of provenance tracking is
depicted in Fig. 2.

Static Publisher Provenance. Content provenance tracking begins with
a web page load. As the DOM is parsed by the browser, each element is labeled
with a singleton label set containing the origin of the publisher, {l0}. Thus,
static provenance tracking is straightforward and equivalent to the standard use
of origins as a browser security context.

Dynamic Publisher Provenance. Content provenance becomes more
interesting in the presence of dynamic code execution. As JavaScript can add,
modify, and remove DOM elements in an arbitrary fashion using the DOM API
exposed by the browser, it is necessary to track these modifications in terms of
provenance labels.

New provenance labels are created from the publisher’s label set {l0} as
follows. Whenever an external script is referenced from the initial DOM resulting
from the page load, a new label li, i ∈ {1, 2, . . .} is generated from the origin of the
script. All subsequent DOM modifications that occur as a result of an external
script loaded from the initial DOM are recorded as {l0, li}. Successive external
script loads follow the expected inductive label generation process – i.e., three

422 S. Arshad et al.

Fig. 2. Element-granularity provenance tracking. (1) Content loaded directly from the
publisher is labeled with the publisher’s origin, l0. (2) An external script reference to
origin l1 is performed. (3) DOM modifications from l1’s script are labeled with the
label set {l0, l1}. (4) Further external script loads and subsequent DOM modifications
induce updated label sets – e.g., {l0, l1, l2}. (5) A DOM modification that originates
from an extension produces provenance label sets {l0, l1, l2, l3} for the element.

successive external script loads from unique origins will result in a label set
{l0, li, lj , lk}. Finally, label sets contain unique elements such that consecutive
external script loads from a previously accessed origin are not reflected in the
label for subsequent DOM modifications. For instance, if the web page publisher
loads a script from the publisher’s origin, then any resulting DOM modifications
will have a provenance label set of {l0} instead of {l0, l0}. Content provenance
is propagated for three generic classes of DOM operations: element insertion,
modification, and deletion.

Element insertions produce an updated DOM that contains the new element
labeled with the current label set, and potentially generates a new label set if
the injected element is a script. Element modifications produce a DOM where
the modified element’s label set is merged with the current label set. Finally,
element deletions simply remove the element from the DOM.

Extension Provenance. The third and final form of provenance tracking
concerns content modifications due to DOM manipulations by extensions. In
this case, provenance propagation follows the semantics for the above case of
dynamic publisher provenance. Where these two cases differ, however, is in the
provenance label initialization. While provenance label sets for content that orig-
inates, perhaps indirectly, from the web page publisher contains the publisher’s
origin label l0, content that originates from an extension is rooted in a label set
initialized with the extension’s label. In particular, content modifications that
originate from an extension are not labeled by the publisher’s origin. An excep-
tion to this occurs when the extension, either directly or indirectly, subsequently
loads scripts from the publisher, or modifies an existing element that originated
from the publisher.

Identifying Extension-Based Ad Injection 423

3.2 Content Provenance Indicators

With the fine-grained content provenance scheme described above, identifying
the principal responsible for DOM modifications is straightforward. For each
element, all that is required is to inspect its label set � to check whether it
contains the label of any extension.

A related, but separate, question is how best to relay this information to the
user. In this design, several options are possible on a continuum from simply
highlighting injected content without specific provenance information to report-
ing the full ordered provenance chain from the root to the most recent origin.
The first option makes no use of the provenance chain, while the other end
of the spectrum is likely to overwhelm most users with too much information,
degrading the practical usefulness of provenance tracking. We suspect that a
reasonable balance between these two extremes is a summarization of the full
chain, for instance by reporting only the label of the corresponding extension.

Finally, if a user decides that the third-party content modification is
unwanted, another design parameter is how to act upon this decision. Possible
actions include blocking specific element modifications, removing the offending
extension, or reporting its behavior to a central authority. We report on the
specific design choices we made with respect to provenance indicators in the
presentation of our implementation in Sect. 4.

4 OriginTracer

In this section, we present OriginTracer, our prototype implementation for
identifying and highlighting extension-based web page content modifications.
We implemented OriginTracer as a set of modifications to the Chromium
browser. In particular, we modified both Blink and the extension engine to track
the provenance of content insertion, modification, and removal according to the
semantics presented in Sect. 3. These modifications also implement provenance
indicators for suspicious content that does not originate from the publisher. In
total, our changes consist of approximately 900 SLOC for C++ and several lines
of JavaScript1. In the following, we provide more detail on the integration of
OriginTracer into Chromium.

4.1 Tracking Publisher Provenance

A core component of OriginTracer is responsible for introducing and propa-
gating provenance label sets for DOM elements. In the following, we discuss the
implementation of provenance tracking for publisher content.

Tracking Static Elements. As discussed in Sect. 3, provenance label sets
for static DOM elements that comprise the HTML document sent by the pub-
lisher as part of the initial page load are equivalent to the publisher’s web
origin – in our notation, l0. Therefore, minimal modifications to the HTML
1 SLOC were measured using David Wheeler’s SLOCCount [5].

424 S. Arshad et al.

parser were necessary to introduce these element annotations, which is performed
in an incremental fashion as the page is parsed.

Tracking Dynamic Elements. To track dynamic content modifications,
this component of OriginTracer must also monitor JavaScript execution.
When a script tag is encountered during parsing of a page, Blink creates
a new element and attaches it to the DOM. Then, Blink obtains the JavaScript
code (fetching it from network in the case of remote script reference), submits the
script to the V8 JavaScript engine for execution, and pauses the parsing process
until the script execution is finished. During execution of the script, some new
elements might be created dynamically and inserted into the DOM. According to
the provenance semantics, these new elements inherit the label set of the script.
In order to create new elements in JavaScript, one can (i) use DOM APIs to
create a new element and attach it to the web page’s DOM, or (ii) write HTML
tags directly into the page.

In the first method, to create a new element object, a canonical example is to
provide the tag name to the createElement function. Then, other attributes
of the newly created element are set – e.g., after creating an element object for
an a tag, an address must be provided for its href attribute. Finally, the new
element should be attached to the DOM tree as a child using appendChild
or insertBefore functions. In the second method, HTML is inserted directly
into the web page using the functions such as write and writeln, or by mod-
ifying the innerHTML attribute. In cases where existing elements are modified
(e.g., changing an image’s src attribute), the element inherits the label set of
the currently executing script as well. In order to have a complete mediation
of all DOM modifications to Web page, Node class in Blink implementation
was instrumented in order to assign provenance label sets for newly created or
modified elements using the label set applied to the currently executing script.

Handling Events and Timers. An additional consideration for this Orig-
inTracer component is modifications to event handlers and timer registrations,
as developers make heavy use of event and timer callbacks in modern JavaScript.
For instance, such callbacks are used to handle user interface events such as click-
ing on elements, hovering over elements, or to schedule code after a time interval
has elapsed. In practice, this requires the registration of callback handlers via
addEventListener API for events, and setTimeout and setInterval
for timers. To mediate callbacks related to the addition and firing of events and
timers, we slightly modified the EventTarget and DOMTimer classes in Blink,
respectively. Specifically, we record the mapping between the running scripts
and their registered callback functions, and then recover the responsible script
for DOM modification during callback execution.

4.2 Tracking Extension Provenance

Chromium’s extension engine is responsible for loading extensions, checking their
permissions against those declared in the manifest file, injecting content scripts,
dispatching background scripts and content scripts to the V8 script engine for

Identifying Extension-Based Ad Injection 425

execution, and providing a channel for communication between content scripts
and background page.

Chromium extensions can manipulate the web page’s content by injecting
content scripts into the web page or using the webRequest API. Content scripts
are JavaScript programs that can manipulate the web page using the shared
DOM, communicate with external servers via XMLHttpRequest, invoke a lim-
ited set of chrome.* APIs, and interact with their owning extension’s back-
ground pages. By using webRequest, extensions are also able to modify and
block HTTP requests and responses in order to change the web page’s DOM.

In this work, we only track content modifications by content scripts and
leave identifying ad injection by webRequest for future engineering work. Prior
work, however, has mentioned that only 5 % of ad injection incidents occurred
via webRequest; instead, Chrome extensions mostly rely on content scripts
to inject advertisements [46]. Moreover, with modern websites becoming more
complex, injecting stealthy advertisement into the page using webRequest is
not a trivial task.

Tracking Content Script Injection and Execution. To track elements
created or modified during the execution of content scripts, extension engine
was modified to hook events corresponding to script injection and execution.
Content scripts can be inserted into the web page using different methods. If
a content script should be injected into every matched web page, it must be
registered in the extension manifest file using the content scripts field. By
providing different options for this field, one can control when and where the
content scripts be injected. Another method is programmatic injection, which
is useful when content scripts should be injected in response to specific events
(e.g., a user clicks the extension’s browser action). With programmatic injection,
content scripts can be injected using the tabs.executeScript API if the
tabs permission is set in the manifest file. Either way, content scripts have a
provenance label set initialized with the extension’s label upon injection.

Handling Callback Functions. Chromium’s extension engine provides a
messaging API as a communication channel between background pages and con-
tent scripts. Background pages and content scripts can receive messages from
each other by providing a callback function for the onMessage or onRequest
events, and can send messages by invoking sendMessage or sendRequest. To
track the registration and execution of callback functions, the send request
and event modules were slightly modified in the extension engine. Specifically,
we added some code to map registered callbacks to their corresponding content
scripts in order to find the extension responsible for DOM modification.

4.3 Content Provenance Indicators

Given DOM provenance information, OriginTracer must first (i) identify
when suspicious content modifications – e.g., extension-based ad injection – has
occurred, and additionally (ii) communicate this information to the user in an
easily comprehensible manner. To implement the first requirement, our prototype
monitors for content modifications where a subtree of elements are annotated

426 S. Arshad et al.

with label sets that contains a particular extension’s label. This check can be
performed efficiently by traversing the DOM and inspecting element label sets
after a set of changes have been performed on the DOM.

Fig. 3. An example of indicator for an injected advertisement on amazon.com.

There are several possible options to communicate content provenance as
mentioned in Sect. 3. In our current prototype, provenance is indicated using a
configurable border color of the root element of the suspicious DOM subtree.
This border should be chosen to be visually distinct from the existing color
palette of the web page. Finally, a tooltip indicating the root label is displayed
when the user hovers their mouse over the DOM subtree. An example is shown in
Fig. 3. To implement these features, OriginTracer modifies style and title
attributes. In addition, since OriginTracer highlights elements in an online
fashion, it must delay the addition of highlighting until the element is attached
to the page’s DOM and is displayed. Therefore, modifications were made to the
ContainerNode class that is responsible for attaching new elements to the
DOM.

While we did not exhaustively explore the design space of content prove-
nance indicators in this work (e.g., selective blocking of extension-based DOM
modifications), we report on the usability of the prototype implementation in
our evaluation.

5 Evaluation

In this section, we measure the effectiveness, usability, and performance of con-
tent provenance indicators using the OriginTracer prototype. In particular,
the questions we aim to answer with this evaluation are:

(Q1) How susceptible are users to injected content such as third-party adver-
tisements? (Sect. 5.1)

Identifying Extension-Based Ad Injection 427

(Q2) Do provenance indicators lead to a significant, measurable decrease in the
likelihood of clicking on third-party content that originates from exten-
sions? (Sect. 5.1)

(Q3) Are users likely to use the system during their normal web browsing?
(Sect. 5.2)

(Q4) Does integration of the provenance tracking system significantly degrade
the users’ browsing experience and performance of the browser on a rep-
resentative sample of websites? (Sect. 5.3)

Ethics Statement. As part of the evaluation, we performed two experi-
ments involving users unaffiliated with the project as described below. Due to
the potential risk to user confidentiality and privacy, we formulated an experi-
mental protocol that was approved by our university’s institutional review board
(IRB). This protocol included safeguards designed to prevent exposing sensitive
user data such as account names, passwords, personal addresses, and financial
information, as well as to protect the anonymity of the study participants with
respect to data storage and reporting. While users were not initially told the
purpose of some of the experiments, all users were debriefed at the end of each
trial as to the true purpose of the study.

5.1 Effectiveness of the Approach

Similar to prior work [13], we performed a user study to measure the effectiveness
of content provenance in enabling users to more easily identify unwanted third-
party content. However, we performed the user study with a significantly larger
group of participants. The study population was composed of 80 students that
represent a range of technical sophistication. We conducted an initial briefing
prior to the experiments where we made it clear that we were interested in honest
answers.

User Susceptibility to Ad Injection. The goal of the first phase of the
experiment was to measure whether users were able to detect third-party content
that was not intended for inclusion by the publishers of web pages presented to
them. Users were divided into two equal sized groups of 40. In each group, users
were first presented with three unmodified Chromium browsers, each of which
had a separate ad-injecting extension installed: Auto Zoom, Alpha Finder, and
X-Notifier for the first group, and Candy Zapper, uTorrent, and Gethoneybadger
for the second group. These extensions were chosen because they exhibit a range
of ad injection behaviors, from subtle injections that blend into the publisher’s
web page to very obvious pop-ups that are visually distinct from the publisher’s
content.

Using each browser, the participants were asked to visit three popular retail
websites: Amazon, Walmart, and Alibaba. Each ad-injecting extension monitors
for visits to these websites, and each injects three different types of advertise-
ments into these sites. For each website, we asked the participants to examine
the page and tell us if they noticed any content in the page that did not belong
to the website – in other words, whether any content did not seem to originate

428 S. Arshad et al.

from the publisher. For each group, we aggregated the responses and presented
the percentage of correctly reported ad injection incidents for each extension in
Fig. 4.

The results demonstrate that a significant number of Internet users often do
not recognize when ad injection occurs in the wild, even when told to look for
foreign content. For example, 34 participants did not recognize any injected ads
out of the three that were added to Amazon website by Auto Zoom extension.
Comparatively more users were able to identify ads injected by Alpha Finder and
X-Notifier. We suspect the reason for this is because these extensions make use
of pop-up advertisements that are easier to recognize as out-of-place. However, a
significant number of users nevertheless failed to note these pop-up ads, and even
after prompting stated that they thought these ads were part of the publisher’s
content. More generally, across all websites and extensions, many participants
failed to identify any injected ads whatsoever.

Fig. 4. Percentage of injected ads that are reported correctly by all the participants.

We then asked each participant whether they would click on ads in general
to measure the degree of trust that users put into the contents on the publisher’s
page. Specifically, we asked participants to rate the likelihood of clicking on ads
on a scale from one to five, where one means that they would never click on an
ad while five means that they would definitely click on an ad. We aggregated
the responses and present the results in Fig. 5a.

These results show that a significant number of users, roughly half, would
click on advertisements that might not originate from the publisher, but that
were instead injected by an extension. This demonstrates the effectiveness of
ad injection as a mechanism for diverting revenue from publishers to extension
authors. It also shows the potential effectiveness of malicious extensions in using
content modifications to expose users to traditional malware.

Effectiveness of Content Provenance Indicators. After the first phase
of the experiment, we briefly explained the purpose of OriginTracer and con-
tent provenance to the participants. Then, for each participant in each group, we

Identifying Extension-Based Ad Injection 429

Fig. 5. User study results. For each boxplot, the box represents the boundaries of the
first and third quartiles. The band within each box is the median, while the black square
is the mean. The whiskers represent 1.5 IQR boundaries, and outliers are represented
as a + symbol.

picked one of the three ad-injecting extensions in which, the participant did not
detect most of the injected ads and installed it on a Chromium instance equipped
with OriginTracer. Then, each participant was asked to visit one of the three
retail websites by his choice and identify third-party content modifications – i.e.,
injected ads – with the help of provenance indicators. The results are shown
in Fig. 5b, where unassisted identification is the aggregated number of reported
ad injections without any assistance in the presence of three ad-injecting exten-
sions across three retail websites, and assisted identification is the number of
reported injected ads with the help of content provenance indicators. Results
are normalized to [0, 1].

These results clearly imply that users are more likely to recognize the presence
of third-party content modifications using provenance indicators. To confirm
statistical significance, we performed a hypothesis test where the null hypothesis
is that provenance indicators do not assist in identifying third-party content
modifications, while the alternative hypothesis is that provenance indicators do
assist in identifying such content. Using a paired t-test, we obtain a p-value of
4.9199 × 10−7, sufficient to reject the null hypothesis at a 1 % significance level.
The outliers in assisted identification are due to the fact that our ad highlighting
technique was not identifiable by a small number of participants. We believe that
using different visual highlighting techniques would make it easier for users to
identify the injected ads.

Finally, we asked each participant how likely they would be to use the con-
tent provenance system in their daily web browsing. We asked participants to
rate this likelihood on a scale from one to five, where one means they would
never use the system and five means that they would always use it. The results
are shown in Fig. 5c, and indicate that most users would be willing to use a
content provenance system. The reason behind the outliers is because a few of
the participants stated that they do not need our system since they would not
click on any advertisements. However, we note that it can be difficult to dis-
tinguish between advertisements and other legitimate content (e.g., products in

430 S. Arshad et al.

retail sites) and, consequently, users might be lured into clicking on ad content
injected by extensions.

Summary. From this user study, we draw several conclusions. First, we
confirm that in many cases users are unable to distinguish injected third-party
content from publisher content. We also show that because users place trust
in publishers, they will often click on injected ads, and thus they tend to be
susceptible to ad injection. Our data shows that content provenance assists in
helping users distinguish between trusted publisher content and injected third-
party content that should not be trusted. Finally, we show that many users
would be willing to use the system based on their experience in this study.

5.2 Usability

We conducted another experiment on a separate population of users to mea-
sure the usability of the OriginTracer prototype. The user population was
composed of 13 students with different technical background. We presented the
participants with OriginTracer integrated into Chromium 43, and asked them
to browse the web for several hours, visiting any websites of their choice. For
privacy reasons, however, we asked users to avoid browsing websites that require
a login or that involve sensitive subject matter (e.g., adult or financial websites).
In addition, for each user, we randomly selected 50 websites from the Alexa Top
500 that satisfy our user privacy constraints and asked the user to visit them.
In particular, each participant was asked to browse at least three levels down
from the home page and visit external links contained in each site. Finally, to
gain some assurance that OriginTracer would not break benign extensions,
we configured the browser with the five high-profile extensions list in Table 1.

During the browsing session, the browser was modified to record the number
of URLs visited. We also asked participants to record the number of pages in
which they encountered one of two types of errors. Type I errors are those where
the browser crashed, system error messages were displayed, pages would not load,
or the website was completely unusable for some other reason. Type II errors
include non-catastrophic errors that impact usability but did not preclude it –
e.g., the page took an abnormally long time to load, or the appearance of the
page was not as expected. We also asked users to report any broken functionality
for the benign extensions described above as well.

Out of close to 2,000 URLs, two catastrophic errors and 27 non-catastrophic
errors were encountered. However, we note that the majority of URLs rendered
and executed correctly. In addition, none of the participants reported any broken
extensions. We therefore conclude that the proposed approach is compatible with
modern browsers and benign extensions, and further work would very likely allow
the prototype to execute completely free of errors.

5.3 Performance

To measure the performance overhead of OriginTracer, we configured both
an unmodified Chromium browser and the prototype to automatically visit the

Identifying Extension-Based Ad Injection 431

Alexa Top 1 K. The Alexa Top 1 K covers many popular websites and is weighted
towards being representative of the sites that people use most often. By using
this test set, we ensured that each browser visited a broad spectrum of websites
that include both static and dynamic content, and especially websites that make
heavy use of third-party components and advertisements. Moreover, we config-
ured both browser instances with the five benign extensions discussed in Sect. 2
that change the DOM to measure performance in the presence of extensions. A
more detailed evaluation would analyze more pages on these websites to garner
a more realistic representation, but that is beyond the scope of the current work.

We built a crawler based on Selenium WebDriver [44] to automatically visit
the entire list of websites and recorded the total elapsed time from the beginning
of the browsing process until the entire list of websites was visited. Specifically,
our crawler moves to the next website in the list when the current website is
fully loaded, signified by the firing of the onload event. In order to account for
fluctuations in browsing time due to network delays and the dynamic nature of
advertisements, we repeated the experiment 10 times and measured the average
elapsed time. The average elapsed time for browsing the home pages of the Alexa
Top 1 K websites measured in this way is 3,457 s for the unmodified browser and
3,821 s for OriginTracer. Therefore, OriginTracer incurred a 10.5 % over-
head on browsing time on average. We also measured the delay imposed by
OriginTracer on startup time by launching the browser 10 times and mea-
suring the average launch time. OriginTracer did not cause any measurable
overhead on startup time.

While this overhead is not insignificant, we note that our user study in
Sect. 5.2 indicates that many users would be willing to trade off actual per-
ceived performance overhead against the security benefits provided by the sys-
tem. Moreover, this prototype is just a proof-of-concept implementation of our
system and there is still room for optimizing the implementation to decrease the
page load time.

6 Related Work

6.1 Malicious Advertising

Substantial research on malicious advertisements has focused on isolation and
containment [3,15,34]. Other approaches have focused on detecting drive-by
downloads by employing the properties of HTTP redirections to identify mali-
cious behavior [38,45]. Dynamic analyses have also been used to detect drive-by
downloads and web-hosted malware [11,12,36]. Li et al. [31] investigated the
advertisement delivery process to detect malvertising by automatically gener-
ating detection rules. Web tripwires [43] were proposed to detect in-flight page
changes performed by ISPs to inject advertisements.

6.2 Browser Extension Security

Browser extension security has recently become a hot topic. The Chromium
extension framework substantially improved the ability of users to limit the

432 S. Arshad et al.

amount of privilege conferred upon potentially vulnerable extensions [7], and
follow-on work has studied the success of this approach [18,33]. Other work has
broadly studied malicious extensions that attempt to exfiltrate sensitive user
data [32,35]. For instance, Arjun et al. showed that many extensions in the
Chrome Web Store are over-privileged for the actual services they purport to
provide [21].

A recent line of work has focused on the problem of ad injection via browser
extensions. Thomas et al. [46] proposed a detection methodology in which,
they used a priori knowledge of a legitimate DOM structure to report the
deviations from that structure as potential ad injections. However, this app-
roach is not purely client-side and requires cooperation from content publishers.
Expector [48] inspects a browser extension and determines if it injects advertise-
ments into websites. Hulk [28] is a dynamic analysis system that automatically
detects Chrome extensions that perform certain types of malicious behaviors,
including ad injection. WebEval [26] is an automatic system that considers an
extension’s behaviors, code, and author reputation to identify malicious exten-
sions distributed through the Chrome Web Store.

In contrast, our work does not attempt to automatically classify extensions
that engage in content modification as malicious or not, but rather focuses on
enabling users to make informed decisions as to whether extensions engage in
desirable behavior or not.

6.3 Provenance Tracking

A significant amount of work has examined the use of provenance in various
contexts. For instance, one line of work has studied the collection of provenance
information for generic applications up to entire systems [19,24,42]. However,
to our knowledge, no system considers the provenance of fine-grained web con-
tent comprising the DOM. Provenance tracking is also related to information
flow control (IFC), for which a considerable body of work exists at the operating
system level [16,29,49], the language level [9,40], as well as the web [20,25]. In
contrast to our work, IFC is focused more on enforcing principled security guar-
antees for new applications rather than tracking and indicating data provenance
for existing ones.

Numerous systems have examined the use of dynamic taint analysis, a related
concept to provenance. Some prior work [8,17] focuses on tracking information
flow within the browser, Sabre [14] detects whether extensions access sensitive
information within the browser, and DSI enforcement [41] defends against XSS
attacks by preserving the integrity of document structure in the browser. While
there is certainly an overlap between dynamic taint analysis and provenance,
taint analysis is most often focused on simple reachability between sources and
sinks, while provenance is concerned with precisely tracking principals that influ-
enced data.

Finally, there is a line of work that examines provenance on the web. Some
prior work [22,23,39] concerns coarse-grained ontologies for describing the ori-
gins of data on the web, and does not consider provenance at a fine-grained

Identifying Extension-Based Ad Injection 433

scale within the browser. ESCUDO [27] only considers the principals that can
be controlled by web applications, and it does not handle plug-ins and browser
extensions. LeakTracker [47] performs principal-based tracking on web pages
to study privacy violations related to JavaScript libraries, but it only tracks
injection of scripts into the page, and does not provide any provenance informa-
tion for other types of DOM elements. Excision [6] is the closest work to ours,
which tracks inclusions of different resources in web pages and blocks inclusion
of malicious resources by analyzing inclusion sequences on the page. Although
the techniques are similar, they are used for different purposes. Excision discards
the injection of DOM elements that do not reference remote content (e.g., div),
and aside from source attributes, that does not track modifications to DOM ele-
ments. However, OriginTracer identifies all types of DOM modification in the
page, and instead of blocking content originating from extensions, it highlights
them in the context of the web page.

7 Conclusion

In this paper, we introduced fine-grained web content provenance tracking
and demonstrated its use for identifying unwanted third-party content such as
injected advertisements. We evaluated a prototype implementation, a modified
version of Chromium we call OriginTracer, through a user study that demon-
strated a statistically significant improvement in the ability of users to iden-
tify unwanted third-party content. Our performance evaluation shows a modest
overhead on a large representative sample of popular websites, while our user
experiments indicate that users are willing to trade off a slight decrease in per-
formance for more insight into the sources of web content that they browse. We
also performed a comprehensive study on the content modifications performed
by ad-injecting extensions in the wild.

In future work, we plan to explore other uses of provenance on the web. Due
to the highly interconnected structure of the web and the oftentimes obscure
nature of its trust relationships, we believe that surfacing this information in
the form of provenance is a generally useful capability, and can be applied in
other novel ways in order to lead to safer and more informed web browsing.
Finally, we plan to open source our prototype implementation in the hopes that
it will be useful to the wider research community.

References

1. The ad injection economy. http://googleonlinesecurity.blogspot.com/2015/05/
new-research-ad-injection-economy.html

2. Adblock Plus. https://adblockplus.org/
3. ADsafe. http://www.adsafe.org/
4. Ghostery. https://www.ghostery.com/en/
5. SLOCCount. http://www.dwheeler.com/sloccount/

http://googleonlinesecurity.blogspot.com/2015/05/new-research-ad-injection-economy.html
http://googleonlinesecurity.blogspot.com/2015/05/new-research-ad-injection-economy.html
https://adblockplus.org/
http://www.adsafe.org/
https://www.ghostery.com/en/
http://www.dwheeler.com/sloccount/

434 S. Arshad et al.

6. Arshad, S., Kharraz, A., Robertson, W.: Include me out: in-browser detection
of malicious third-party content inclusions. In: Financial Cryptography and Data
Security (FC) (2016)

7. Barth, A., Jackson, C., Reis, C.: The security architecture of the chromium browser.
Technical report (2008). The Google Chrome Team

8. Bauer, L., Cai, S., Jia, L., Passaro, T., Stroucken, M., Tian, Y.: Run-time mon-
itoring and formal analysis of information flows in Chromium. In: Network and
Distributed System Security Symposium (NDSS) (2015)

9. Chong, S., Vikram, K. and Myers, A.C.: SIF: enforcing confidentiality and integrity
in web applications. In: USENIX Security Symposium (2007)

10. Coldewey, D.: Marriott puts an end to shady ad injection service (2012).
http://techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-
service/

11. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious JavaScript code. In: International World Wide Web Confer-
ence (WWW) (2010)

12. Dewald, A., Holz, T., Freiling, F.C.: ADSandbox: sandboxing JavaScript to fight
malicious websites. In: Symposium on Applied Computing (SAC) (2010)

13. Rachna Dhamija, J.D., Tygar, M.H.: Why phishing works. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI) (2006)

14. Dhawan, M., Ganapathy, V.: Analyzing information flow in JavaScript-based
browser extensions. In: Annual Computer Security Applications Conference
(ACSAC) (2009)

15. Dong, X., Tran, M., Liang, Z., Jiang, X.: AdSentry: comprehensive and flexible
confinement of JavaScript-based advertisements. In: Annual Computer Security
Applications Conference (ACSAC) (2011)

16. Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E.,
Mazieres, D., Kaashoek, F., Morris, R.: Labels and event processes in the Asbestos
operating system. In: ACM Symposium on Operating Systems Principles (SOSP)
(2005)

17. Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic spyware analysis.
In: USENIX Annual Technical Conference (ATC) (2007)

18. Felt, A.P., Greenwood, K., Wagner, D.: The effectiveness of application per-
missions. In: USENIX Conference on Web Application Development (WebApps)
(2011)

19. Gehani, A., Tariq, D.: SPADE: support for provenance auditing in distributed
environments. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012. LNCS,
vol. 7662, pp. 101–120. Springer, Heidelberg (2012)

20. Giffin, D.B., Levy, A., Stefan, D., Terei, D., Mazieres, D., Mitchell, J.C., Russo, A.:
Hails: protecting data privacy in untrusted web applications. In: USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI) (2012)

21. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser
extensions. In: IEEE Symposium on Security and Privacy (Oakland) (2011)

22. Harth, A., Polleres, A., Decker, S.: Towards a social provenance model for the web.
In: Workshop on Principles of Provenance (PrOPr) (2007)

23. Hartig, O.: Provenance information in the web of data. In: Workshop on Linked
Data on the Web (LDOW) (2009)

24. Hasan, R., Sion, R., Winslett, M.: SPROV 2.0: a highly configurable platform-
independent library for secure provenance. In: ACM Conference on Computer and
Communications Security (CCS) (2009)

http://techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-service/
http://techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-service/

Identifying Extension-Based Ad Injection 435

25. Hicks, B., Rueda, S., King, D., Moyer, T., Schiffman, J., Sreenivasan, Y., McDaniel,
P., Jaeger, T.: An architecture for enforcing end-to-end access control over web
applications. In: ACM Symposium on Access Control Models and Technologies
(SACMAT) (2010)

26. Jagpal, N., Dingle, E., Gravel, J.P., Mavrommatis, P., Provos, N., Rajab, M.A.,
Thomas, K.: Trends and lessons from three years fighting malicious extensions. In:
USENIX Security Symposium (2015)

27. Jayaraman, K., Du, W., Rajagopalan, B., Chapin, S.J.: ESCUDO: a fine-grained
protection model for web browsers. In: 30th IEEE International Conference on
Distributed Computing Systems (ICDCS) (2010)

28. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk:
eliciting malicious behavior in browser extensions. In: USENIX Security Sympo-
sium (2014)

29. Krohn, M., Yip, A., Brodsky, M., Natan Cliffer, M., Kaashoek, F., Kohler, E.,
Morris, R.: Information flow control for standard os abstractions. In: Symposium
on Operating Systems Principles (SOSP) (2007)

30. Kumparak, G.: Real evil: ISP inserted advertising. http://techcrunch.com/2007/
06/23/real-evil-isp-inserted-advertising/ (2007)

31. Li, Z., Zhang, K., Xie, Y,. Yu, F., Wang, X.: Knowing your enemy: understanding
and detecting malicious web advertising. In: ACM Conference on Computer and
Communications Security (CCS) (2012)

32. Li, Z., Wang, X.-F., Choi, J.Y.: SpyShield: preserving privacy from spy add-ons.
In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp.
296–316. Springer, Heidelberg (2007)

33. Liu, L., Zhang, X., Yan, G., Chen, S.: Chrome extensions: threat analysis and coun-
termeasures. In: Network and Distributed System Security Symposium (NDSS)
(2012)

34. Ter Louw, M., Ganesh, K.T., Venkatakrishnan, V.N.: AdJail: practical enforce-
ment of confidentiality and integrity policies on web advertisements. In: USENIX
Security Symposium (2010)

35. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Enhancing web browser security
against malware extensions. J. Comput. Virol. 4(3), 179–195 (2008)

36. Lu, L., Yegneswaran, V., Porras, P., Lee, W.: BLADE: An attack-agnostic approach
for preventing drive-by malware infections. In: ACM Conference on Computer and
Communications Security (CCS) (2010)

37. Marvin, G.: Google study exposes “tangled web” of companies profiting from ad
injection (2015). http://marketingland.com/ad-injector-study-google-127738

38. Mekky, H., Torres, R., Zhang, Z.L., Saha, S., Nucci, A.: Detecting malicious HTTP
redirections using trees of user browsing activity. In: Annual IEEE International
Conference on Computer Communications (INFOCOM) (2014)

39. Moreau, L.: The foundations for provenance on the web. Found. Trends Web Sci.
2(2–3), 99–241 (2010)

40. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Sympo-
sium on Principles of Programming Languages (POPL) (1999)

41. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: a robust basis for
cross-site scripting defense. In: Network and Distributed System Security Sympo-
sium (NDSS) (2009)

42. Pohly, D.J., McLaughlin, S., Butler, K.: Hi-Fi: collecting high-fidelity whole-system
provenance. In: Annual Computer Security Applications Conference (ACSAC)
(2012)

http://techcrunch.com/2007/06/23/real-evil-isp-inserted-advertising/
http://techcrunch.com/2007/06/23/real-evil-isp-inserted-advertising/
http://marketingland.com/ad-injector-study-google-127738

436 S. Arshad et al.

43. Reis, C., Gribble, S.D., Kohno, T., Weaver, N.C.: Detecting in-flight page changes
with web Tripwires. In: USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2008)

44. Selenium Contributors. Selenium: Web browser automation. http://www.
seleniumhq.org/

45. Stringhini, G., Kruegel, C., Vigna, G.: Shady paths: leveraging surfing crowds to
detect malicious web pages. In: ACM Conference on Computer and Communica-
tions Security (CCS) (2013)

46. Thomas, K., Bursztein, E., Grier, C., Ho, G., Jagpal, N., Kapravelos, A., McCoy,
D., Nappa, A., Paxson, V., Pearce, P., Provos, N., Rajab, M.A.: Ad injection at
scale: assessing deceptive advertisement modifications. In: IEEE Symposium on
Security and Privacy. IEEE, Oakland (2015)

47. Tran, M., Dong, X., Liang, Z., Jiang, X.: Tracking the trackers: fast and scalable
dynamic analysis of web content for privacy violations. In: Bao, F., Samarati, P.,
Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 418–435. Springer, Heidelberg
(2012)

48. Xing, X., Meng, W., Weinsberg, U., Sheth, A., Lee, B., Perdisci, R., Lee, W.:
Unraveling the relationship between ad-injecting browser extensions and malver-
tising. In: International World Wide Web Conference (WWW) (2015)

49. Zeldovich, N., Boyd-Wickizer, S., Mazieres, D.: Security distributed systems with
information flow control. In: USENIX Symposium on Networked Systems Design
and Implementation (NSDI) (2008)

http://www.seleniumhq.org/
http://www.seleniumhq.org/

Trellis: Privilege Separation for Multi-user
Applications Made Easy

Andrea Mambretti1(B), Kaan Onarlioglu1, Collin Mulliner1,
William Robertson1, Engin Kirda1, Federico Maggi2, and Stefano Zanero2

1 Northeastern University, Boston, USA
{mbr,onarliog,wkr,ek}@ccs.neu.edu, collin@mulliner.org

2 Politecnico di Milano, Milano, Italy
{federico.maggi,stefano.zanero}@polimi.it

Abstract. Operating systems provide a wide variety of resource
isolation and access control mechanisms, ranging from traditional user-
based security models to fine-grained permission systems as found in
modern mobile operating systems. However, comparatively little assis-
tance is available for defining and enforcing access control policies within
multi-user applications. These applications, often found in enterprise
environments, allow multiple users to operate at different privilege levels
in terms of exercising application functionality and accessing data. Devel-
opers of such applications bear a heavy burden in ensuring that security
policies over code and data in this setting are properly expressed and
enforced.

We present Trellis, an approach for expressing hierarchical access con-
trol policies in applications and enforcing these policies during execution.
The approach enhances the development toolchain to allow programmers
to partially annotate code and data with simple privilege level tags, and
uses a static analysis to infer suitable tags for the entire application.
At runtime, policies are extracted from the resulting binaries and are
enforced by a modified operating system kernel. Our evaluation demon-
strates that this approach effectively supports the development of secure
multi-user applications with modest runtime performance overhead.

1 Introduction

Operating systems provide a wide range of resource isolation and access con-
trol mechanisms to realize well-established computer security principles such as
privilege separation and assignment of minimal privileges to users and tasks. For
instance, UNIX-like systems employ the traditional access control model based
on user and group identifiers assigned to resources, Linux uses a capability system
for fine-grained process permission management, and modern mobile operating
systems such as Android and iOS allow users to control application permissions
during installation or runtime.

Although these techniques are effective at isolating users of a multi-user sys-
tem from each other, or controlling access to operating system-owned resources

c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 437–456, 2016.
DOI: 10.1007/978-3-319-45719-2 20

438 A. Mambretti et al.

such as hardware devices and the filesystem, they do not address the problem of
enforcing access control within an application itself. In particular, many complex
programs that target enterprise markets (e.g., SAP CRM) support multiple user
roles such as administrators and other unprivileged users, each allowed different
access levels to sensitive application data.

Due to this lack of standard operating system support for developing appli-
cations with multiple privilege levels, the responsibility of implementing an
application-specific access control model is relegated to application program-
mers. However, this can often result in implementation errors, or incorrect use
of various application components as access control primitives, exposing the
application to privilege escalation attacks. Recent work by Mulliner et al. [21]
demonstrates this problem by showing that many enterprise applications rely
on selectively hiding GUI elements to näıvely control the access to the respec-
tive, sensitive functionalities. This inadequate enforcement scheme was easily be
subverted by the authors using existing GUI inspection tools, allowing them to
access administrator-only features with an unprivileged user account.

There exists substantial prior work that has explored ways to separate appli-
cations into privileged and unprivileged components to contain privilege escala-
tion attacks. For instance, Provos et al. [24] described a methodology to man-
ually split programs into a privileged monitor and an unprivileged slave that
communicate via IPC channels, and Kilpatrick [16] proposed a software library
to ease the development of such applications. Brumley and Song [10] use source
code annotation and static analysis, and Wu et al. [32] use dynamic analysis
to automate parts of this process. However, this work primarily targets system
services, and aims to minimize the code run with superuser privileges. They do
not address the problem of building applications that support strong separation
of multiple users, each with specific code and data access requirements.

In this paper, we introduce an approach called Trellis to develop and enforce
secure hierarchical access control models within multi-user applications. Trellis
provides a simple annotation mechanism for software developers to specify the
required access levels for critical functions and static data, uses static analysis
to derive an access control policy for the entire application, and compiles this
source code into binary executables that are strongly protected by the operating
system. At runtime, the operating system tracks the program control flow and
data accesses, including dynamically allocated data, and enforces the statically-
derived access control policy. Our prototype implementation implements code
and data privilege separation using dynamic adjustment of memory segment
permissions. Trellis does not require drastic modifications to the application
architecture, making it easy to apply to existing source code. It also does not
split applications into multiple components and thus, in contrast to previous
work, does not incur IPC overhead during runtime.

To summarize, we make the following contributions in this paper.

– We propose Trellis, a novel operating system-supported application develop-
ment framework to assist software authors with the development of hier-
archical access control policies for multi-user applications. Trellis uses a

Trellis: Privilege Separation for Multi-user Applications Made Easy 439

combination of source code annotation, static analysis, and dynamic analysis
to automatically integrate these policies into applications, and to enforce them
at the operating system level.

– We present a prototype implementation of our system based on LLVM/Clang,
the GNU C library, and the Linux kernel.

– Our evaluation including micro-benchmarks, and experiments on real-world
applications demonstrate that Trellis imposes a low runtime performance over-
head, an acceptable tradeoff for its additional security guarantees.

2 Threat Model

The environment we consider for this work is a large, multi-user application that
runs on a shared machine. Typical examples of this scenario include kiosk appli-
cations, or large enterprise applications (e.g., SAP CRM) with several users (e.g.,
employees) each having a distinct profile. These users can use the application
at different moments in time and each user, depending on her own profile, can
access different subsets of the application’s functionality and data.

In this setting, the attacker has local or remote access to a computer running
such a multi-user application. The attacker further has access to a user account
on the application. Note that the attacker could already be an ordinary user of
the application; in other words, she may be authorized to legitimately access a
subset of the application’s features. Alternatively, the attacker could compromise
a different user’s account in order to gain unauthorized access to the application.

Our threat model includes two attack scenarios. In the first scenario, the
attacker’s goal is to exercise application features (i.e., execute code) reserved for
higher-privileged application users. Likewise, in the second scenario, the attacker
aims to gain access to data associated with a different, higher-privileged applica-
tion user. Both attacks are made possible due to the fact that resources associ-
ated with different user accounts are managed in the same address space within
the application.

Note that we assume sensitive code and data that could be targeted by an
attacker is already protected by traditional operating system protections, and
therefore, sensitive disk or memory contents cannot be accessed by the attacker
directly. Instead, successfully carrying out one of the described attacks requires
the attacker to exploit an application-level vulnerability, and bypass privilege-
separation mechanisms provided by the application in question.

The trusted computing base (TCB) we assume for this work includes the soft-
ware development toolchain (i.e., the compiler and linker), which ensures that
an adversary cannot subvert the access control policies specified by developers.
The TCB also includes the hardware and software stack up to and including
the operating system kernel. This implies that adversaries cannot subvert the
enforcement of the developer-specified policies, or tamper with the authentica-
tion procedure to transition between privilege levels. Finally, we assume that
the adversary cannot tamper with the binary itself, which contains a machine-
readable specification of the intended access control policy, nor with the loading

440 A. Mambretti et al.

Fig. 1. An overview of compiling applications with Trellis.

of this specification into the kernel. Achieving these guarantees has several solu-
tions, such as relying upon normal operating system-enforced user access control
or, alternatively, using trusted computing primitives. The exact mechanism used
is considered outside the scope of this work.

3 Design

Trellis spans both the development toolchain and the runtime environment.
First, it provides a source code annotation mechanism for software developers
to specify the different privilege levels (i.e., roles) required for effective access
control in their applications, as well as compilation tools and system libraries
capable of building Trellis-aware binaries. Second, it enhances the operating sys-
tem kernel to monitor execution flows and authorize transitions between privilege
levels consistent with specified access control policies.

At a high level, running a Trellis-enhanced application is a two stage process.
First, an instrumented binary executable must be built according to the anno-
tated source code. Then, the executable must be loaded with its initial privilege
state and run.

An overview of the first stage, the compilation of binary executables, is shown
in Fig. 1. The application developer first (partially) annotates the program source
code, which involves marking security sensitive code and data with their corre-
sponding privilege levels (often, user roles) required to access them. The partially
annotated source code is then inspected by the static analyzer component, which
explores the program function call graph and automatically infers privilege level
tags for all unmarked code and static data. Finally, the fully-annotated source
code is compiled by an augmented tool chain, which instruments the binary
according to the specified access control policy and creates an executable file
including the necessary Trellis metadata.

The executable can then be loaded and launched. An overview of this process
is shown in Fig. 2. Here, Trellis uses an enhanced binary loader that first reads the
access control policy metadata stored inside the binary, and communicates this
information to the operating system to initialize the application. Once launched,
the operating system monitors the application and its memory accesses to enforce

Trellis: Privilege Separation for Multi-user Applications Made Easy 441

Fig. 2. An overview of running applications with Trellis.

the implemented access control policy. In the case of dynamic memory allocation
requests by the application, a modified system memory allocator notifies the
operating system of the performed operation. In this way, access control checks
can be applied to those memory regions as well. Of course, during runtime, the
application might need to change the active privilege level to a more privileged
one. In that case, the application issues a privilege level change request to the
operating system, and the operating system in turn consults an authentication
module to check whether the request should be served. If permission is granted,
the system performs the change.

3.1 Access Control Model

The design of Trellis permits a flexible access control model, where developers
can tag units of code (e.g., functions) with a set of privilege levels l ∈ L. A partial
ordering is defined on L such that the usual notions of reflexivity, antisymmetry,
and transitivity are satisfied. More formally, given

l ∈ La set of partially-ordered privilege levels,
(C, l) ∈ Ca set of units of tagged program code,
(d, l) ∈ Da set of tagged data,

D ∈ Da set of all program data,

we define a program state as

S = 〈C,D〉

which describes the currently-executing unit of code at level l and the set of
data upon which it can (potentially) compute. In the following, we refer to
“units of code” as functions, although this need not be the level of granularity
implemented in practice.

442 A. Mambretti et al.

The developer is responsible for annotating functions with a privilege level
according to application-specific requirements. These annotations, however, do
not need to be completely specified for each function. Instead, Trellis permits
developers to partially specify privilege levels, and an inference procedure will
propagate privilege levels according to the program call graph. More precisely,
given a call relation (�) : C �→ C, the inference process will assign an unanno-
tated function (C ′, ·) the infimum, or greatest lower bound, of all of its callers:

(C ′, l′) s.t. l′ = inf
⋃

i

(Ci, li), Ci � C ′∀Ci. (1)

Note that the inference procedure might require an iterative fixpoint computa-
tion to establish privilege levels for all unannotated functions.

Given an annotated program, we can then define a transition relation

(⇒) : S × S

that specifies (i) how transitions between privilege levels can occur during exe-
cution, and (ii) how data is tagged at runtime.

First, for function invocation, we have:
invoke : C �→ {C ∪ ∅}

((Ci, li),Di) ⇒ ((Cj , lj),Di) where
Ci � Cj ,

(lj ≤ li) ∨ (auth ((Ci, li), (Cj , lj)))

Here, auth : C × C �→ {t, f} is an authentication predicate that is left as an
open parameter of the implementation. The only requirement is that a binary
decision is returned to either permit or deny an invocation between functions at
given privilege levels. auth is only invoked if transitioning to a higher privilege
level; otherwise, the transition is implicitly allowed to occur.

Another important operation we formally specify is data allocation:
alloc : C �→ D

((Ci, li),Di) ⇒ ((Ci, li),Dj) where
alloc ((Ci, li)) = (d, li),
(d, li) ∈ Dj

For this transition rule, we further distinguish between statically-allocated data,
stack-allocated data, and heap-allocated data. For statically-allocated data, the
developer either provides a privilege level annotation for the system, or one is
automatically inferred. Stack-allocated data, on the other hand, is always tagged
with the privilege level for the associated function. Finally, heap-allocated data
is tagged with the level of the enclosing function of the allocation site.

Finally, we specify the notion of data access, which subsumes both data reads
and writes:

Trellis: Privilege Separation for Multi-user Applications Made Easy 443

access : C × D �→ {t, f}
((Ci, li),Di) ⇒ ((Ci, li),Dj) where

access ((Ci, li), (dj , lj)) ≡ lj ≤ li,

(dj , lj) ∈ Dj

Here, we simply state that reads or writes of data must only be permitted
when the current privilege level is greater than or equal to the data’s tag.

4 Implementation

In this section, we present a proof-of-concept implementation of Trellis in detail
for Linux. We begin by describing the compile-time annotation and tag propaga-
tion procedure, and then discuss the implementation of runtime policy enforce-
ment. Note that while the formal model we describe in Sect. 3.1 defines a
partially-ordered set of privileges, our prototype implementation assumes a strict
hierarchy of privilege levels for simplicity.

4.1 Compile-Time Component

The compile-time component of Trellis is implemented as a series of transforma-
tion passes for the LLVM/Clang compiler suite. As input, this toolchain takes a
program that has been partially annotated by the application developers.

Privilege Level Annotations. Privilege level annotations are applied using a
custom attribute that allows developers to express the minimum required privi-
lege level to execute a function or access a static variable. At compile time, the
new attribute is processed by the Clang compiler front-end, which supports cus-
tom attributes by forwarding them to subsequent Clang or LLVM transformation
passes alongside the associated function or global variable identifier.

Since we need to keep track of the attribute parameter (e.g., 2 or 6 in Fig. 3’s
example), we modified Clang to forward the parameter value to LLVM. The
attribute is considered valid for both functions and global variable declarations
and specifies the privilege level of functions and global variables. For instance,
Fig. 3 exemplifies a function fun of privilege level 2 and a global variable dat
at privilege level 6. In this example, the developer wants to prevent function
fun from accessing the memory area where the variable dat will be stored at
runtime.

The attribute value indicates the privilege level of the associated object,
which ranges from 0 and a tunable constant NUM LEVELS, where higher levels
indicate higher privileges. The main function is automatically set to 0, the low-
est privileve level, by Trellis. If the developer tries to use a level greater than
NUM LEVELS, she receives a compile-time error.

Therefore, the prototype implements a simple access control variant of our
proposed model, where privilege levels exist in a strict, linear hierarchy. More
flexible variants that can model an arbitrary lattice of privilege levels are possi-
ble; however, we consider their implementation an engineering exercise.

444 A. Mambretti et al.

1 void fun() __attribute__ ((trellis_level (2)));
2 int dat __attribute__ ((trellis_level (6)));

Fig. 3. Example of function and global variable annotations using custom attributes.

Tag Inference. The first transformation pass implements privilege level tag
inference. It analyzes attribute values specified by the developers and propagates
them to non-tagged functions and data. Clearly, the developer could tag every
function and global variable. However, tag inference improves the ergonomics of
the system by allowing for a partial specification to be automatically extended
to cover the entire program. Developers can inspect the output of the transfor-
mation to identify potential errors in the final policy, or modify it as necessary.

The pass first computes a queue of all annotated functions. Then, operat-
ing in a breadth-first fashion, the pass visits callees of the current function. If
the callee has been manually annotated by the developer, then its tag is con-
sidered immutable and is not changed. If the callee is already tagged, a level
is assigned that is the minimum of the new and existing tags (as dictated by
Eq. 1). Otherwise, the caller’s privilege level is used to tag the callee. In either
of the preceding two cases where the callee’s tag has been modified, the callee
is added to the queue of functions to visit. The pass continues processing the
function queue until a fixpoint is reached (i.e., the queue is empty). The search is
guaranteed to terminate because privilege levels never increase and there exists
a global minimum privilege level.

Transition Instrumentation and Error Handling. Trellis protects code and
data tagged with a privilege level that is higher than the current level. However,
the application should be able to change levels at runtime. To do so, Trellis lever-
ages a new system call to inform the Linux kernel that the application requests
a level transition. This system call, trellis switch, is automatically injected
by another transformation pass at every call site of the program when the caller
has a lower privilege level than the callee. After the call site, another invocation
of trellis switch, is injected to inform the kernel that the application should
return to the caller’s privilege level. In particular, whenever this transformation
pass encounters such a call site, it inserts a code snippet as exemplified in Fig. 4.

In case of failure because the current user is not authorized for the requested
level, a wrapper function, trellis exit wrapper, is called. Through the wrap-
per, Trellis allows the developer to specify her own custom failure handling,
where she can for instance implement recovery from the failure. If nothing is
specified by the developer, the system by default will invoke exit to safely ter-
minate the application.

Code and Data Reordering. The final transformation involves the reordering
of all functions and static data. Every unit of code and static data is, at this
point, tagged with a certain level. With a simple LLVM pass, each function
and global variable is grouped by privilege level. Each group is then moved to

Trellis: Privilege Separation for Multi-user Applications Made Easy 445

1 if (trellis_switch(x) != 1) {
2 trellis_exit_wrapper ();
3 }
4

5 call ();
6 trellis_switch(y);

Fig. 4. Example of privilege level transition instrumentation and authentication error
handler invocation.

a pair of separate sections of the binary, one for code and the other for data.
The section names are created by concatenating the data type and level. For
instance, in the case of code, the name will follow the pattern fun trellis l for
every function that is tagged with level l. An analogous name dat trellis l is
created for data tagged with level l.

The pass records all the levels used by the program under analysis and gener-
ates a custom linker script. The linker script is used to map each of the sections
above to a unique program segment. The script also aligns the start address of
each segment to a machine page boundary to avoid loader redefinition.

4.2 Run-Time Component

At this point, the binary has been produced and is ready to be run. The next
subsections explain the runtime execution phase in detail.

Policy Loading. During normal program execution, the dynamic loader is
responsible for several tasks that include mapping any shared libraries as well
as mapping program segments from an executable image into memory. Our pro-
totype contains a modified loader that parses the privilege level for each Trellis
segment added at compile time, and communicates this information to the kernel
with a special system call added for this purpose: trellis init.

trellis init copies the program’s memory layout from userspace to kernel
space, and attaches a list of memory boundaries (see Fig. 5) to the task struct
of the application. The task struct is the canonical process descriptor for the
running application inside the kernel, and contains all information regarding the
process (e.g., credentials, memory maps).

trellis init is executed during dynamic loading before control is passed to
the application. Trellis allows this system call to be invoked only once for each
process. This prevents an attacker from using a second invocation of this system
call during execution to elevate privileges by relaxing the intended access control
policy. For the same reason, after the execution of trellis init, mprotect
cannot be invoked by the process.

After dynamic loading has completed and main is ready to be invoked, the
process is in a state where (i) only code and data at the lowest privilege level
is accessible, and (ii) all other (higher-privileged) segments are not readable,
writable, or executable.

446 A. Mambretti et al.

1 struct trellis_dyn_t{
2 int priv_level;
3 int size;
4 void *mem;
5 struct trellis_dyn_t *next;
6 };

Fig. 5. Memory chunk information element.

Privilege Level Transitions. The second system call added to the Linux
kernel is trellis switch. It allows an application to request a transition from
the current privilege level to another, specified using the parameter new level.

When transitioning to a higher level, the kernel wakes a daemon that blocks
the resumption of the requesting application until authentication has completed;
this allows the use of interactive authentication if desired. In the meantime,
the process is moved by the operating system into the wait state and will be
woken only at the end of the trellis switch system call. If the authentication
succeeds, the kernel changes the permissions of the code and data segments
for the requested level and returns control to the application. Otherwise, the
wrapper for authentication failure is invoked. When transitioning to an equal or
lower level, authentication is not required, and therefore the inverse of the above
segment re-permissioning procedure is performed automatically. An example of
the dynamic memory segment permission process is shown in Fig. 6.

Dynamic Data Tagging. The third system call is trellis tracemalloc,
which manages dynamic memory allocations. Typically, applications allocate
memory at runtime using standard functions from the malloc family, and release
it using free. These functions are merely the interface to a heap allocator, and
underlying this application-level interface are system calls such as brk and mmap
that are used to request additional memory from the operating system.

This presents two main challenges for our protection mechanism. The first
challenge is that it is not straightforward to assign privilege levels to heap-
allocated data due to the additional indirection imposed by the heap allocator.
That is, the page-level permission scheme used for code and static global data
does not map cleanly into the variable-sized chunk allocation interface exposed
by the heap allocator. The second challenge is that chunk metadata is stored
inline with application data. This implies that page-level permissions would
potentially restrict access not only to the data but also the chunk metadata
that is used by the allocator.

To overcome these challenges, Trellis introduces a multi-heap allocator
using trellis tracemalloc that effectively partitions dynamic memory allo-
cation according to privilege levels. This allocator exposes two functions,
trellis malloc and trellis free, to allocate and release memory, respec-
tively. This allocator also maintains chunk metadata in a separate area of mem-
ory by tracking different lists of pages, where every list of pages corresponds to
a separate heap. These structures are shown in Fig. 7. Other standard allocation

Trellis: Privilege Separation for Multi-user Applications Made Easy 447

Fig. 6. Example of a dynamic memory segment permission update to transition
between permission levels – in this case, from level i to i+2. Shaded segments indicate
inaccessible code and data regions.

1 void *heaps[NUM_LEVELS] = { NULL , };
2

3 /* Memory chunk */
4 struct trellis_chunk {
5 size_t size;
6 struct trellis_chunk *next;
7 struct trellis_chunk *prev;
8 void *ptr;
9 };

10

11 /* Page struct with list of empty and used chunks */
12 struct trellis_page {
13 struct trellis_chunk *free;
14 struct trellis_chunk *used;
15 struct trellis_page *next;
16 struct trellis_page *prev;
17 size_t size;
18 };

Fig. 7. Chunk and page list structures for the multi-heap dynamic memory allocator.

routines are implemented in terms of these two basic primitives. The compiler
toolchain can optionally replace uses of the traditional allocation functions in a
transparent fashion, or the developer can be responsible for doing so.

Authentication and Authorization. Transition authorization is imple-
mented by a userspace daemon, a kernel netlink interface, and trellis switch.
Before the application is executed, the netlink interface is activated through a
kernel module and the daemon starts. This can be performed either manually
or automatically when needed. When the application requests a privilege level

448 A. Mambretti et al.

transition, trellis switch writes the requested privilege level into the netlink
channel where the daemon receives it. The daemon then performs the authentica-
tion check and transmits a message over the netlink channel to notify the kernel
of an authentication success or failure. The netlink communication channel is
secure according to the attacker model defined in Sect. 2.

To implement authentication, the prototype simply forwards the request to
the standard Pluggable Authentication Module (PAM) framework. PAM is mod-
ular, versatile, supports a variety of authentication mechanisms (e.g., passwords,
smart cards, fingerprints), and is well-tested and widely used.

5 Evaluation

In this section, we first describe our experiments to measure the performance
overhead introduced when compiling, loading and running applications with
Trellis. Specifically, we present micro-benchmarks to characterize the cost of the
newly introduced Trellis operations, and end-to-end performance tests reflecting
the overhead of running complete applications with Trellis. Next, we present an
empirical evaluation of the developer effort required to adapt an application to
work with Trellis, and test the system’s security.

All experiments were performed on a machine with an Intel i7-3520M CPU
and 4 GB of memory, running Gentoo Linux with a Trellis-patched kernel version
3.9.11 and glibc 2.19. The test binaries were built using LLVM/Clang version
3.5. The results for non-Trellis experiments were obtained on an identical setup
running the vanilla versions of the Linux kernel and glibc.

5.1 Micro-benchmarks

Privilege Level Change. In this experiment, we measured the time required
to change the privilege level of a running application. We created a benchmark
program, and performed measurements at the entry and return points of the
function that requests the privilege change. That is, our measurement includes
the switch from userspace to kernel space, the call to the corresponding Trellis
system call and all subsequent operations, and the switch back to userspace. Dur-
ing this experiment, the authentication module was configured to automatically
allow all privilege change requests in order to avoid any human interaction over-
head. Note that since a system without Trellis does not contain a corresponding
operation, we cannot obtain any baseline to compare these results with. There-
fore, here we only report the absolute runtime cost of the tested operation.

Dynamic Memory Allocation. We designed this experiment to character-
ize the overhead of Trellis’s modified malloc operation. We created a simple
benchmark program that takes measurements before and after a call to malloc
to compute the elapsed time, and repeated the experiment with the standard,
unmodified glibc memory allocator for comparison.

In order to see the effects of allocated chunk size on performance, we repeated
this experiment with varying allocation sizes of 1 KB, 2 KB, 4 KB, 1 MB, and 100

Trellis: Privilege Separation for Multi-user Applications Made Easy 449

MB. We did not observe a significant correlation between chunk size and runtime,
and Trellis’s overhead remained nearly constant in all experiments. Therefore,
we only report the worst-case performance we observed in this section.

Executable Loading. In this experiment, we measured the overhead incurred
by the dynamic loader for reading the Trellis metadata associated with a binary
executable, and setting up the initial active privilege level inside the kernel prior
to launching the application. To this end, we instrumented the executable loader
with timing functions, and experimented with launching a test binary executable
both with and without Trellis support.

5.2 End-to-End Performance

Because we did not have source code access to an actual commercial multi-
user application that would benefit from Trellis’s features, we instead opted to
follow a different evaluation strategy. First, we ran experiments on an application
developed in-house to test Trellis with, which we will call StoreManager. Next,
we took an existing open-source application, HomeBank [2], extended it with
multi-user capabilities, and adapted it to work with Trellis.

StoreManager is a store inventory management software that supports three
distinct user roles. “Unprivileged users” are ordinary employees that can browse
and view details of the items registered in the database, or view aggregate reports
about the inventory status. “Managers” have additional privileges to manage the
inventory, such as adding, removing, or editing the details of items. Finally, “sys-
tem administrators” hold the highest level of privileges, and are able to create
or delete user accounts on the system, or directly manipulate the inventory.

HomeBank is a popular accounting software that provides account manage-
ment, analysis, and reporting features. While HomeBank is originally designed
for personal use, we extended it support four different user roles. Prior to authen-
tication, the application runs under an “unprivileged user” role, with access to
only the basic features. “Analysts” are only able to access analysis and report-
ing functionalities, but cannot add or modify accounts. “Accountants” have the
additional privileges to schedule new transactions on existing accounts. Finally,
“managers” hold the highest privileges and are able to access critical features
including creating and modifying accounts, transactions, and budgets.

We created two instances of each application. One was built to run on an
ordinary Linux system, and access control was enforced by disabling access to
the GUI elements that perform privileged operations inside the application. The
other’s source code was manually annotated by the authors according to the
aforementioned access control policy, and built to run with Trellis. All of the
following experiments were performed using these applications.

Compilation Time. In this test, we measured the overhead incurred for Trellis-
specific code analysis, annotation propagation, and source code instrumentation
performed during compilation and linking of the binary executables. We first
compiled the two test applications using the unmodified toolchain, and then
with Trellis to compare the results.

450 A. Mambretti et al.

Table 1. Trellis performance evaluation results. See Sect. 5 for detailed explanations.

Experiments Baseline Trellis Overhead

Privilege level change - 159.91 µs -

Dynamic memory allocation 34.04 µs 57.27 µs 68.24 %

Executable loading 108.44 µs 136.45 µs 25.83 %

StoreManager compilation time 850.17 ms 933.29 ms 9.78 %

HomeBank compilation time 28.62 s 28.72 s 0.36 %

StoreManager runtime 14.75 s 15.20 s 3.05 %

HomeBank runtime 14.37 s 14.94 s 4.02 %

Application Performance. As the final part of our evaluation plan, we
designed a comprehensive use-case scenario for each of the two test applications
that exercises all program features using different user profiles, and measured
the end-to-end runtime. For this task, we used the GUI automation tool Linux
Desktop Testing Project (LDTP) [3], and configured the Trellis authentication
module to automatically allow privilege level change requests—as we are not
interested in timing the user interaction. For the StoreManager experiment, our
use-case involved viewing numerous inventory items as an ordinary user, cre-
ating and deleting items as a store manager, and manipulating user accounts
as a system administrator. The HomeBank use-case involved setting up new
accounts and budgets as a manager, scheduling transactions as an accountant,
and reviewing reports as an analyst. We ran these use-cases with and without
Trellis enabled, and computed the overall runtime overhead of our system.

5.3 Experiment Results

We performed the above micro-benchmarks 1000 times, compilation time mea-
surements 50 times, and application runtime measurements 300 times. The aver-
age runtimes over all runs are presented in Table 1.

The compilation time experiment shows that building a Trellis-aware exe-
cutable for StoreManager takes about 10 % longer than compiling an unprotected
program. Although this overhead could suggest discernibly longer compilation
times for complex applications, we note that this is a one-time performance
trade-off for the significant access control enforcement benefits provided by
Trellis. Also note that, compared to StoreManager, the compilation time over-
head for HomeBank is much lower at only 0.36 %. This is because HomeBank’s
codebase is considerably larger than StoreManager’s, which leads to its normal,
lengthy compilation time over-shadowing the overhead imposed by Trellis. Simi-
larly, despite the seemingly large executable loading overhead of about 26 %, we
stress that the absolute application launch time difference is only on the order
of micro seconds, and is unlikely to be noticed by users.

For the application runtime measurements, even though we do not have a
baseline to compare the privilege level change performance against, we expect

Trellis: Privilege Separation for Multi-user Applications Made Easy 451

the overhead to be acceptable since privilege level changes are not expected to be
common operations during runtime. Moreover, they are likely to be completely
over-shadowed by human response times if an interactive authentication scheme
is used. The Trellis dynamic memory allocator, however, is shown to perform
significantly worse than the default glibc allocator. This could potentially lead
to performance drops in applications that perform heavy dynamic memory allo-
cation in small chunks, and could require optimization techniques such as using
pre-allocated memory caches. Despite this potential shortcoming, our final per-
formance tests show that the runtime impact on real-world applications, with
typical use-cases, is only around 4 %.

5.4 Developer Effort

Unfortunately, systematically quantifying the developer effort required to adapt
an existing application to work with Trellis is a non-trivial task, requiring a large-
scale study with an extensive corpus of Trellis-enabled software. Therefore, we
provide anecdotal results obtained during our modifications to HomeBank.

The development of our multi-user version of HomeBank was carried out by
a single developer, one of the authors of this paper. While the developer had
over ten years of C programming experience, he had no prior experience with
the HomeBank application’s codebase. We measured the time taken during all
phases of active development, and report the results in the following.

Surprisingly, significant effort before development went into adapting Home-
Bank’s compilation chain (i.e., autoconf scripts, Makefiles, etc.) that is designed
around using GCC, to Trellis’s LLVM/Clang environment. We spent around
2 h to be able to compile HomeBank with our system. Next, 4 h were taken to
understand the codebase, and identify the relevant points that should be mod-
ified to achieve the desired privilege separation. Finally, all Trellis annotations
and changes were applied and tested in another 2 h. Overall, with a single devel-
oper, and without prior familiarity with the application, HomeBank could be
adapted to work with Trellis in under 8 h, which we believe to be a reasonable
and acceptable degree of developer effort.

5.5 Security Experiments

Trellis’ security properties hold by definition, and there are no heuristics for
attack detection or any probabilistic decisions involved in the system. In order
to empirically verify the effectiveness of Trellis against concrete, practical attack
scenarios, we created a set of exploits following the methodology laid out in [21].

Specifically, in [21], the authors define a novel class of access control vulner-
abilities called GUI Element Misuse (GEM), which involves bypassing an appli-
cation’s built-in access control checks through manipulation of its GUI elements
(e.g., by un-hiding a hidden button that allows access to privileged functional-
ity). GEM vulnerabilities exemplify a recent, high-impact instance of the type of
attacks that Trellis aims to address. Unfortunately, we were not able to use the

452 A. Mambretti et al.

same set of applications that were exploited in [21] due to them being closed-
source Windows applications. Thus, we opted to perform our experiments on
StoreManager, and our extended multi-user version of HomeBank.

Following the steps outlined in [21], we first analyzed the test applications
using a GUI explorer tool Parasite [4], and identified buttons that would trigger
privileged functionality. Using the same tool, we then attempted to forcefully
enable and interact with these GUI elements with an unprivileged user account,
using both the vanilla and Trellis-protected versions of the two test applications.

The vanilla versions of the programs were vulnerable to GEM attacks as
we expected, and we were able to execute privileged operations as an unprivi-
leged user. On the contrary, Trellis-enabled versions were protected against our
attacks; Trellis blocked our access attempts to privileged code pages, and simply
rolled back the applications to a default state that we defined in the correspond-
ing trellis exit wrapper routines.

6 Discussion and Limitations

A prerequisite for using Trellis is access to the application’s source code. As we
have discussed in Sect. 7, virtually all previous work also has not explored par-
titioning of binary executables directly. Given that many commercial multi-user
applications that would be suitable targets for privilege-level partitioning are
provided on a closed-source model, privilege separation on binary code appears
to be a challenging, yet promising future research direction. However, note that
Trellis aims to enforce privilege separation and access control over application-
specific functionality and data, and therefore, annotating or recompiling third-
party libraries used by the target application is not necessary.

Although the Trellis implementation we present in this paper is for applica-
tions written in C and C++, the high-level design we propose could be applied
to other compiled languages. However, application of our ideas to interpreted or
just-in-time-compiled languages requires a significant rethinking of the design.
In a similar vein, the Trellis static analyzer can only propagate the privilege level
tags up to the statically reachable portion of the call graph (i.e., as seen by the
compiler), thus leaving out callbacks or dynamic calls in general. Likewise, our
prototype implementation does not currently handle control flow transitions that
deviate from normal function calls and returns (e.g., jumps into signal handlers,
longjmp, C++ exception handlers across multiple levels of functions); however,
Trellis could be extended to support these cases in principle. Furthermore, com-
plex applications that use pre-allocated memory pools may necessitate further
developer effort to ensure that all dynamic memory regions are annotated cor-
rectly according to their appropriate privilege levels.

As evidenced by the dynamic memory allocator experiments in Sect. 5, Trellis
may lead to a discernible performance impact when applied to memory alloca-
tion intensive applications. Although this problem could be alleviated through
manual code optimization techniques such as using memory caching techniques
instead of frequent calls to trellis malloc, similar mechanisms could also be

Trellis: Privilege Separation for Multi-user Applications Made Easy 453

built directly inside Trellis’s allocator to make the process transparent to appli-
cation developers. Also note that using the Trellis memory allocator is only
required for protecting sensitive application data, and the system’s default allo-
cator (or any custom allocator) could still be used for all other, non-sensitive
memory allocations to avoid incurring runtime overhead.

One operation that Trellis does not yet support in a flexible, first-class man-
ner is declassification of data to a lower privilege level. This capability can be
useful in situations where the application developer can certify that informa-
tion computed in a higher privileged context can safely be released to a lower
privileged context in accordance with the application’s security policies.

Since Trellis is an application-level access control mechanism, it is not
designed to provide protection against attacks at lower-level system components
(e.g., operating system exploits, hardware backdoors, etc.). Likewise, Trellis is
designed strictly to support privilege separation; it does not aim to address com-
mon memory corruption vulnerabilities that may expose code and data within
the same privilege level to attacks. These threats are outside the scope of this
work, and Trellis should be used in conjunction with established defense mecha-
nisms that support memory integrity such as ASLR [27] and stack canaries [13].

In future work, we plan to investigate extensions of Trellis to address limi-
tations of the current approach. While our prototype implementation assumes a
strict ordering of user privileges, it provides the necessary primitives to enable
the lattice-based privilege model we describe in Sect. 3.1. One promising research
direction is extending Trellis further to allow more complex access control mod-
els, to address concerns such as privacy of user profiles sharing the same privilege
level. Other potential avenues of research include lifting the guarantees provided
by the approach to higher-level languages, removing the need for source code,
and reification of declassification within the framework. Finally, the dynamic
memory segment permission management component of Trellis could be applied
to other settings such as binary attack surface reduction by temporarily disabling
access to unneeded portions of an application’s address space.

7 Related Work

The principles of least privilege and privilege separation have long been studied
as prominent software design principles to minimize trusted code in programs
and contain damage in the face of security exploits [24,25]. The architectures of
many prevalent programs such as vsftpd [15], Postfix [28], and Sendmail [11] are
explicitly designed around these principles.

Prior work most similar to Trellis aims to apply these principles to existing
programs. Provos et al. [24] present a design methodology for applying privilege
separation to security sensitive system services. Here, applications are separated
into a privileged monitor and unprivileged slave processes that communicate
via IPC channels. The authors also demonstrate their approach by discussing
its application to OpenSSH. Kilpatrick [16] introduces a reusable framework to
ease the implementation of partitioned applications. Bittau et al. [9] propose

454 A. Mambretti et al.

an application compartmentalization framework that provides a set of operating
system primitives to assist developers with partitioning programs. In this app-
roach, developers mark allocated memory regions with tags, and create special
compartmentalized threads with specific access rights to the tagged memory.

While the above work lays down the guidelines for manually partitioning
applications and provides tools for assistance, later work attempts to automate
this process. Brumley and Song [10] use a combination of code annotation and
static analysis to automatically separate C code into the aforementioned monitor
and slave parts. Wu et al. [32] instead employ a dynamic data dependency analy-
sis, which constructs a data dependency graph over the program’s functions, and
then partitions this into subgraphs representing least privilege components.

Trellis also uses code annotation and static analysis to perform privilege
separation; however, unlike the previous work, it does not partition applications
into separate processes. Instead, code and data at different privilege levels are
segregated into separate memory pages, and access control is enforced by the
operating system. Moreover, our system supports any number of privilege levels,
instead of only a privileged and an unprivileged partition.

Other works apply similar application partitioning techniques to different
security contexts. Kim and Zeldovich [17] present a Linux kernel module that
allows unprivileged system users to utilize Linux security features (e.g., allocating
new user IDs, setting up firewall rules, setting up chroot environments, etc.) to
confine applications and reduce the amount of code running as root. Murray and
Hand [22] discuss early ideas of segregating the trusted computing base of an
application into small, dynamic libraries. Chong et al. [12] proposes a system that
partitions web applications into JavaScript client-side code and Java server-side
code according to the specified information-flow policies. Zdancewic et al. [33],
and Zheng et al. [35] employ automatic code and data partitioning to address the
problem of secure distributed computation. In contrast to the above, Trellis aims
to address the problem of enforcing access control on multi-user applications that
transitions between different privilege levels during runtime.

Various software security frameworks provide access control features analo-
gous to Trellis for higher-level languages such as Java and Python, where access
control enforcement capabilities are provided on top of the corresponding virtual
machines or language interpreters. For instance, Apache Shiro [1] and Spring
Security [6] allow Java applications to implement a role-based access control
model for enterprise applications. In comparison, Trellis is applicable to multi-
user programs written in C and C++, and it introduces a novel architecture to
enforce hierarchical access control policies at the operating system level.

Trellis has comparable goals to History-Based Access Control (HBAC) [7], a
model that assigns privileges to code during runtime based on previous execu-
tion history. This model largely relies on a runtime framework such as Java Vir-
tual Machine or Common Language Runtime. In contrast, Trellis allows software
developers to define privilege levels statically at compile time, and enforces access
control at runtime. Similarly, Trellis shares some of its design principles with
Decentralized Information Flow Control (DIFC) (e.g., Asbestos [14], Flume [18],

Trellis: Privilege Separation for Multi-user Applications Made Easy 455

HiStar [34]), which allows labeling data, and restricting its flow between appli-
cation and operating system components. Other related program confinement
solutions include various operating system mechanisms [5,8,23,30], capability
systems [26,31], and software-based fault isolation techniques [19,20,29]. Unlike
these, Trellis specifically addresses the problem of enforcing access control within
an application. In particular, our system protects applications against vulner-
abilities resulting from incorrect access control implementations, such as the
misuse of GUI elements as access control primitives [21].

8 Conclusion

In this paper, we presented Trellis, a novel approach for specifying and enforcing
access control policies in multi-user applications to separate code and data that
logically belongs to different privilege levels. Enforcing such policies in multi-
user applications is a responsibility that has heretofore been borne by applica-
tion developers; Trellis automates this critical, error-prone aspect of application
security. Our prototype implementation demonstrates that Trellis imposes a low
end-to-end runtime performance overhead.

Acknowledgments. We would like to thank our shepherd Vasileios P. Kemerlis for
his helpful feedback. This work was supported by the National Science Foundation
(NSF) under grant CNS-1409738, and Secure Business Austria.

References

1. Apache Shiro. https://shiro.apache.org/index.html
2. HomeBank. http://homebank.free.fr
3. Linux Desktop Testing Project. http://ldtp.freedesktop.org/
4. Parasite. https://chipx86.github.io/gtkparasite
5. SELinux. http://selinuxproject.org
6. Spring Security. http://projects.spring.io/spring-security
7. Abad́ı, M., Fournet, C.: Access control based on execution history. In: NDSS (2003)
8. Badger, L., Sterne, D., Sherman, D., Walker, K.M., Haghighat, S.A.: A domain

and type enforcement UNIX prototype. In: USENIX Security (1995)
9. Bittau, A., Marchenko, P., Handley, M., Karp, B.: Wedge: splitting applications

into reduced-privilege compartments. In: USENIX NSDI (2008)
10. Brumley, D., Song, D.: Privtrans: automatically partitioning programs for privilege

separation. In: USENIX Security (2004)
11. Carson, M.E.: Sendmail without the superuser. In: USENIX Security (1993)
12. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure

web applications via automatic partitioning. In: ACM SOSP (2007)
13. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,

P., Zhang, Q., Hinton, H.: StackGuard: automatic adaptive detection and preven-
tion of buffer-overflow attacks. In: USENIX Security (1998)

14. Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E.,
Mazières, D., Kaashoek, F., Morris, R.: Labels and event processes in the Asbestos
operating system. In: ACM SOSP (2005)

https://shiro.apache.org/index.html
http://homebank.free.fr
http://ldtp.freedesktop.org/
https://chipx86.github.io/gtkparasite
http://selinuxproject.org
http://projects.spring.io/spring-security

456 A. Mambretti et al.

15. Evans, C.: Very Secure FTP Daemon. http://security.appspot.com/vsftpd.html
16. Kilpatrick, D.: Privman: a library for partitioning applications. In: USENIX ATC

(2003)
17. Kim, T., Zeldovich, N.: Making Linux protection mechanisms egalitarian with

UserFS. In: USENIX Security (2010)
18. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris,

R.: Information flow control for standard OS abstractions. In: ACM SOSP (2007)
19. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: USENIX

Security (2006)
20. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: RockSalt: better,

faster, stronger SFI for the x86. In: ACM PLDI (2012)
21. Mulliner, C., Robertson, W., Kirda, E.: Hidden GEMs: automated discovery of

access control vulnerabilities in graphical user interfaces. In: IEEE Security and
Privacy (2014)

22. Murray, D.G., Hand, S.: Privilege separation made easy: trusting small libraries
not big processes. In: EuroSec (2008)

23. Peterson, D., Bishop, M., Pandey, R.: A flexible containment mechanism for exe-
cuting untrusted code. In: USENIX Security (2002)

24. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: USENIX
Security (2003)

25. Saltzer, J.H.: Protection and the control of information sharing in multics. Com-
mun. ACM 17(7), 388–402 (1974)

26. Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: a fast capability system. In: ACM
SOSP (1999)

27. The PaX Team: PaX Address Space Layout Randomization (ASLR) (2003).
http://pax.grsecurity.net/docs/aslr.txt

28. Venema, W.: The Postfix Homepage. http://www.postfix.org/
29. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault

isolation. In: ACM SOSP (1993)
30. Walker, K.M., Sterne, D.F., Badger, M.L., Petkac, M.J., Sherman, D.L.,

Oostendorp, K.A.: Confining root programs with domain and type enforcement
(DTE). In: USENIX Security (1996)

31. Wilkes, M.V.: The Cambridge CAP Computer and Its Operating System.
North-Holland Publishing Co., Amsterdam (1979)

32. Wu, Y., Sun, J., Liu, Y., Dong, J.S.: Automatically partition software into least
privilege components using dynamic data dependency analysis. In: IEEE/ACM
ASE (2013)

33. Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.: Secure program partitioning.
ACM Trans. Comput. Syst. 20(3), 283–328 (2002)

34. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in HiStar. In: USENIX OSDI (2006)

35. Zheng, L., Chong, S., Myers, A.C., Zdancewic, S.: Using replication and partition-
ing to build secure distributed systems. In: IEEE Security and Privacy (2003)

http://security.appspot.com/vsftpd.html
http://pax.grsecurity.net/docs/aslr.txt
http://www.postfix.org/

Blender: Self-randomizing Address Space
Layout for Android Apps

Mingshen Sun1(B), John C.S. Lui1, and Yajin Zhou2

1 The Chinese University of Hong Kong, Hong Kong, China
mssun@cse.cuhk.edu.hk

2 Qihoo 360 Technology Co. Ltd., Beijing, China

Abstract. In this paper, we first demonstrate that the newly intro-
duced Android RunTime (ART) in latest Android versions (Android
5.0 or above) exposes a new attack surface, namely, the “return-to-art”
(ret2art) attack. Unlike traditional return-to-library attacks, the ret2art
attack abuses Android framework APIs (e.g., the API to send SMS) as
payloads to conveniently perform malicious operations. This new attack
surface, along with the weakened ASLR implementation in the Android
system, makes the successful exploiting of vulnerable apps much easier.
To mitigate this threat and provide self-protection for Android apps,
we propose a user-level solution called Blender, which is able to self-
randomize address space layout for apps. Specifically, for an app using
our system, Blender randomly rearranges loaded libraries and Android
runtime executable code in the app’s process, achieving much higher
memory entropy compared with the vanilla app. Blender requires no
changes to the Android framework nor the underlying Linux kernel, thus
is a non-invasive and easy-to-deploy solution. Our evaluation shows that
Blender only incurs around 6 MB memory footprint increase for the
app with our system, and does not affect other apps without our system.
It increases 0.3 s of app starting delay, and imposes negligible CPU and
battery overheads.

Keywords: Android · ROP · ASLR · Blender

1 Introduction

Due to the increasing functionalities of applications (apps for short) on mobile
devices, the security and privacy of apps become one major concern. For apps
running on the Android system, they are mainly written in Java. However, to
enhance compatibility and performance, developers often choose to use the native
development kit (NDK) to develop native libraries written in C/C++ and inte-
grate them in their apps. A recent study [14] showed that around 37 % of Android
apps contain at least one native library. These native libraries are not memory
safe and may suffer from memory corruption issues [4,5,8]. What is even worse
that the potential vulnerabilities [9] in Android system libraries are loaded into
every app’s process and further expose more attack surfaces, even if the app
c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 457–480, 2016.
DOI: 10.1007/978-3-319-45719-2 21

458 M. Sun et al.

itself does not contain any native library. Attackers could exploit vulnerabili-
ties in native libraries and execute arbitrary shellcode on stack or launch ROP
attack [39] if the stack is not executable.

To mitigate such threat, Address Space Layout Randomization (ASLR) [47] is
a widely adopted solution in modern operating systems. If properly implemented,
a system with the ASLR protection will randomize the loaded code and data
into different locations. Therefore, attackers cannot infer the memory layout
from previous executions or other side channels, raising the bar for successfully
exploiting the system.

Android introduced the ASLR protection since version 4.0 and improved the
implementation in later versions. However, as indicated by previous research [32],
the ASLR support in Android is not complete. First of all, the ASLR protection
in earlier Android versions is only effective for system-related processes started
at device booting stage, e.g., service management and communication-related
processes. Second, the zygote process creation model of Android indirectly weak-
ens the effectiveness of memory layout randomization. System libraries in dif-
ferent apps inherit shared (and same) memory regions from the parent zygote

process. Thus, attackers can infer the memory layout from other running apps.
This memory layout information helps attackers to initiate attacks and exe-
cute any arbitrary code on an Android system. For instance, Lee et al. [32]
demonstrated the possibilities of remotely exploiting vulnerable apps and eas-
ily bypassing the ASLR protection in the Android system to launch an ROP
attack (e.g., return-to-library [23,53] and return-to-linker attacks). They further
proposed a countermeasure called Morula that changes the Android system to
randomize the memory layout for apps. Framework enhancement appears to be
a natural solution. However, the need to change the Android framework could
strongly impair the practical deployment due to the deep fragmentation of the
Android platform.

In this paper, we first demonstrate that the newly introduced Android app
RunTime (ART) exposes a new attack surface, namely return-to-art (ret2art
for short). This attack surface increases the predictability of the memory layout
of executable code regions which are the pool of useful ROP gadgets. Then, it
further facilitates the construction of malicious payloads since attackers could
return to the pre-compiled framework libraries and leverage the well-defined
Android framework APIs to perform malicious operations. For instance, attack-
ers could easily construct the payload to send SMS, get GPS locations on behalf
of the vulnerable app if the app has corresponding permissions, without the
need to understand the tedious details of the binder IPC mechanism and bridge
the semantic gaps between the high level framework APIs and low level system
calls. This new attack surface is not just in theory, but it is actually a practi-
cal threat. A recent study [36] leveraged a similar attack surface to exploit the
Android system.

To mitigate this threat, we then propose a user-level solution called
Blender. Our system provides the capability of memory layout self-
randomization to (sensitive) Android apps with high security requirement, with-
out waiting for the changes of the Android framework nor the underlying Linux

Blender: Self-randomizing Address Space Layout for Android Apps 459

kernel. Specifically, Blender first randomizes memory layout of loaded system
libraries which are inherited from the zygote process. Then, to prevent the
ret2art attack, Blender also randomizes the ART executable runtime dynami-
cally at startup time. It ensures that the base addresses of libraries and the ART
runtime are unpredictable.

We implement a prototype of Blender and evaluate its effectiveness and
overhead. Our evaluation shows that apps using our system have a much higher
memory entropy than vanilla apps. This means attackers have to try many times
to successfully bypass the Android ASLR protection, instead of a single attempt.
Blender incurs an increase of 6 MB memory footprint for an app. Note that,
this only affects apps using our system, and does not affect other ones running
on the device, an extra advantage compared with the system-wide solution [32].
Our system increases 0.3 s to the app starting time, and incurs no obvious CPU
and battery overhead.

To summarize, this paper makes following contributions:

– We first discover a new attack surface called ret2art attack in recent Android
versions. This attack surface provides a large pool for useful ROP gadgets, and
facilitates the construction of malicious payloads using high-level framework
APIs.

– To mitigate the threat of ret2art attack and weakened ASLR implementation
in the Android system, we propose a user-level solution which could self-
randomize address space layout for both native libraries and the ART runtime
of a running app, without the need of framework modification.

– We implement a prototype of the Blender system and evaluate the effective-
ness and performance overheads. Our experiments show that Blender can
gain high randomization entropy with only 300 ms delay of the app’s startup
time, without obvious overhead to the CPU and battery resources.

The paper is organized as follows. In Sect. 2, we discuss the background of
Android and related attack/defense methods. Section 3 explains the weakened
ASLR mechanism in the current Android system, and we also illustrate conven-
tional ROP attacks and propose a novel ret2art attacks on the latest version
of Android. Section 4 presents the design and implementation of Blender. We
present the experimental results which show the effectiveness, performance and
battery overheads of Blender in Sect. 5. Finally, we discuss possible limitations
in Sect. 6, study related work in Sect. 7, and Sect. 8 concludes the paper.

2 Background

In this section, we briefly introduce the new Android runtime (ART runtime)
and the ASLR protection on Android.

2.1 Dalvik VM and ART Runtime

An Android app is a zip file packaged with Dalvik executable code (i.e., dex file)
and other resources. In previous Android versions (before Android 5.0), Android

460 M. Sun et al.

utilizes the Dalivk virtual machine (DVM) to interpret the Dalvik bytecode at
runtime. When an app is started, each Dalvik instance is created and system
libraries and app bytecode will be loaded into an individual process. However,
creating a new process and fully loading dependent libraries is a time-consuming
process, especially on resource-limited mobile platforms. Android optimizes this
process by creating the zygote process and pre-loading all the system libraries
into this zygote process when the system is booting. Then all other apps are
forked from this zygote process and inherit the pre-loaded system libraries (and
the Dalvik instance) in the zygote process. This optimization improves an app’s
launch-time, however, defeats the ASLR protection in Android since the system
libraries in different apps are shared the same memory layout. Figure 1 shows
that the system libraries like libc.so and libart.so are shared between differ-
ent apps and their addresses could be predicted by attackers. We will illustrate
the way of launching corresponding attacks using the knowledge of predicted
address space layout in Sect. 3.1.

Since Android 5.0, Google optimizes the Android system by introducing a
new Android runtime, i.e., the ART runtime. ART introduces an ahead-of-time
(AOT) compilation strategy to compile the Dalvik bytecode into native machine
code. Due to this optimization, the framework-level APIs in the format of Dalvik
bytecode are now converted into native code, and are shared between different
apps. The new executable machine code is internally stored in the oat file format,
which is nearly same with the traditional ELF format.

Figure 2 illustrates the flow of code execution of an app by the ART run-
time. This runtime introduces three different memory regions into the app’s
process space. The first one is the classes.dex file, which contains an app’s
logic. The file name has a legacy extension which was inherited from the
Dalvik runtime, but it is actual in the oat format. The second region is the
system@framework@boot.oat file (i.e., “ART boot code” short for boot.oat).
This region contains the compiled executable code of all Android framework
bytecode. The third region is a data area and it does not contain any executable
code. It is mapped with the system@framework@boot.art file (i.e., “ART boot
image” internally and is called boot.art for short) which contains all necessary
objects for bootstrapping the ART runtime. Basically, it provides a mapping
table between a framework function and its real address of the executable code.
To invoke a framework function in the app, the code will first (1) query the
boot.art mapping table, then (2) call the actual code in the text section in
boot.oat. For the ART runtime, there are class tables and method tables which
maintain information of all loaded classes and methods. The runtime can call
Invoke() of the ArtMethod in the method table to execute the compiled code
through an invocation assembly code stub.

We found that the introduction of the ART runtime exposes a new attack
surface due to two reasons. First, the large chunk of pre-compiled framework
native code are shared between different apps, and its memory layout is more
predictable than other system libraries. Thus, this increases the pool of libraries
that could be used as ROP gadgets. Second, the ART runtime exposes all pre-
compiled code of the framework functions at predictable locations. Attackers can

Blender: Self-randomizing Address Space Layout for Android Apps 461

Fig. 1. Android booting and app cre-
ation process.

Fig. 2. Android ART runtime and
memory structure.

utilize this code as payloads and invoke high-level framework APIs more easily
than the previous Dalvik runtime. We will elaborate this form of attack surface
in Sect. 3.2.

2.2 DEP/ASLR Protection on Android

Control flow hijacking is a way to exploit vulnerable program and control the
program’s execution flow. In old days, attackers usually hijacked the control flow
to the data area and executed the prepared shellcode on stack. DEP is a security
feature which intends to defeat this type of attack, by disallowing the memory
page as writable and executable at the same time. This feature is supported in
modern hardware and enabled by default in many operating systems, including
the Android system.

Then researchers proposed the return-oriented programming (ROP) attack
to defeat the effectiveness of the DEP protection. It does not need to inject
shellcode into the data area and then mark the data area as executable. Instead,
it reuses the already loaded code in the process to launch attack. Specifically,
the ROP attack hijacks the program’s control flow and jumps to existing exe-
cutable instruction sequences which end with return instructions. These instruc-
tion sequences are called “gadgets”. By chaining gadgets together, attackers can
perform arbitrary operations regardless of the DEP protection. There are many
kinds of ROP techniques, e.g., return into binary executable, return into shared
libraries and return into non-randomized memory. The most widely used tech-
nique is the return-into-library technique, due to the fact that libraries such as
libc contain functions (or gadgets) for invoking system calls and other func-
tionalities which are useful to attackers.

To defend against ROP attacks, in conjunction with DEP, Address Space
Layout Randomization (ASLR) was proposed in a probability manner. The basic
idea of ASLR is that addresses of loaded executable, stack, heap and loaded
libraries for each new process are randomized. Therefore, attackers cannot eas-
ily predict the memory address and jump to a fixed executable address of a

462 M. Sun et al.

gadget for an ROP attack. Although there are several techniques [34] to bypass
DEP/ASLR, ASLR indeed makes attacks more difficult and limited.

Android gradually adopted memory layout randomization on stack, library,
heap, and dynamic linker in Android 2.3.4, Android 4.0, Android 4.0.3, and
Android 5.0 respectively. However, ASLR protection on Android is not as effec-
tive as expected due to several reasons. First, only the latest version Android
5.x supports the full ASLR protection, but it only accounts for 12.4 % among
all Android devices [6]. Second, even in the case of the full ASLR protection,
the zygote app creation model still tampers this protection (Sect. 2.1). Third,
the pre-compiled system framework oat files increase the pool for ROP gadgets
and facilitate the construction of malicious payloads, and introduce a new attack
surface.

3 A New Attack: Ret2art

In this section, we discuss how to circumvent the ASLR protection on Android
and present a new attack surface introduced by the ART runtime.

3.1 ASLR Circumvention

What Went Wrong? As discussed in the previous section, all apps are forked
from the zygote process. This implies that the memory structures of child apps
are identical and duplicated by the parent zygote process. In other words, the
base addresses of stacks, common libraries such as libc.so, and the dynamic
linker are same in every app. Attackers can now easily predict memory layout
information of all apps from one single exploited app. Moreover, even if some
system libraries are not used by the app, they are still mapped into the app’s
process because the zygote process has loaded them. This further increases the
possibility of the success of the ROP attack. In summary, the way that Android
app is created defeats the purpose of ASLR mechanism.

We discover that the loaded libraries of the zygote process provide rich
sources of ROP gadgets which every other app will inherit. To quantify the
attack surface, we measure the size of text section (or executable section) of
system libraries loaded in the zygote process for different Android major ver-
sions. Figure 3 shows that the number of loaded libraries increases from 50
to about 100, and the largest size of executable section is about 22 MB. This
exposes a large number of vulnerable executable instructions for attackers. We
then utilize an automatic ROP gadget search tool [7] to find out possible gad-
gets (i.e., instruction sequences ended with bx reg, blx reg and pop, pc) in
shared libraries of the zygote process. Table 1 shows the number of unique
ROP gadgets found by the tool in Android 5.1.1. Two common system libraries
libandroid runtime.so and libc.so (highlighted in the table) contain around
a thousand usable gadgets. Because these two libraries provide basic function-
alities for other part of the system, they are stable across different Android
versions. Attackers could leverage the found ROP gadgets in them to launch the
ROP attack.

Blender: Self-randomizing Address Space Layout for Android Apps 463

0 20 40 60 80 100
102

103

104

105

106

107

1 KB

128 KB

512 KB

1 MB

16 MBboot.oat (22.9 MB)

libLLVM.so (7.4 MB)

libart.so (3.2 MB)

libc.so (301.1 KB)

Shared Libraries Loaded in Zygote (Sorted By Size)

S
iz
e
o
f
.
t
e
x
t
S
e
c
ti
o
n

(B
y
te
)

Android 2.2
Android 2.3.3
Android 4.0.3
Android 4.2.2
Android 4.3.1
Android 5.1.1
M Preview

Fig. 3. Increasing .text section sizes of
loaded shared libraries in zygote for differ-
ent Android major versions.

Table 1. Number of unique ROP gad-
gets of loaded libraries in the zygote
process.

How to Exploit? To further understand the way to launch the ROP attack on
Android, we use an example to illustrate the whole process. Figure 4 shows the
flow of this attack. The attack scenario involves two apps. The objective of the
first app (App A) is to obtain the current memory layout. This app can be a sim-
ple trojan app installed beforehand. Note that one app can access its own mem-
ory layout without any privileged permission. By reading the /proc/self/maps

file, attackers can easily obtain the memory mapping information including
library names, base addresses, and protect permissions, etc. The second app (App
B) is the target app for an ROP attack, which has a buffer overflow vulnerability
(e.g., popular apps like VLC [13] and Adobe Flash [1] have such vulnerability).
Attackers first induce users to install the first app (App A) (step 1) to obtain the
current memory layout (step 2). Secondly, attackers can craft a chain of gadgets
using common libraries such as libc.so and libart.so, then determine the
absolute addresses according to the current memory layout obtained previously.
At last, attackers exploit the buffer overflow vulnerability of the legitimate app
(App B) to initiate an ROP attack (step 3). By jumping and chaining executable
gadgets, attackers can execute arbitrary privileged code for further attacks.

Even though the proposed attack in Fig. 4 leverages the first app (App A)
to obtain the memory layout information, this information could be obtained
through exploiting vulnerabilities in legitimate apps. For example, several known
vulnerabilities of the Chrome Browser [4,5] and Samsung KNOX browser [8] can
leak part of the memory information. That means the proposed attack could
be launched remotely without the need to install the first app (App A). This
conclusion has been demonstrated in the previous research [32] and we will not
discuss its details in this paper.

464 M. Sun et al.

Fig. 4. ROP attack on Android (return-to-library attack and return-to-art attack).

3.2 The New Return-to-ART Attack (ret2art)

When launching the ROP attack, the most complicated part is to design a valu-
able gadget chain and execute malicious payloads. Traditionally, attackers could
leverage particular system calls (e.g., execve()) or existing functions in common
libraries (e.g., system() and strcpy() in libc library) for this purpose. How-
ever, in the context of the Android system, it is hard for attackers to construct
meaningful payloads. For instance, if attackers want to send a text message to
subscribe to a premium service to make money, or to steal private information
from a local database, they have to bridge the semantic gap between the mali-
cious operations and low level APIs. Though the Android framework provides
many useful APIs, it is hard for attackers to invoke them since these APIs are in
the format of the Dalvik bytecode and cannot be executed directly. Therefore,
it is a non-trivial task to construct malicious payloads on Android.

The ART runtime was introduced since the latest Android version 5.0. We
found that the design and implementation of the ART runtime exposes a new
attack surface, which is called return-to-ART (ret2art) attack. It eases the con-
struction of malicious payloads and attackers could initiate more powerful and
damaging attacks.

What Went Wrong? Due to the introduction of the ART runtime, the
addresses of the pre-compiled native code of the system framework APIs are
predictable. First, boot.oat and boot.art files contain the compiled native
code and related metadata of Android framework APIs. These two files are
generated by phone vendors before shipping the devices to users, and will not
change unless there is a new OTA update image. Therefore, these files are same
across all devices using the same firmware image. Second, the base address of
boot.art is fixed (0x70000000 for the 32-bit ARM architecture) in the AOSP
source code (in the /build/core/dex preopt libart.mk file [11]). The exact
mapping address of the boot.oat file is patched when the device is first booted,
and will not change unless a system update is performed. The patch offset

Blender: Self-randomizing Address Space Layout for Android Apps 465

1 $ adb shell oatdump -oat-file=/system/framework/arm/boot.oat
2 ...
3 IMAGE PATCH DELTA: -724992 (0xfff4f000)
4 ...
5 40: Landroid/telephony/SmsManager; (offset=0x015d849c) (type_idx=198) (StatusVerified) (

↪→ OatClassSomeCompiled)
6 ...
7 37: void android.telephony.SmsManager.sendTextMessage(java.lang.String, java.lang.String,

↪→ java.lang.String, android.app.PendingIntent, android.app.PendingIntent)} (
↪→ dex_method_idx=844)

8 OatMethodOffsets (offset=0x015d853c)
9 code_offset: 0x02ca944d

10 ...
11 CODE: (code offset=0x02ca944d size_offset=0x02ca9448 size=324)...
12 0x02ca944c: f5bd5c00 subs r12, sp, #8192
13 ...

Code Snippet 1.1. Example of oatdump for boot.oat file.

of the boot.oat file is fixed between -0x01000000 and 0x01000000 as indi-
cated in /art/build/Android.common build.mk. For instance, if the patch off-
set of boot.oat is 0x8000, then boot.oat will be mapped to the fixed address
0x70008000 every time for every app running on the device, until the device
updates its firmware image.

The predictable nature of the addresses of loaded oat and art files exposes a
new attack surface (the ret2art attack). First, boot.oat is loaded by the zygote

process and inherited by all other apps. Therefore, the base address of the
boot.oat file is fixed for every app in each execution. Second, the boot.oat

file is mapped as an executable region in memory. It contains abundant number
of compiled native code of all methods in the Android framework, and provides
a fertile ground for ROP gadgets. According to Fig. 3, the size of the executable
code in this file is around 22.9 MB. Third, the code offsets for each method are
fixed and can be easily located from the structured metadata from either the
boot.art file or the boot.oat file. Therefore, attackers can craft gadgets and
jump to the native code offset of a method in the boot.oat file. Figure 4 illus-
trates the basic flow of the re2art attack. Similar with the conventional ROP
attack, attackers can hijack the control flow to the ART executable code. This
way, attackers can invoke framework APIs in the ART runtime, which facili-
tates the construction of malicious payloads. For instance, attackers can use the
getLastKnowLocation() API to obtain any recent geographical location infor-
mation.

How to Exploit? Suppose attackers want to send a text message to achieve an
unauthorized premium services subscription. First, attackers need to get the off-
set of the sendTextMessage method in the boot.oat file. This can be achieved
by reading the boot.oat of the firmware using the oatdump tool. Note that,
since this offset is only related to particular firmware, attackers could get this
knowledge in advance by downloading firmwares from Internet and obtain a
mapping table of offsets of interested APIs to the firmware fingerprint. The base

466 M. Sun et al.

Table 2. Parameter description of
“Invocation Stub”.

address of the boot.oat file is fixed after the system is first powered, and could
be obtained through another trojan app or information leak vulnerabilities in
other apps, and even guessed since the base address is around a fixed loca-
tion 0x70000000. Code snippet 1.1 shows an example of the dumped boot.oat

file. We can find that the code offset of the sendTextMessage method is fixed
in the boot.oat file at 0x02ca944d (line 11). Second, similar to the previous
ROP attack, attackers can obtain the base address of boot.oat file locally or
remotely. Combing the obtained offset and the base address, attackers now have
the absolute address of the method. Third, attackers exploit existing or zero-day
buffer overflow vulnerabilities of the target app to hijack the control flow for initi-
ating a ret2art attack. Note that attackers cannot directly jump to this address
and execute the code, because the framework code should be executed with
the support of the ART runtime. Specifically, the ART runtime executes native
methods through an invocation stub code, i.e., the art quick invoke stub func-
tion defined in the quick entrypoints arm.S assembly file [12] for the ARM
platform. Before invoking this code, attackers have to prepare several registers
for related parameters as shown in Table 2. After passing these registers to the
art quick invoke stub function, the function will finally load the compiled code
to a register as a branch address. As shown in Code Snippet 1.2, the address is
calculated by summing up r0 with an offset METHOD QUICK CODE OFFSET 32 in
line 8, that is, the address of entry point from quick compiled code field in
the ArtMethod class. Moreover, r1-r3 are copied from the stack controlled by
attackers, which makes the ret2art attack even easier. Therefore, to initiate a
ret2art attack, the attacker can branch (e.g., blx reg) to this stub function and
invoke the sendTextMessage framework API. If the target app has declared the
“SEND SMS” permission, attackers can use this technique to subscribe to some
premium services, or to spread the trojan app via messages.

4 Blender

In this section, we present the design and implementation of Blender, a user-
level solution to mitigate threats caused by the weakened ASLR implementation
on Android and the new ret2art attack.

Blender: Self-randomizing Address Space Layout for Android Apps 467

4.1 High Level System Design

Design Requirements. Our goal is to provide a user-level solution. Accord-
ingly, we follow several design requirements to balance protection strength, per-
formance, and practical system deployment.

Complete Protection: Our system needs to mitigate the threats introduced by
both the zygote application creation process and the new ART runtime. This
means that our system has to eliminate the predictability of the memory layout
for loaded system libraries, and the pre-compiled native code of the framework
APIs (the boot.oat file).

Lightweight Protection: It naturally requires that our system should be memory-
and energy-efficient. The performance overhead should not affect user experi-
ence. Moreover, the overhead introduced should not affect the apps without our
protection.

Easy Deployment: Our system should maintain the compatibility of existing
apps, and not require any change to the Android framework nor the Linux kernel.
Also, the changes made to apps for deploying our system should be minimum.

Threat and Trust Model. As our purpose is to provide a user-level solution
to mitigate the threat of weakened ASLR protection on Android, we assume app
developers are trusted. However, their apps or libraries that apps are depending
on may have security vulnerabilities and could be exploited by attackers both
locally and remotely to arbitrarily read, write, and execute code in app’s memory.
Their apps have higher security requirements, and they want to provide the self-
protection capability to their apps. By deploying our solution, the empowered
self-protection capability makes the exploitation of the vulnerabilities in their
apps much harder.

Design Overview. Blender provides protection in two different aspects.
First, Blender randomizes the addresses of loaded system libraries for apps
using our system. This eliminates the possibility that the memory layout of
these libraries are predictable. From this perspective, our system provides similar
security guarantees as previous work [32], by solely in user space, without making
changes to the Android framework. Second, Blender deals with the new ret2art
attack by randomizing the executable code of the pre-compiled framework APIs
(i.e., boot.art and boot.oat files) in the ART runtime. This is a new security
guarantee which is not covered by previous research.

Accordingly, Blender contains three components: (1) the bootstrap module,
(2) Blender library randomization module (short for BlenderLRM), and (3)
Blender ART randomization module (short for BlenderART). The bootstrap
module takes over the startup stage of an app, and prepares the running environ-
ment of our system. Like other user-level solutions [54,60], this bootstrap module
is integrated into the app by simply including a proxy class which extends the
Application class. Then the bootstrap module will invoke BlenderLRM to
self-randomize the current loaded libraries. After that, it will invoke Blender-
ART to rearrange the ART runtime in the memory. Finally, the original app

468 M. Sun et al.

will be loaded and started. Since the bootstrap module has been extensively dis-
cussed in previous research [54,60], in this paper, we will explain BlenderLRM
and BlenderART, respectively.

Fig. 5. Overview of Blender library randomization module.

4.2 BlenderLRM

Figure 5 illustrates the overview of BlenderLRM. The main purpose of
BlenderLRM is to randomize the addresses of already loaded system libraries
inherited from the zygote process, and all other app-provided third-party
libraries. For this purpose, BlenderLRM leverages a customized dynamic linker
(named as blinker), which first rearranges the already loaded system libraries
and then takes over the process of loading app-provided third-party libraries and
randomizes their addresses. Note that all the described operations in this section
later are only applied to its own process of the app with our system, and does
not affect other processes running on the same device.

Rearrange System Libraries. Rearranging the system libraries looks straight-
forward, since all system libraries on the Android with ASLR support should be
compiled as position independent code (PIC). This means that these libraries
could be loaded into any addresses1. We can simply copy the loaded libraries
from one location to another one to randomize the loaded addresses of them.
However, most, if not all, system libraries are dynamically linked. These dynami-
cally linked libraries depend on other libraries, and their dependencies have been
resolved when creating the zygote process. Simply moving the system libraries
from one location to another location will break the resolved dependencies, and
crash the app.

1 In early versions of Android without ASLR support, system libraries are pre-loaded
into fixed locations.

Blender: Self-randomizing Address Space Layout for Android Apps 469

Algorithm 1. Memory Randomization Algorithm
1: function RandomizeLibraries(libraryDependencyGraph)
2: sortedNodes ← TopoSort(libraryDependencyGraph)
3: for each n ∈ sortedNodes do
4: DupMap(n) � Duplicate memory mapping to a random free space.

5: for each node m with an edge from n to m do
6: FixGOT(m, n) � Fix symbol resolution in GOT of m.

7: end for
8: SaveLibraryInformation(n)
9: UnMap(n) � Unmap library n from memory mappings.

10: end for
11: end function

Before presenting our method to solve this challenge, we will describe the
background of dynamic linking first to help readers better understand our pro-
posed method. For each dynamically linked library, there is a Procedure Linkage
Table (PLT) section (.plt), which contains several stubs to call external func-
tions. For example, suppose library A uses the strcpy function in libc, then
there is a stub for the strcpy function in the PLT section of library A. The
functionality of this PLT stub is to load the real address of the strcpy (of libc
in the memory) from the entry of the Global Offset Table (GOT) section, and
then jump to it. Each external function used by the library has an entry in GOT,
and its real address is resolved by the dynamic linker (i.e., /system/bin/linker
in Android) when the library is first loaded into the memory and written in the
corresponding GOT entry. Note that the dynamic linker in Android does not
adopted the “lazy binding” mechanism [20], which is common in the desktop
systems, to speed up the app startup stage.

To solve the challenge of dependencies between system libraries, blinker

generates a dependency graph on the loaded libraries and fixes the wrong
addresses in GOT due to library rearrangement. We say that library A depends
on library B if there exists a function call from library B to library A. For
instance, liblog.so uses the strcpy() function in libc.so, and we say libc.so

depends on liblog.so. In the dependency graph, there will be an edge from A
(e.g., libc.so) to B (e.g., liblog.so). Correspondingly, the GOT section of
liblog.so should contain an entry of the strcpy function pointing to libc.so.
Figure 6 illustrates the dependency graph of ten common libraries loaded by
zygote. From the figure, we can see that there are eight libraries which depend
on libc.so. Therefore, if BlenderLRM rearranges libc.so library to other
address, addresses pointing to libc.so in GOTs of its dependent libraries needs
to be updated. Note that blinker itself is statically linked, otherwise it will
depend on other system libraries which will be rearranged and a dead lock will
be created between blinker and its dependent libraries.

After generating the dependency graph, blinker rearranges system libraries
according to the method described in Algorithm 1. The algorithm takes a library
dependency graph as an input. blinker first topologically sorts the dependency
graph. For each node in the sorted node list, blinker first duplicates it into a

470 M. Sun et al.

Fig. 6. Dependency graph. Fig. 7. Overview of BlenderART.

random free space aligned with the memory page size. Then, blinker fixes GOTs
of its dependent nodes. Furthermore, blinker will store the library information
including new base locations, names, dependency information, etc. This infor-
mation will help blinker to link libraries which will be added at later stages.
Finally, blinker will unmap the original libraries from memory.

Rearrange App-Provided Third-Party Libraries. Besides system libraries,
an app may have its own third-party libraries. For instance, the app using the
Cocos2d game engine will include the corresponding native libraries in the app.
Our system needs to randomize these libraries as well to ensure they have dif-
ferent addresses in different runs. For this purpose, blinker takes over the role
of the original linker. Specifically, native libraries are loaded into memory by the
dlopen() function in libdl.so. We modify the dynamic linker related function
pointers in the GOT section of libdl.so to our customized blinker. Then,
if a new native library is loaded into memory by using the dlopen() function,
blinker will map it into a random address and resolve external function calls.

4.3 BlenderART

As discussed in Sect. 3.2, the newly introduced ART runtime exposes a new
attack surface, due to the fact that the pre-compiled boot.oat file is in a fixed
memory location after the system is first booted and will not change unless
an OTA update is performed2. Our system needs to rearrange this boot.oat

to other locations. However, the differences between the boot.oat and other
system libraries we discussed in Sect. 4.2 pose new challenges, and we cannot
directly apply the method proposed in Sect. 4.2 to the boot.oat file.

Figure 7 illustrates the workflow of BlenderART. There are three steps to
carry out the ART runtime randomization: (1) patch the boot.oat file with an
offset, (2) load this patched boot.oat file into the memory, (3) fix code addresses
of the class linker instance in the ART runtime.

2 Actually, the app’s bytecode in the file classes.dex is also compiled into the native
code. However, this compiled native code is loaded into different places each time
the app is started.

Blender: Self-randomizing Address Space Layout for Android Apps 471

Patch and Load Boot.oat. of the boot.oat file, two main components in the
boot.oat file should be patched. First, some branch instructions in the boot.oat
use absolute addresses to jump to the target instruction. For instance, suppose
method A invokes method B in the framework as shown in Fig. 7, the branch
instruction jumping from method A to method B uses an absolute address in
memory. These absolute addresses should be patched if we want to move the
boot.oat to another location. Second, the metadata information in the oat file
header contains absolute addresses, and need to be patched too.

One natural choice to patch the address is to leverage the binary rewrit-
ing tool to disassemble the compiled native code, locate and modify absolute
addresses in branch instructions. However, writing a binary rewriting tool from
scratch is a tedious and error-prone process. In this work, we take advantage of
a convenient interface provided by Google for binary rewriting, which is called
the oat patches. When converting the dex bytecode to native code, the ART
compiler first translates the dex bytecode into an intermediate representations
(MIR), and then compiles it into the low-level intermediate representation (LIR).
During the converting stage from MIR to LIR, the compiler records all liter-
als (including code, method, class, and string literals) which contain absolute
addresses and can be modified later (implemented in InstallLiteralPools()

methods in the codegen util.cc file [10] from AOSP). And the literal infor-
mation will be written into one special ELF section of the final oat file, which
is called the oat patches section. We leverage the oat patches tool to help us
relocate boot.oat and patch the original fixed absolute addresses. In fact, this
oat patches information is also used by Android to patch the boot.oat when
the system is first powered on.

BlenderART first randomly picks a free memory region and calculates the
offset (Δ) between the new base address and the original one (B). Algorithm 2
illustrates the procedure to patch the boot.oat file. The patching algorithm
takes the oat file and offset number as input, and will go through all patches
and add an offset. The FixupOatHeader function is to relocate the metadata
of the embedded oat header. The FixupELF function is to rewrite the section
header information, dynamic symbol section (dynsym) and the symbol table
section (symtab) information. At last, the patched boot.oat will be loaded into
the memory. Because we already fixup all relocation based on an offset, the load
address should be B + Δ.

Algorithm 2. ART Runtime (boot.oat) Patching Algorithm
1: function PatchOat(oatFile, offset)
2: for each patch ∈ oatFile.oatPatches do
3: patchLocation ← GetLocation(patch)
4: ∗patchLocation ← patchLocation + offset
5: end for
6: FixupOatHeader(oatFile, offset)
7: FixupELF(oatFile, offset)
8: end function

472 M. Sun et al.

Fix Class Linker Data Instance. Besides the absolute address in the code
area in the boot.oat file, some information in the data area of the ART run-
time should be patched too. Class linker (i.e., the ClassLinker class) is a single
global instance maintained by the ART runtime. Since the executable code in
the boot.oat file has been relocated by our system, several important infor-
mation maintained by it should be fixed too. For instance, it maintains a class
table (the class table field), which contains loaded classes information (i.e.,
the mirror::Class class). For each class structure, it contains corresponding
methods in the method tables. There are two types of methods: direct meth-
ods and virtual methods, which are stored in the direct methods table and
virtual methods table respectively. The methods in the method table are in the
mirror::ArtMethod class. There is a pointer sized field contains four entry point
addresses. For example, the entry point from quick compiled code field of a
framework method points to the actual compiled code address of boot.oat in
the memory. Since boot.oat has been relocated, this pointer should be fixed
to point to the new address. Finally, BlenderART changes the old memory
region of boot.oat to non-executable to ensure data in this file cannot be exe-
cuted, but can still be accessed by the ART runtime. In theory, we could fully
unmap this memory region. However, we then need to fix all the references to
this memory region in the ART runtime, which is a time-consuming work. As
long as the code area is no-longer executable, it is safe to leave it there since
attackers cannot leverage it to construct ROP gadgets.

Optimization. Apps with BlenderART should perform all the previ-
ous steps to achieve the ART runtime randomization. However, patching the
boot.oat file introduces an overhead of around 1.6 s which will be shown in
Sect. 5. To reduce this overhead, we cache the randomized boot.oat so as to
reduce the app’s startup time. We design a patched boot.oat pool which con-
tains a set of offline patched boot.oat files with different random patched offsets.
For each execution, our system picks up a patched boot.oat file from the pool
and loads it into the memory, without patching it online.

4.4 Implementation Details

We prototype our Blender system based on Android 5.1 Lollipop (the AOSP
tag android-5.1.0 r1) for 32-bit ARM architecture. Since the code base of
the ART runtime is stable after Android 5.0, our implementation is generic for
Android 5.0 and 6.0 versions. The system contains about two thousand lines of
code including C/C++ and Java. For the implementation, we reuse the peer-
reviewed code from AOSP as much as possible. This will ensure the stability and
security of Blender. We use the /dev/random file as the seed for randomization.

There is no official ART support for Android versions less than 5.03. There-
fore, the Dalvik virtual machine runtime cannot be exploited by using the

3 There is an experimental implementation of the ART runtime in Android 4.4 but is
disabled by default.

Blender: Self-randomizing Address Space Layout for Android Apps 473

ret2art attack technique. Although a researcher discovered interpreter exploita-
tion [16] on the conventional JIT based virtual machine, it is still difficult
to initiate attacks on the Dalvik runtime. However, the security issue caused
by the zygote app creation model still exists. To harden the ASLR for old
Android versions (before Android 5.0), we port BlenderLRM to them so as to
self-randomize addresses of system libraries inherited from the zygote process.
Because Blender is a user-level solution and provides self-randomization capa-
bility to the apps using our system, rather than modifying the source code of
the Android framework, app developers could safely deploy our system and their
apps immediately get protected.

5 Evaluation

In this section we evaluate the effectiveness of Blender by measuring the app
memory entropy, and the performance overhead at apps’ startup time, execution,
memory, and battery usage. The device used in the evaluation is a Nexus 5 device
with Quad-core 2.3 GHz CPU, 2 GB memory and 16 GB internal storage. The
test device runs the Google official Android firmware which is Lollipop 5.1 with
the build number LMY47D and the kernel version 3.4.0.

5.1 Effectiveness

The goal of the Blender system is to prevent attackers from predicting address
space layout of apps. To evaluate the effectiveness of Blender, we first discuss
from an app’s perspective.

To measure the address space layout randomness of shared system libraries,
we use the notion of entropy. Entropy is a metric to represent the uncertainty
of random variables. We apply entropy to measure memory layout randomness,
and the library loading addresses are treated as a random variable. We utilize the
space layout entropy metric from [32] to evaluate the application randomness.
Specifically, for a shared library or runtime image code m, let Xm be a discrete
random variable with base addresses {x1, x2, . . . , xn} and p(xi) is a probability
of xm = xi. The normalized address space layout entropy can be defined as
H(Xm) = −∑n

i=1 p(xi)
ln p(xi)
lnn , and 0 ≤ H(Xm) ≤ 1 because of normalization.

App Randomness. Because Blender only randomizes memory of certain
apps with the Blender protection, we evaluate the entropy on one app for mul-
tiple executions. We define {x1, x2, . . . , xn} as base addresses of the library m,
and n is the number of executions for one app. For instance, suppose n = 10,
we execute the app with Blender ten times, and the base addresses of library
libart.so are totally different. Because each base address is uniformly distrib-
uted, the output will have a probability of 0.1. At last, the entropy for the
libart.so library is H(Xlibart.so) = 1. This means, for the ten times execu-
tion of this app, libart.so is mapped into different addresses. We calculate
the average entropy for all loaded libraries in application A. It is defined as
R(A) =

∑
m∈M H(Xm)

|M | . We measure R(A) on a simple app (A) (generated by

474 M. Sun et al.

Table 3. Entropy analysis results.

Mode App entropy R(A)

Original App 0.005
BlenderLRM only 0.981
BlenderLRM and BlenderART 0.991

2 4 6 8 10
0

500

1,000

1,500

2,000

38
7.3

50
4.9

62
4.3

1,5
97
.3

74
1.1

Execution Index

A
p
p
’s

S
ta

rt
u
p

T
im

e
(M

il
li
se
co

n
d
s)

Orginal App App Redelegation

BlenderLRM BlenderLRM+BlenderART
(without cache)

BlenderLRM+BlenderART
(with cache)

Fig. 8. App’s startup time.

0 500 1,000 1,500 2,000

3.5

4

4.5

5

5.5
·104

Elapsed Time (Milliseconds)

V
m
R
S
S

in
th

e
/
p
r
o
c
/
[
p
i
d
]
/
s
t
a
t
u
s
F
il
e
(k

B
)

Original App App Redelegation

BlenderLRM BlenderLRM+BlenderART

Fig. 9. Memory usages at the startup
of apps for different setups.

the blank app template of Android Gradle 1.2.3 [2]). App A contains 109 native
libraries at runtime, and 108 of them are shared libraries which are inherited
from zygote. We execute the app without and with Blender protection ten
times respectively, and record the memory layout after the startup stage. Table 3
shows the results of the average entropy. The average entropy of original app,
app with BlenderLRM only, and app with full Blender support are 0.005,
0.981, and 0.991 respectively. The average entropy of the original system is quite
low, which shows that there is nearly no randomness in the original app. After
using Blender with library randomization module, the entropy increases signif-
icantly. When adding with the ART runtime randomization module, the entropy
increases about 0.1. Although the increased entropy of BlenderART is small,
but the security gain is considerably high because of the large range of executable
regions.

5.2 Performance

Startup Time. Because Blender conducts the library and ART randomiza-
tion when app is first started, we want to evaluate its overhead in terms of the
startup time delay, which is crucial for user experience. To quantify the startup
time, we conduct experiments on a simple app. We create the app targeting
Android 5.1 with one activity (generated by the app template of Android Gradle
1.2.3 [2]). In the app, we override attachBaseContext methods in the activity

Blender: Self-randomizing Address Space Layout for Android Apps 475

0 100 200 300 400 500

85

90

95

100

Number of ExecutionsB
a
tt
er
y
C
a
p
a
ci
ty

in
th

e
p
o
w
e
r
s
u
p
p
l
y
/
c
a
p
a
c
i
t
y
F
il
e
(%

) Original App App with Blender

Fig. 10. Battery capacity after multiple
executions.

Table 4. Benchmark scores.

Baseline BlenderLRM Full Blender

CPU 35915 36480 35969

Memory 13900 13846 14653

I/O 5874 5893 5900

2D 330 330 298

3D 1967 2019 1981

Total 57986 58568 58801

and log the current time (t1). To accurately calculate the startup elapsed time,
we use a UI/application exerciser (monkey tool) to launch this application and
record the time (t0) by reading the $EPOCHREALTIME value. t1 − t0 represents the
elapsed time from launch time into application context. We measure the startup
time of the original app, app only with the bootstrap module (app re-delegation),
app with BlenderLRM, app with the whole Blender without BlenderART
cache, and finally, app with the optimized Blender with cache. We execute the
app for ten times and record the results. Figure 8 illustrates the startup time
(in millisecond) for each launch and the average numbers of different setups.
First, because app re-delegation needs to load the app at runtime, it introduces
about 120 ms overhead. Second, without using the cache, BlenderART needs
to execute code patching for each time. The startup time is about 1.5 s, which is
noticeable by normal users. For the system with cache, the startup time is about
740 ms and incurs about 360 ms overhead, which is comparable with Morula [32].
It is worth noting that, this overhead only affects at the app’s first startup time
(cold start), and will not affect the following launching of the app (warm start)
if the app is not killed due to low memory. Moreover, unlike Morula [32], this
delay only applies to apps with our protection, and does not affect other apps.

Runtime Overheads. Blender provides self-randomization capability to
apps and the randomization process happens at the app’s startup time, it will
not affect the runtime performance. We use the Quadrant Standard Edition
v2.1.1 to measure the general purpose benchmark for CPU, memory, I/O, 2D,
and 3D graphics. Because we cannot get the source code of the benchmark tool,
we use apktools [52] to repackage the app and add the Blender protection
for our evaluation. Table 4 illustrates the benchmark results. Because of startup
time randomization, the benchmark results are nearly same.

Memory Overheads. We also evaluate the memory usage at runtime for
the original app, app with re-delegation, app with BlenderLRM only, and
app with BlenderLRM and BlenderART. We create a script to monitor the

476 M. Sun et al.

/proc/[pid]/status file which contains all memory information at runtime.
Figure 9 shows the VmRSS sizes during the start time to 2000 ms. VmRSS (vir-
tual memory resident set size) represents the portion of memory occupied by
a process in memory. At the first 250 ms, the VmRSS value increases from a
low level and then becomes stable. The VmRSS values of BlenderLRM only
and BlenderLRM/ART together are nearly same at runtime, and introduces
about 5513 kB (11.5 %) overhead. Blender incurs less memory overhead com-
pared to previous mitigation solution Morula [32] by patching the Android which
introduces 13 MB for each app.

Battery Overheads. Battery consumption is important for mobile devices.
Because Blender conducts randomization at the startup time of an app,
Blender will consume more battery than original settings. We conduct the
following experiments to measure the battery overhead of the Blender system.
Firstly, we use a fully charged device (Nexus 5) and set screen as “always on”.
Then, we launch and close the experiment app (the same app in the performance
evaluation experiments) for 500 times with 10 s interval. For each execution, we
record the current time and the current battery capacity. For the Blender evalu-
ation, we use a fully charged device to execute the experiment app with Blender
installed and record the battery capacity. For both experiments, we obtain the
battery capacity by reading the /sys/class/power supply/battery/capacity

file. Figure 10 illustrates the remaining battery capacities after multiple num-
ber of executions for two apps, and we plot their linear fit as two dashed lines.
There is only 1 % more power consumption after 500 executions for about 6400 s
which is comparable with the Morula system. Therefore, the battery overhead
is negligible for normal users.

6 Discussion

Limitations of Caching Patched ART Code. To balance security gain and
performance overheads, our design caches patched ART code (i.e., boot.oat) in
a pool. Although attackers can try multiple times to guess the offsets of the
boot.oat file in the pool, they still cannot obtain the current offset by previ-
ous executions or by other side channels. However, this technique decreases the
entropy of the randomization. To achieve high entropy randomization, devel-
opers can disable utilizing cached code and conduct randomization at runtime.
Although this may introduce more startup overhead (less than two seconds), this
is still acceptable for apps with high security requirements. Also we may random-
ize the boot.oat file at runtime, such as when the app is idle in the background,
to reduce the startup time delay. However, this may need deep understanding of
the app’s logic and more involvement from the app developer’s side.

Blender on Other Architectures. Because most mobile devices are based
on the ARM architecture (99 % according to report [3]), our ret2art attack and
Blender system are implemented on an ARM-based device. In fact, the lat-
est Android version support other architectures including x86 and MIPS. The

Blender: Self-randomizing Address Space Layout for Android Apps 477

only differences are architecture specific source code. Therefore, the weakness
of ASLR introduced by zygote process creation model still exists. And one can
easily write code to initiate ret2art attack on those platforms. For the Blender
system, one can port to other architectures by translating architecture specific
ARM assembly code to the corresponding architecture.

Randomization within Shared Library. Another limitation of current
system is that Blender does not randomize the functions inside a library. This
means that if there is a memory leak vulnerability, attackers could know the
base address and compute offsets of ROP gadgets to launch an ROP attack.
To overcome this potential security problem, we can use method proposed as
binary stirring [51] to randomly rewrite the binary code blocks of loaded libraries.
However, this method requires disassembling, rewriting and assembling all loaded
libraries at launch time of an app. This will introduces considerable overheads.
Therefore, we leave it as our future work.

7 Related Work

Security problem in memory is one of the oldest issues in computer security. Pre-
vious studies [28,46,49] summarize the attack and defense solutions on memory
security. Our work focuses on attacking and protecting weakened ASLR mecha-
nism on Android.

Attacks and Defenses of ASLR Mechanism. Because modern operat-
ing systems have implemented/deployed ASLR and DEP defense mechanisms
by default [24,30,47], attackers try many bypassing techniques from different
perspectives. Several works [34,42] focus on bypassing by brute-forcing method.
Moreover, leaked pointers, type confusion and use-after-free bugs can be also
exploited [40,41]. Furthermore, by repeatedly abuse a memory disclosure, attack-
ers can map an application’s memory layout on-the-fly with dynamically dis-
covered gadgets [43]. There are many return oriented programming techniques
described in several papers [34,53]. Moreover, some researchers [22,51] proposed
to protect memory by introducing high randomization entropy.

Attacks and Defenses on Android. Compared to traditional desktop oper-
ating system, mobile OS have their domain-specific architecture design which
introduces new attack surfaces. For Android, many researches discuss about
security issues on permission mechanism [19,29,31] of Android. In addition, some
work exploit underlying system components on Android [15,21,27,35,37,38,48,
50,57]. Because there are a number of malware on Android, Zhou et al. [59] pro-
vide the characterization and evolution of Android malware. In addition, some
systems propose to prevent [45] or detect malware [44]. Moreover, researchers
also propose both static analysis systems [26,33,56,58] and dynamic analysis
systems [25,55] to assist malware researchers to understand the malicious logic.

Mitigating ASLR on Android. Because of the limitations of mobile system,
the design and implementation of ASLR mechanism is rather weak. Retouch-
ing [17], Morula [32] and LR2 [18] are three systems which discuss attacking

478 M. Sun et al.

techniques and provide mitigation solutions. Retouching can randomize pre-
linked code when deploying Android applications. However, Retouching does not
resolve the issue of uniform memory layout introduced by the zygote process cre-
ation model. Morula proposes a patch for Android source code to randomize all
layout of apps after forking from zygote and also introduces low overheads. LR2

proposes a leakage-resilient layout randomization method by introducing trans-
formations as passes on compiler. However, they all have a major deployment
issue. Current systems needs to modify Android source code to achieve random-
ization functionality. Users should replace original firmware with the customized
system. Moreover, the system should keep up with the latest Android version
with new features and bug fixes. Hence, because of the deployment issues, both
users and developers cannot easily adopt this mitigation solution. Our work
provides a non-invasive methodology for both developers and users.

8 Conclusion

In this paper, we show that the ASLR protection on Android is weakened due to
the zygote app creation model. Moreover, we demonstrate a newly discovered
attack surface introduced by the ART runtime, and present a novel way to
exploit the weakness of the ASLR protection and this new attack surface. Then
we propose a non-invasive user-level solution called Blender which does not
need framework modification. Blender self-randomizes address space layout
for apps, hence raising the bar for successfully bypassing the weakened ASLR
protection on Android. We discuss the design, implementation, and present the
effectiveness and performance overhead of our system.

References

1. Adobe Flash Use-after-free Vulnerability. http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2015-3108

2. Android plugin for gradle. https://developer.android.com/intl/ru/tools/building/
plugin-for-gradle.html

3. Arm designs one of the world’s most-used products. http://www.
bloomberg.com/bw/articles/2014-02-04/arm-chips-are-the-most-used-consumer-
product-dot-where-s-the-money

4. CVE-2013-0912. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-
0912

5. CVE-2015-1233. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-
1233

6. Distribution of android platform versions. https://developer.android.com/about/
dashboards/index.html

7. Ropgadget - gadgets finder and auto-roper. http://shell-storm.org/project/
ROPgadget/

8. Samsung galaxy KNOX android browser RCE. https://www.exploit-db.com/
exploits/35282/

9. Stagefright (bug). https://en.wikipedia.org/wiki/Stagefright (bug)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3108
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3108
https://developer.android.com/intl/ru/tools/building/plugin-for-gradle.html
https://developer.android.com/intl/ru/tools/building/plugin-for-gradle.html
http://www.bloomberg.com/bw/articles/2014-02-04/arm-chips-are-the-most-used-consumer-product-dot-where-s-the-money
http://www.bloomberg.com/bw/articles/2014-02-04/arm-chips-are-the-most-used-consumer-product-dot-where-s-the-money
http://www.bloomberg.com/bw/articles/2014-02-04/arm-chips-are-the-most-used-consumer-product-dot-where-s-the-money
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0912
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0912
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1233
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1233
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/
https://www.exploit-db.com/exploits/35282/
https://www.exploit-db.com/exploits/35282/
https://en.wikipedia.org/wiki/Stagefright_(bug)

Blender: Self-randomizing Address Space Layout for Android Apps 479

10. codegen util.ccfile in AOSP. https://android.googlesource.com/platform/art/+/
android-6.0.0 r26/compiler/dex/quick/codegen util.cc

11. dex preopt libart.mk file in AOSP. https://android.googlesource.com/platform/
build/+/android-6.0.0 r26/core/dex preopt libart.mk#36

12. quick entrypoints arm.S file in AOSP. https://android.googlesource.com/
platform/art/+/android-6.0.0 r26/runtime/arch/arm/quick entrypoints arm.S

13. VLC media player 2.0.4 suffers from buffer overflow. https://trac.videolan.org/vlc/
ticket/7860

14. Afonso, V., Bianchi, A., Fratantonio, Y., Doupé, A., Polino, M., de Geus, P.,
Kruegel, C., Vigna, G.: Going native: using a large-scale analysis of android apps
to create a practical native-code sandboxing policy. In: NDSS (2016)

15. Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., Vigna, G.:
What the app. is that? deception and countermeasures in the Android user inter-
face. In: SP (2015)

16. Blazakis, D.: Interpreter exploitation. In: WOOT (2010)
17. Bojinov, H., Boneh, D., Cannings, R., Malchev, I.: Address space randomization

for mobile devices. In: WiSec (2011)
18. Braden, K., Crane, S., Davi, L., Franz, M., Larsen, P., Liebchen, C., Sadeghi, A.-R.:

Leakage-resilient layout randomization for mobile devices. In: NDSS (2016)
19. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B.:

Towards taming privilege-escalation attacks on android. In: NDSS (2012)
20. Chamberlain, S., Taylor, I.L.: The GNU linker (1991)
21. Chen, Q.A., Qian, Z., Mao, Z.M.: Peeking into your App without actually seeing

it: UI state inference and novel android attacks. In: USENIX Security (2014)
22. Chen, Y., Wang, Z., Whalley, D., Lu, L.: Remix: on-demand live randomization.

In: CODASPY (2016)
23. Solar Designer: return-to-libc attack. Bugtraq, August 1997
24. Durden, T.: Bypassing PaX ASLR protection. Phrack Mag. 59, 9 (2002)
25. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L.P., Jung, J.,

McDaniel, P., Sheth, A.N.: Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. In: TOCS. ACM (2014)

26. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: USENIX Security (2011)

27. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android security. IEEE
Secur. Priv. 7(1), 50–57 (2009)

28. Erlingsson, U.: Low-level software security: attacks and defenses. In: Aldini, A.,
Gorrieri, R. (eds.) FOSAD 2007. LNCS, vol. 4677, pp. 92–134. Springer, Heidelberg
(2007)

29. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. In: USENIX Security (2011)

30. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Enhanced operating system secu-
rity through efficient and fine-grained address space randomization. In: USENIX
Security (2012)

31. Grace, M.C., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability
leaks in stock android smartphones. In: NDSS (2012)

32. Lee, B., Lu, L., Wang, T., Kim, T., Lee, W.: From Zygote to Morula: Fortifying
weakened ASLR on android. In: SP (2014)

33. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: CHEX: statically vetting Android apps
for component hijacking vulnerabilities. In: CCS (2012)

34. Müller, T.: ASLR smack & laugh reference. In: Advanced Exploitation Techniques
(2008)

https://android.googlesource.com/platform/art/+/android-6.0.0_r26/compiler/dex/quick/codegen_util.cc
https://android.googlesource.com/platform/art/+/android-6.0.0_r26/compiler/dex/quick/codegen_util.cc
https://android.googlesource.com/platform/build/+/android-6.0.0_r26/core/dex_preopt_libart.mk#36
https://android.googlesource.com/platform/build/+/android-6.0.0_r26/core/dex_preopt_libart.mk#36
https://android.googlesource.com/platform/art/+/android-6.0.0_r26/runtime/arch/arm/quick_entrypoints_arm.S
https://android.googlesource.com/platform/art/+/android-6.0.0_r26/runtime/arch/arm/quick_entrypoints_arm.S
https://trac.videolan.org/vlc/ticket/7860
https://trac.videolan.org/vlc/ticket/7860

480 M. Sun et al.

35. Mulliner, C., Oberheide, J., Robertson, W., Kirda, E.: Patchdroid: scalable third-
party security patches for android devices. In: ACSAC (2013)

36. Peles, O., Hay, R.: One class to rule them all: 0-day deserialization vulnerabilities
in Android. In: WOOT (2015)

37. Razeen, A., Wu, B., Cheemalapati, S.: Spandex: Secure password tracking for
Android. In: USENIX Security (2014)

38. Ren, C., Zhang, Y., Xue, H., Wei, T., Liu, P.: Towards discovering and under-
standing task hijacking in Android. In: USENIX Security (2015)

39. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming:
systems, languages, and applications. In: TISSEC. ACM (2012)

40. Roglia, G.F., Martignoni, L., Paleari, R., Bruschi, D.: Surgically returning to ran-
domized lib(c). In: ACSAC (2009)

41. Serna, F.J.: The info leak era on software exploitation. Black Hat USA (2012)
42. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the

effectiveness of address-space randomization. In: CCS (2014)
43. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.-R.:

Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: SP (2013)

44. Sun, M., Li, M., Lui, J.C.S.: Droideagle: seamless detection of visually similar
Android Apps. In: WiSec (2015)

45. Sun, M., Zheng, M., Lui, J.C.S., Jiang, X.: Design and implementation of an
Android host-based intrusion prevention system. In: ACSAC (2014)

46. Szekeres, L., Payer, M., Wei, T., Song, D.: Sok: Eternal war in memory. In: SP
(2013)

47. Team, P.: Pax address space layout randomization (ASLR) (2003)
48. Thomas, D.R., Beresford, A.R., Rice, A.: Security metrics for the Android ecosys-

tem. In: SPSM (2015)
49. van der Veen, V., dutt-Sharma, N., Cavallaro, L., Bos, H.: Memory errors: the

past, the present, and the future. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.)
RAID 2012. LNCS, vol. 7462, pp. 86–106. Springer, Heidelberg (2012)

50. Vidas, T., Votipka, D., Christin, N.: All your droid are belong to us: a survey of
current android attacks. In: WOOT (2011)

51. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: ASIACCS (2012)

52. Winsniewski, R.: Android-apktool: a tool for reverse engineering Android apk files
(2012)

53. Wojtczuk, R.N.: The advanced return-into-lib(c) exploits: PaX case study. Mag.
0x0b(0x3a) (2001)

54. Xu, R., Saidi, H., Anderson, R.: Aurasium: practical policy enforcement for
Android applications. In: USENIX Security (2012)

55. Yan, L.-K., Yin, H.: Droidscope: seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis. In: USENIX Security (2012)

56. Zhang, M., Duan, Y., Yin, H., Zhao, Z.: Semantics-aware Android malware classi-
fication using weighted contextual API dependency graphs. In: CCS (2014)

57. Zheng, M., Sun, M., Lui, J.: Droidray: a security evaluation system for customized
Android firmwares. In: ASIACCS (2014)

58. Zheng, M., Sun, M., Lui, J.C.: Droidanalytics: a signature based analytic system
to collect, extract, analyze and associate Android malware. In: TrustCom (2013)

59. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution.
In: SP (2012)

60. Zhou, Y., Patel, K., Wu, L., Wang, Z., Jiang, X.: Hybrid user-level sandboxing of
third-party Android Apps. In: ASIACCS (2015)

Author Index

Amira, Rony 143
Antonakakis, Manos 188
Arshad, Sajjad 415
Athanasopoulos, Elias 3

Backes, Michael 165, 303
Bailey, Michael 143
Balzarotti, Davide 24, 393
Ben-Yoash, Adi 143
Berger, Ari 143
Blackthorne, Jeremy 211
Bozzato, Claudio 97
Brengel, Michael 165
Bursztein, Elie 143

Caballero, Juan 230, 325
Calleja, Alejandro 325
Catakoglu, Onur 393
Chen, Yizheng 188
Cheng, Yao 254

Dabrowski, Adrian 279
Dagon, David 188

Focardi, Riccardo 97
Folger, Ori 143
Fu, Yangchun 49, 71

Gadyatskaya, Olga 346
Gañan, Carlos Hernandez 368

Hardon, Amir 143
Holz, Thorsten 303
Hu, Xunchao 254

Inoue, Daisuke 165
Ioannidis, Sotiris 3
Ishii, Kou 165

Jiang, Guofei 71
Joffe, Rodney 188

Kaiser, Benjamin 211
Kasama, Takahiro 165

Kharraz, Amin 415
Kintis, Panagiotis 188
Kirda, Engin 437
Korczyński, Maciej 368
Koromilas, Lazaros 3
Kotzias, Platon 230
Kountouras, Athanasios 188
Kruegel, Christopher 24

Lee, Ruby B. 118
Lever, Chaz 188
Li, Zhichun 71
Lin, Zhiqiang 49, 71
Lui, John C.S. 457

Maggi, Federico 437
Makita, Daisuke 368
Mambretti, Andrea 437
Matsumoto, Tsutomu 165
Muench, Marius 24
Mulliner, Collin 437

Nadji, Yacin 188
Noroozian, Arman 368

Onarlioglu, Kaan 437

Pagani, Fabio 24
Palmarini, Francesco 97
Papa, Yinmin 165
Pellegrino, Giancarlo 393
Petzl, Georg 279
Prakash, Aravind 254

Rhee, Junghwan 71
Rivera, Richard 230
Robertson, William 415, 437
Rossow, Christian 165, 303, 393
Rytilahti, Teemu 303

Sebastián, Marcos 230
Shoshitaishvili, Yan 24
Simeonovski, Milivoj 303
Steel, Graham 97

Stock, Ben 303
Sun, Mingshen 457

Tanabe, Rui 165
Tapiador, Juan 325
Thomas, Kurt 143

van Eeten, Michel 368
Vasiliadis, Giorgos 3
Vigna, Giovanni 24

Wang, Jinghan 254
Weippl, Edgar R. 279

Yener, Bülent 211
Yin, Heng 254
Yokoyama, Akira 165
Yoshioka, Katsunari 165, 368

Zanero, Stefano 437
Zeng, Junyuan 49
Zhang, Hui 71
Zhang, Tianwei 118
Zhang, Yinqian 118
Zhauniarovich, Yury 346
Zhou, Rundong 254
Zhou, Yajin 457

482 Author Index

	Foreword
	Organization
	Contents
	Systems Security
	GRIM: Leveraging GPUs for Kernel Integrity Monitoring
	1 Introduction
	2 Background
	2.1 GPUs and CPUs
	2.2 The GPU Memory Hierarchy
	2.3 GPUs for Kernel Integrity Monitoring
	2.4 The GPU Execution Model
	2.5 Threat Model

	3 Design
	4 Implementation
	4.1 Mapping Kernel Memory to GPU
	4.2 Kernel Integrity Monitoring on the GPU
	4.3 Real-Time Notification
	4.4 Data-Parallel Execution

	5 Evaluation
	5.1 Self-hiding LKM
	5.2 Address Space Coverage
	5.3 Impact on Memory Bandwidth
	5.4 Using a Low-End GPU
	5.5 Checksums and Message Digests

	6 Related Work
	7 Conclusion
	References

	Taming Transactions: Towards Hardware-Assisted Control Flow Integrity Using Transactional Memory
	1 Introduction
	2 Control Flow Integrity
	3 Transactional Memory
	3.1 Transactional Synchronization Extensions
	3.2 Hardware Lock Elision
	3.3 Restricted Transactional Memory
	3.4 TSX Minutia
	3.5 Suitability for Software Security
	3.6 TSX Application for Control Flow Integrity

	4 Achieving CFI with TSX
	4.1 Transaction Protection
	4.2 RTM and Loose CFI
	4.3 HLE and Strict CFI

	5 Implementation
	5.1 Integration Approach
	5.2 Implementation Details
	5.3 Limitations

	6 Evaluation
	6.1 Experiments
	6.2 Performance Overhead
	6.3 Transaction Aborts
	6.4 Space Overhead

	7 Discussion
	7.1 TSX Performance
	7.2 Protection Strength
	7.3 Comparison with Other Techniques
	7.4 Additional Capabilities - Future Work

	8 Conclusion
	References

	Automatic Uncovering of Tap Points from Kernel Executions
	1 Introduction
	2 System Overview
	3 Design and Implementation
	3.1 Kernel Object Tracking
	3.2 Object Access Resolution
	3.3 Tap Points Uncovering

	4 Evaluation
	5 Security Application
	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References

	Detecting Stack Layout Corruptions with Robust Stack Unwinding
	1 Introduction
	2 Background
	2.1 Return Oriented Programming
	2.2 Stack Frame Information in Binaries for Exception Handling

	3 Overview of SLIck
	4 Derivation of Stack Layout Invariants
	4.1 Stack Frame Chain Invariant (FCI)
	4.2 Stack Frame Local Storage Invariant (FSI)

	5 Runtime Inspection of Stack Invariants
	5.1 Practical Challenges
	5.2 Stack Invariant Inspection Algorithm
	5.3 Stack Inspection Policies

	6 Evaluation
	6.1 Detection of ROP Attacks
	6.2 Impact on Benign Programs
	6.3 Performance Analysis

	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Low-Level Attacks and Defenses
	APDU-Level Attacks in PKCS#11 Devices
	1 Introduction
	2 Background
	2.1 The PKCS#11 Layer
	2.2 The APDU Layer

	3 Threat Model
	3.1 Administrator Privileges
	3.2 User Privileges
	3.3 Physical Access
	3.4 Summary of the Threat Model

	4 APDU-Level Attacks on Real Devices
	4.1 Authentication
	4.2 Sensitive Symmetric Keys
	4.3 Bypassing Attribute Values
	4.4 RSA Session Keys

	5 Security Analysis
	5.1 Fixes and Mitigations

	6 Conclusion
	References

	CloudRadar: A Real-Time Side-Channel Attack Detection System in Clouds
	1 Introduction
	2 Background and Related Work
	2.1 Cache Side-Channel Attacks
	2.2 Defenses Against Side-Channel Attacks
	2.3 Intrusion Detection Using Hardware Performance Counters

	3 Design Challenges and Overview
	3.1 Design Challenges
	3.2 Design Overview

	4 Signature Detection of Cryptographic Applications
	4.1 Cryptographic Signature Generation
	4.2 Cryptographic Application Detection

	5 Anomaly Detection of Side-Channel Activities
	6 Implementation
	6.1 System Architecture Overview
	6.2 Operations

	7 Evaluation
	7.1 Detection Accuracy
	7.2 Performance

	8 Discussions
	8.1 Detecting Other Side Channels
	8.2 Potential Evasive Attacks
	8.3 Limitations

	9 Conclusions
	References

	Measurement Studies
	The Abuse Sharing Economy: Understanding the Limits of Threat Exchanges
	1 Introduction
	2 Threat Exchanges: Design and Challenges
	2.1 Existing Threat Exchanges
	2.2 Challenges

	3 Building a Threat Exchange
	3.1 Collating Abuse Reports
	3.2 Abusive Traffic Dataset
	3.3 Inbound HTTP Requests Dataset
	3.4 Limitations

	4 Comparing Abuse Perspectives
	4.1 Scale of Abusive Networks
	4.2 Network Locality and Specialization

	5 Characterizing Abusive IP Addresses
	5.1 Stability of IP-Device Pairs
	5.2 Diverse Device Traffic
	5.3 Reputation Across IP Re-assignment
	5.4 Subnet Abuse Affinity

	6 Cross-Vertical Abuse
	6.1 Overlapping Abuse Verticals
	6.2 Limitations of Intelligence Sharing

	7 Related Work
	7.1 Characterizing IP Addresses
	7.2 Blacklist Efficacy

	8 Summary
	References

	SandPrint: Fingerprinting Malware Sandboxes to Provide Intelligence for Sandbox Evasion
	1 Introduction
	2 Background
	3 Sandbox Fingerprinting
	3.1 Sandbox Fingerprinting Features
	3.2 Extracting Sandbox Fingerprints with SandPrint

	4 Clustering Sandboxes
	4.1 Clustering
	4.2 Clustering Results and Validation
	4.3 Sandbox vs. Service
	4.4 Mapping Malware Analysis Services to Sandboxes
	4.5 Empirical Sandbox Analysis

	5 Sandbox Classification
	5.1 Feature Selection
	5.2 Classification
	5.3 Comparison to Existing Solutions
	5.4 Summary

	6 Malware Appliance Detection
	7 Discussion and Limitations
	7.1 Ethical Considerations
	7.2 Responsible Disclosure
	7.3 Isolated Sandboxes

	8 Related Work
	9 Conclusion
	References

	Enabling Network Security Through Active DNS Datasets
	1 Introduction
	2 Active DNS Data Collection
	2.1 Infrastructure
	2.2 Domain Seed
	2.3 Measurements

	3 Comparing Active and Passive DNS Datasets
	3.1 Datasets

	4 Case Studies
	4.1 Enhancing Public Blacklists
	4.2 Enhancing the Detection of Domain's Residual Trust Change
	4.3 Tracking Malicious Domain Names in Non-routable IP Space

	5 Related Work
	6 Conclusion
	References

	Malware Analysis
	A Formal Framework for Environmentally Sensitive Malware
	1 Introduction
	1.1 Results
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Properties of Turing Machines
	2.3 Definitions

	3 System-Interaction Model
	3.1 Definitions
	3.2 Adversaries
	3.3 Semantic Obfuscation

	4 Sensors
	4.1 Learnable Sensor
	4.2 Random Oracle Sensor
	4.3 Piecewise Learnable Sensor

	5 Existing Sensors
	5.1 Static Sensor
	5.2 Dynamic Sensor
	5.3 Static and Dynamic Sensors

	6 Conclusion
	References

	AVclass: A Tool for Massive Malware Labeling
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Labeling
	3.2 Generic Token Detection
	3.3 Alias Detection

	4 Evaluation
	4.1 Datasets
	4.2 Metrics
	4.3 Generic Token Detection
	4.4 Alias Detection
	4.5 Evaluation on Labeled Datasets
	4.6 Evaluation on Unlabeled Datasets

	5 Discussion
	6 Conclusion
	A Additional Results
	References

	Semantics-Preserving Dissection of JavaScript Exploits via Dynamic JS-Binary Analysis
	1 Introduction
	2 Background and Overview
	2.1 Components of JavaScript Attack
	2.2 Problem Statement
	2.3 JScalpel-- Overview

	3 Multi-level Tracing and Slicing-Source Identification
	3.1 Context-Aware Multi-level Tracing
	3.2 Identifying Slicing Sources

	4 Multi-level Slicing
	4.1 Binary-Level Slicing
	4.2 JavaScript Slicing
	4.3 Minimized Exploit Script and PoV Generation

	5 Evaluation
	5.1 Minimizing Exploits
	5.2 PoV Generation
	5.3 Effects of Filtering
	5.4 Case Study -- CVE-2011-1255

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Network Security
	The Messenger Shoots Back: Network Operator Based IMSI Catcher Detection
	1 Introduction
	2 Background
	2.1 Working Principles of a Mobile Phone Network

	3 Capabilities of IMSI Catchers
	3.1 Access Technology
	3.2 Catching Capability
	3.3 Cryptographic Capabilities
	3.4 Access Technology Downgrade Capability

	4 Design and Data Sources
	5 Tracking IMSI Catcher
	5.1 Detecting Phones When Reattaching to the Original Network

	6 Capturing IMSI Catcher
	6.1 Detection of Cipher Downgrades
	6.2 Detection of Relayed Traffic
	6.3 Detection of Unknown, Unusual or Implausible Origin-LAI/TAI in Location Update Requests
	6.4 Detection of a Access Technology Downgrade

	7 Discussion
	7.1 Ethical Considerations
	7.2 Comparison with Client Detection Methods
	7.3 Limitations
	7.4 Future Work

	8 Related Work
	8.1 IMSI Catcher Detection
	8.2 Working Principle of IMSI Catchers
	8.3 Related Attacks on Cellular Devices

	9 Conclusion
	References

	On the Feasibility of TTL-Based Filtering for DRDoS Mitigation
	1 Introduction
	2 Background
	2.1 Relevant Internet Technologies
	2.2 Source Spoofing and DRDoS
	2.3 Hop Count Filtering

	3 Re-evaluating the Feasibility of Hop-Count Filtering
	3.1 Protocol-Based Probing
	3.2 Interpreting Responses
	3.3 Horizontal Probing
	3.4 Caveats of Active Probing

	4 Probing Analysis
	4.1 Benign Traffic
	4.2 Spoofed Traffic
	4.3 Implications

	5 Methodology for Estimating Hop Count Value
	5.1 Key Idea and Attacker Model
	5.2 Methodology

	6 Experimental Setup and Results
	6.1 Data Set
	6.2 Leave-one-out Evaluation

	7 Conclusion
	References

	Systematization of Knowledge and Experience Reports
	A Look into 30 Years of Malware Development from a Software Metrics Perspective
	1 Introduction
	2 Software Metrics
	2.1 Measuring Software Size
	2.2 Effort Estimation: The Constructive Cost Model (COCOMO)
	2.3 Source Code Complexity and Maintainability

	3 Dataset
	4 Analysis
	4.1 Source Code Analytics
	4.2 Cost Estimation
	4.3 Complexity and Maintainability
	4.4 Comparison with Regular Software

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Small Changes, Big Changes: An Updated View on the Android Permission System
	1 Introduction
	2 The Established View on the Permission System
	3 New Android Permission System Overview
	4 Permission System Implementation Details
	4.1 Protection Level
	4.2 Permission Flags

	5 Analysis of Permission Changes
	6 Key Findings
	6.1 Important Changes in API 23
	6.2 Interesting Findings

	7 Related Work
	8 Conclusion
	References

	Who Gets the Boot? Analyzing Victimization by DDoS-as-a-Service
	1 Introduction
	2 Background
	3 Honeypot Data
	4 Victims of Amplification Attacks
	5 Victims in Broadband Providers
	6 Hosting Providers
	7 Attack Duration
	8 Related Work
	9 Discussion and Implications
	References

	Web and Mobile Security
	Uses and Abuses of Server-Side Requests
	1 Introduction
	2 Background
	2.1 Server-Side Request Communication Pattern
	2.2 Security Risks and Threat Models
	2.3 Awareness of the Security Risks

	3 SSR Classification
	3.1 Flaw-Based Classification
	3.2 Behavior-Based Classification
	3.3 Control-Based Classification
	3.4 Target-Based Classification

	4 Attacks
	4.1 Web Origin Laundering
	4.2 Denial of Service
	4.3 Network Reconnaissance
	4.4 Protocol Bridging Attacks

	5 Case Studies and Analysis
	6 Mitigations
	7 Developers Feedback
	8 Related Work
	9 Conclusion
	References

	Identifying Extension-Based Ad Injection via Fine-Grained Web Content Provenance
	1 Introduction
	2 Background and Motivation
	2.1 Browser Extensions
	2.2 Advertisement Injection
	2.3 Motivation

	3 Web Content Provenance
	3.1 Content Provenance
	3.2 Content Provenance Indicators

	4 OriginTracer
	4.1 Tracking Publisher Provenance
	4.2 Tracking Extension Provenance
	4.3 Content Provenance Indicators

	5 Evaluation
	5.1 Effectiveness of the Approach
	5.2 Usability
	5.3 Performance

	6 Related Work
	6.1 Malicious Advertising
	6.2 Browser Extension Security
	6.3 Provenance Tracking

	7 Conclusion
	References

	Trellis: Privilege Separation for Multi-user Applications Made Easy
	1 Introduction
	2 Threat Model
	3 Design
	3.1 Access Control Model

	4 Implementation
	4.1 Compile-Time Component
	4.2 Run-Time Component

	5 Evaluation
	5.1 Micro-benchmarks
	5.2 End-to-End Performance
	5.3 Experiment Results
	5.4 Developer Effort
	5.5 Security Experiments

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	References

	Blender: Self-randomizing Address Space Layout for Android Apps
	1 Introduction
	2 Background
	2.1 Dalvik VM and ART Runtime
	2.2 DEP/ASLR Protection on Android

	3 A New Attack: Ret2art
	3.1 ASLR Circumvention
	3.2 The New Return-to-ART Attack (ret2art)

	4 Blender
	4.1 High Level System Design
	4.2 BlenderLRM
	4.3 BlenderART
	4.4 Implementation Details

	5 Evaluation
	5.1 Effectiveness
	5.2 Performance

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Author Index

